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Introduction
The Consumer Price Index (CPI) uses data from the
Consumer Expenditure Survey to weight individual
area/item price indexes in order to aggregate them to
higher-level price indexes.  The accuracy of the
weights of local area indexes is improved through a
process called composite estimation, in which
strength is borrowed from a larger geographic area.
Larger geographic areas have similar expenditure
patterns to those of local areas, but the patterns are
more stable because they come from a larger sample.
In this paper we describe the method of composite
estimation used in the CPI’s 1998 Revision, and then
summarize research to improve the composite
estimation process conducted over the past ten years
at the U.S. Bureau of Labor Statistics.

Background
The CPI is one of the most important economic
indicators available in the United States.  It measures
the change in prices of goods and services that are
purchased by American consumers.  The goods and
services currently represented in the CPI are those
purchased by urban Americans during the 3-year
period 1993-95.

The samples and weights used to compute the CPI
are updated periodically to reflect changing
consumer expenditure patterns and changing
demographics.  In the past these updates occurred
approximately every ten years, but in the future they
will occur more often.  The weights come from
another survey conducted by the U.S. Bureau of
Labor Statistics called the Consumer Expenditure
Survey, and are updated every time the CPI is
revised.

To produce the CPI, price data are collected every
month from a random sample of stores in thirty-

eight geographic areas across the United States.
These geographic areas are called index areas.
Examples of index areas are the Boston metropolitan
area, the St. Louis metropolitan area, and the San
Francisco metropolitan area.  Within each of the 38
index areas price data are collected for 211 item
categories called item strata.  Together the 211 item
strata cover all consumer purchases.  Examples of
item strata are Bananas, Women’s Dresses, and
Electricity.

Multiplying the number of index areas by the
number of item strata gives us 8,018 (= 38 × 211)
different area/item combinations for which data need
to be collected.  Price indexes are calculated for each
one of these 8,018 area/item combinations, and then
the indexes are aggregated to form higher-level price
indexes using expenditure estimates from the
Consumer Expenditure Survey as their weights.
Because of small sample sizes within individual
index areas, composite estimation is used to increase
the accuracy of the weights.

Current Method of Composite Estimation
In the CPI’s 1998 revision composite estimation of
Consumer Expenditure Survey data was performed
in the following way:

First, expenditure estimates were obtained from the
Consumer Expenditure Survey for the 3-year period
1993-95 for each of the 8,018 area/item
combinations.  Then each item stratum’s relative
importance was computed.  Relative importance is
the total expenditure made on a particular item
stratum divided by the total expenditure made on all
item strata.  In other words, it is the proportion of
total consumer expenditures made on a specific item
stratum.

For example, according to the Consumer
Expenditure Survey, consumers in the Boston
metropolitan area spent $463 million on women’s
dresses during the 3-year period 1993-95, and $224
billion on all items combined.  Dividing $463
million by $224 billion gives a relative importance of
0.0021, meaning that consumers in the Boston



metropolitan area spent 0.21 percent of their total
expenditures on women’s dresses.

Relative importances were computed by index area,
and also by major area.  For the purpose of
composite estimation the United States was divided
into 8 major areas, which are the 4 Census regions
(Northeast, Midwest, South, West) cross-classified
by the sets of self-representing and non-self-
representing index areas.

After computing relative importances for each item
stratum within each index area and major area, the
composite estimation process simply involved
replacing every index area relative importance by a
weighted average of the index area and major area
relative importances.  The weighted average is
expected to be a more accurate estimate of the index
area’s true relative importance because the index
area and major area have similar expenditure
patterns, but the major area has a larger sample size.

For example, in the Boston metropolitan area
consumers spent 0.21 percent of their total
expenditures on women’s dresses.  In all self-
representing areas in the Northeast Region they
spent 0.32 percent on women’s dresses.  In the
composite estimation process Boston’s estimate of
0.0021 is replaced by a weighted average of the two
estimates:  0.0021 is replaced by α0.0032 +
(1−α)0.0021 where 0 ≤ α ≤ 1.  Of course the entire
Northeast Region has a larger sample size than the
Boston metropolitan area alone, so the weighted
average is expected to have less variability than
Boston’s original estimate.

Mathematically, let x be an item stratum’s relative
importance estimate for a major area, and y be its
estimate for an individual index area within that
major area.  Then in composite estimation y is
replaced by y* = αx + (1−α)y, where 0 ≤ α ≤ 1.
This is a weighted average of the index area and
major area relative importance estimates.  The
weight α is chosen to be the number between 0 and 1
that minimizes the mean squared error (MSE) of y*.

Although MSEs are not exactly the same as
variances, they are very similar.  To give the basic
idea of how the formula for α is derived, the
following shows how to find the value of α that
minimizes the variance of y*:

V(y*) = V(αx + (1−α)y)

= α2V(x)   +   (1−α)2V(y)   +   2α(1−α)Cov(x,y)
= α2[V(x)  +  V(y)  −  2Cov(x,y)]   −

2α[V(y) − Cov(x,y)]   +   V(y)
= α2V(y−x)   −   2α[V(y) − Cov(x,y)]  +  V(y)

Then to minimize the variance of y*, the derivative
is taken with respect to α and set equal to 0:
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This shows how to obtain the value of α that
minimizes the variance of y*.  When MSE is
minimized the formula becomes the following:
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When we look at all 8,018 area/item combinations,
the median reduction in root mean squared error

( MSE , or RMSE) achieved by this method of
composite estimation was 14 percent, so the method
was fairly effective.  It was also relatively easy to
implement.

Research to Improve Composite Estimation
Although the current method of composite
estimation worked fairly well, ten years ago the CPI
program started to look for ways to improve the
process even further.  This led to a research program
in which a number of alternative methods and
models were developed.  They are briefly described
below.

First is a nearest neighbor method in which a
weighted average of the relative importances from
the index area and the index areas geographically
closest to it is used.  After that, a multivariate
generalization of the current method is described,
followed by several Bayesian models, and then
finally a method in which the inputs to the current
model are improved.

For more details on these methods, see the articles
listed in the bibliography at the end of this paper.

Nearest Neighbor Method
This is the same as the current method, but with one
slight change:  instead of compositing an index area
with its major area, the index area is composited
with the index areas that are geographically closest



to it.  For example, Baltimore is in the South region,
which includes many index areas that are far from
Baltimore, such as Miami, New Orleans, Houston,
and Dallas.  Baltimore’s nearest neighbors, however,
are mostly in the Northeast region, such as
Philadelphia and New York.  In the nearest neighbor
method, instead of compositing Baltimore with the
set of self-representing index areas in the South,
Baltimore is composited with the set of index areas
that are geographically closest to it.  An index area’s
expenditure patterns are expected to be closer to its
nearest neighbors than they are to those of distant
index areas that just happen to be assigned to the
same region of the country.

Here is an example.  Baltimore’s 2 nearest neighbors
are Washington, DC and Philadelphia.  The total
expenditures on women’s dresses and all items
combined during the 3-year period 1993-95 are
shown below.  According to the Consumer
Expenditure Survey, people in the Baltimore
metropolitan area spent $230 million on women’s
dresses, and $80,395 million on all items.  Thus
women’s dresses represented 0.29 percent of total
expenditures in Baltimore.  Similar numbers are
shown for Washington, DC, Philadelphia, and all 3
areas combined.

Total Expenditures, 1993-95 ($ millions)

Index Area
Women’s
Dresses All Items

Relative
Importance

Baltimore 230 80,395 .0029
Washington, DC 557 180,951 .0031
Philadelphia 718 197,160 .0036
Total 1,505 458,506 .0033

The composite estimate of relative importance for
Baltimore is then computed as α0.0033 +
(1−α)0.0029, where 0 ≤ α ≤ 1.  The number α is
computed the same way as in the current method –
by taking the derivative of the MSE with respect to
α, setting the derivative equal to 0, and then solving
for α.  In this example α turned out to be 0.59.
When α=0.59 the composite estimate becomes
0.0031, which means that the new expenditure
estimate for women’s dresses in Baltimore is 0.0031
× $80,395 million = $249 million.  Thus $249
million is the new (and presumably more accurate)
estimate of total expenditures on women’s dresses in
the Baltimore metropolitan area for the 1993-95
period.

In the example above Baltimore was composited
with its 2 nearest neighbors.  Of course it could have
been composited with its 3 nearest neighbors, its 4
nearest neighbors, and so on.  A graph comparing

the median reduction in RMSE ( MSE ) for item
stratum/index area relative importances against the
number of neighbors used is shown below.

The graph shows that the optimal number of
neighbors to use is 8.  When 8 neighbors are used,
the median reduction in RMSE is 15 percent, which
is 1 percentage point better than the current method.

A Multivariate Generalization of the Current
Method
When we look at the formula for α in the current
method of composite estimation, it is clear that it
takes into consideration covariances between index
areas, but ignores covariances between item strata.
In 1992 a multivariate procedure similar to the
current method was developed in which covariances
between different item strata were taken into
consideration as well.  This generalization of the
current method naturally produced superior results.
The median reduction in RMSE was 14 percent for
the current method, 15 percent for the nearest
neighbor method, and 18 percent for this
multivariate method.  Thus the multivariate method
worked a little better than the current method.

The problem with the multivariate method was that
it required calculating some matrix inverses, and
whenever one or more of the item stratum/index area
combinations had no reported expenditures in it, the
matrices could not be inverted.  In those situations
the method broke down.  As a result more research
was needed.
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Bayesian Models
Eight different Bayesian models were proposed to
improve the direct survey estimates of expenditure.
Two of them are described here.

In 1992 a linear empirical Bayes model was
proposed to estimate the true expenditure.  The basic
idea of the model was that the true expenditure can
be modeled as a linear combination of other
variables, ε+β=θ Tx  ε+β++β+β= nnxxx K2211 ,

where θ is the true expenditure, the ix ’s are some

exogenous variables, the iβ ’s are coefficients of

those variables, and ε is a random error term with
mean 0.

For example, the total expenditure on women’s
dresses might be modeled as a linear function of the
number of women living in the index area
( ε+β+β+β=θ 332211 xxx , where 1x is the number of

women aged 15-24, 2x is the number of women aged

25-65, and 3x is the number of women over 65); or

the total expenditure on new cars might be modeled
as a linear function of the number of families in
various income categories ( ε+β+β+β=θ 332211 xxx ,

where 1x is the number of families with incomes

between $0 and $30,000, 2x is the number of families

with incomes between $30,001 and $75,000, and

3x is the number of families with incomes over

$75,000).

Then under certain Bayesian assumptions the true
expenditure was estimated to be a weighted average
of the direct survey estimator and the linear model of
it:

βα−+α=θ Tx)1(ˆ y ,  where 
)|()V(

)(

θ+θ
θ

=α
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V

Of course this model assumes that we have some
outside variables that produce good estimates of
expenditure.  However, the problem with the model
is that finding such variables can be difficult, and
using them to produce official expenditure estimates
is rather difficult to justify at a survey organization
such as the Bureau of Labor Statistics.  As a result,
we did not pursue this model any further.

In the same year a hierarchical Bayes model was
proposed to estimate expenditures.  Let kjθ be the

true total expenditure for item stratum k in index
area j, let kjY be the direct survey estimator of the total

expenditure, and let T
Kjjj ],,[ 1 θθ=θ K  and

T
Kjjj YYY ],,[ 1 K= be vectors of those quantities.  Also

let us make the following assumptions:
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The hierarchical Bayes estimator of θ was then
obtained using the familiar iterated formula for

expectations, =θ=θ
∧
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the expectation is computed using the posterior
density of 0r given Y, found to be:
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Regardless of the model’s effectiveness, it is clear
that the model is rather hard to describe to non-
statisticians, which makes it is hard to convince
them of its value.  It is also rather complicated to
implement in a production environment.  As a result,
we did not pursue this model any further either.

In addition to the two models described above, six
other Bayesian models were proposed.  All of them
were considered to be overly complex, both in terms
of the ability to explain them to non-statisticians,
and in terms of the ability to implement them in a
production environment.  As a result, none of them
was pursued any further.

Current Research
As we mentioned before, the current method of
composite estimation involves replacing an item
stratum’s relative importance for a particular index



area with a weighted average of the index area and
major area relative importance estimates.  That is, y
is replaced by y* = αx + (1−α)y, where y is the index
area estimate, x is the major area estimate, and

] x)(y E[

y)Cov(x,V(y)
2−

−
=α .

Recently a proposal was made to use the same
model, but with an improved estimate of α.  The
method of improving the estimate of α is simply to
improve the estimates of V(y), Cov(x,y), and

]x)E[(y 2− that go into its formula, which in turn

improves the estimate of α.  Specifically, the
recommendation is to use stratified estimators of
V(y), Cov(x,y), and ]x)E[(y 2−  to improve their

stability.

Currently we are evaluating this method.  So far we
have identified and tested over a dozen variables that
were conjectured to be effective in stratifying the
families in the Consumer Expenditure Survey.  The
variables consisted of several expenditure/income
variables, several demographic variables, and several
geographic variables.

After stratifying the families with these variables, we
used the following formula to measure how much of
the total variance in the Consumer Expenditure
Survey was explained by each variable:
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where ifRI is the relative importance of item

category i for family f, isRI is the relative importance

of item category i for all families in stratum s, and

iRI is the relative importance of item category i for

all families in the Consumer Expenditure Survey’s
sample.  The numerator of this ratio is the stratified
variance, and the denominator is the un-stratified
variance.  One minus the ratio is the proportion of
total variance “explained” by the stratification
variables, which is commonly called R-squared.

Stratifying Variable 2R

Total family expenditures 9.4%
Total family pre-tax income 7.8%

Age 4.0%
Family Type 3.8%
Education 2.2%
Family size 2.0%

Race 0.7%

Tenure (owner/renter) 1.9%
Type of segment 1.2%
Degree urban 1.1%

The table above shows that expenditure/income
variables explained the greatest amount of variance,
followed by demographic variables, and then
geographic variables.  This means that stratifying by
expenditure/income variables will probably improve
the stability of α by the greatest amount, followed by
demographic variables, and then geographic
variables.

After measuring the stratification effect of individual
variables, we also looked at whether stratifying by
more than one variable would have a greater effect.
For example, we looked at whether age and
education together would produce better results than
either variable by itself.  We found that additional
variables did not have a noticeable effect, so in the
future we will be testing this method by stratifying
with just one variable.

Summary
The current method of composite estimation works
fairly well.  It is easy to implement, and successfully
reduces RMSE by a median amount of 14 percent.
Some of the other methods reduce RMSE a little
more, but they are also harder to implement, and
sometimes break down.  All eight Bayesian models
proposed are somewhat complex, difficult to describe
to non-statisticians, difficult to convince non-
statisticians of their value, and difficult to implement
in a production environment.  Our current research
focuses on returning to the current method of
composite estimation and improving the stability of
the weight α that goes into it.  Further improvement
of the current method looks promising.
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