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11.1 Introduction

The problem considered here is one familiar to analysts carrying out exploratory data analysis
(EDA) of data obtained via a complex sample survey design. How does one adjust for the
effects, if any, induced by the method of sampling used in the survey when applying EDA
methods to these data? In particular, are adjustments to standard EDA methods necessary
when the analyst's objective is identification of "interesting" population (rather than sample)
structures?

A variety of methods for adjusting for complex sample design when carrying out parametric
inference have been suggested. See, for example, SHS, Pfeffermann (1993) and Breckling et
al (1994). However, comparatively little work has been done to date on extending these ideas
to EDA, where a parametric formulation of the problem is typically inappropriate.

We focus on a popular EDA technique, nonparametric regression or scatterplot smoothing.
The literature contains a limited number of applications of this type of analysis to survey data,
usually based on some form of sample weighting. The design-based theory set out in chapter
10, with associated references, provides an introduction to this work. See also Chesher
(1997).

The approach taken here is somewhat different. In particular, it is model-based, building on
the sample distribution concept discussed in section 2.3. Here we develop this idea further,
using it to motivate a number of methods for adjusting for the effect of a complex sample
design when estimating a population regression function. The chapter itsef consists of seven
sections. In section 11.2 we describe the sample distribution-based approach to inference, and
the different types of survey data configurations for which we develop estimation methods. In
section 11.3 we set out a number of key identities that allow us to reexpress the population
regression function of interest in terms of related sample regression quantities. In section 11.4
we use these identities to suggest appropriate smoothers for the sample data configurations
described in section 11.2. The performances of these smoothers are compared in a small
simulation study reported in section 11.5. In section 11.6 we digress to explore diagnostics for
informative sampling. Section 11.7 provides a conclusion with a discussion of some
extensions to the theory.

Before moving on, it should be noted that the development in this chapter is an extension of
Smith (1988) and Skinner (1994), see also Pfeffermann, Krieger and Rinott (1998) and
Pfeffermann and Sverchkov (1999). The notation we employ is largely based on Skinner
(1994).

To keep the discussion focussed, we assume throughout that non-sampling error, from
whatever source (e.g. lack of coverage, nonresponse, interviewer bias, measurement error,
processing error), is not a problem as far as the survey data are concerned. We are only
interested in the impact of the uncertainty due to the sampling process on nonparametric
smoothing of these data. We also assume a basic familiarity with nonparametric regression
concepts, comparable with the level of discussion in Härdle (1990).
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11.2 Setting the Scene

Since we are interested in scatterplot smoothing we suppose that two (scalar) random
variables Y and X can be defined for a target population U of size N and values of these
variables are observed for a sample taken from U. We are interested in estimating the smooth
function gU(x) equal to the expected value of Y given X = x over the target population U.
Sample selection is assumed to be probability-based, with  denoting the value of the sample
inclusion probability for a generic population unit. We assume that the sample selection
process can be (at least partially) characterised in terms of the values of a multivariate sample
design variable Z (not necessarily scalar and not necessarily continuous). For example, Z can
contain measures of size, stratum indicators and cluster indicators. In the case of ignorable
sampling,  is completely determined by the values in Z. In this chapter, however, we
generalise this to allow  to depend on the population values of Y, X and Z. The value  is
therefore itself a realisation of a random variable, which we denote by . Define the sample
inclusion indicator I, which, for every unit in U, takes the value 1 if that unit is in sample and
is zero otherwise. The distribution of I for any particular population unit is completely
specified by the value of  for that unit, and so

    Pr( I = 1 Y = y, X = x,Z = z, = ) = Pr(I =1 = ) = .

11.2.1 A Key Assumption

In many cases it is possible to assume that the population values of the row vector (Y, X, Z)
are jointly independent and identically distributed ( iid). Unfortunately, the same is usually not
true for the sample values of these variables. However, since the methods developed in this
chapter depend, to a greater or lesser extent, on some form of exchangeability for the sample
data we make the following assumption:

Random Indexing : The population values of the random row vector (Y, X, Z, I, ) are iid.

That is, the values of Y, X and Z for any two distinct population units are generated
independently, and furthermore, the subsequent values of I and  for a particular poppulation
unit only depend on that unit’s values of Y, X and Z. Note that in general this assumption does
not hold, e.g. where the population values of Y and X are clustered. In any case the joint
distribution of the bivariate random variable (I, ) will depend on the population values of Z
(and sometimes on those of Y and X as well), so an iid assumption for (Y, X, Z, I, ) fails.
However, in large populations the level of dependence between values of (I, ) for different
population units will be small given their respective values of Y, X and Z, and so this
assumption will be a reasonable one. A similar assumption underpins the parametric
estimation methods described in chapter 12, and is, to some extent, justified by asymptotics
described in Pfeffermann, Krieger and Rinott (1998).

11.2.2 What Are the Data?

The words “complex survey data” mask the huge variety of forms in which survey data
appear. A basic problem with any form of survey data analysis therefore is identification of
the relevant data for the analysis.
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The method used to select the sample will have typically involved a combination of complex
sample design procedures, including multi-way stratification, multi-stage clustering and
unequal probability sampling. In general, the information available to the survey data analyst
about the sampling method can vary considerably and hence we consider below a number of
alternative data scenarios. In many cases we are secondary analysts, unconnected with the
organisation that actually carried out the survey, and therefore denied access to sample design
information on confidentiality grounds. Even if we are primary analysts, however, it is often
the case that this information is not easily accessible because of the time that has elapsed
since the survey data were collected.

What is generally available, however, is the value of the sample weight associated with each
sample unit. That is, the weight that is typically applied to the value of a sample variable
before summing these values in order to "unbiasedly" estimate the population total of the
variable. For the sake of simplicity, we shall assume that this sample weight is the either the
inverse of the sample inclusion probability  of the sample unit, or a close proxy. Our data set
therefore includes the sample values of these inclusion probabilities. This leads us to:

Data Scenario A: Sample values of Y, X and  are known. No other information is available.

This scenario is our base scenario. We envisage that it represents the minimum information
set where methods of data analysis which allow for complex sampling are possible. The
methods described in chapter 10 and chapter 12 are essentially designed for sample data of
this type.

The next situation we consider is where some extra information about how the sampled units
were selected is also available. For example, if a stratified design was used, we know the
strata to which the different sample units belong. Following standard practice, we characterise
this information in terms of the values of a vector-valued design covariate Z known for all the
sample units. Thus, in the case where only stratum membership is known, Z corresponds to a
set of stratum indicators. In general Z will consist of a mix of such indicators and continuous
size measures. This leads us to:

Data Scenario B: Sample values of Y, X, Z and  are known. No other information is
available.

Note that  will typically be related to Z. However, this probability need not be completely
determined by Z.

We now turn to the situation where we not only have access to sample data, but also have
information about the non-sampled units in the population. The extent of this information can
vary considerably. The simplest case is where we have population summary information on Z,
say the population average   z . Another type of summary information we may have relates to
the sample inclusion probabilities . We may know that the method of sampling used
corresponds to a fixed size design, in which case the population average of  is n/N. Both
these situations are combined in:

Data Scenario C: Sample values of Y, X, Z and  are known. The population average   z  of Z
is known, as is the fact that the population average of  is n/N.

Finally, we consider the situation where we have access to the values of both Z and  for all
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units in the population, for example from a population frame. This leads to

Data Scenario D: Sample values of Y, X, Z and  are known, as are the nonsample values of
Z and .

11.2.3 Informative Sampling and Ignorable Sample Designs

A key concern of this chapter is where the sampling process somehow confounds standard
methods for inference about the population characteristics of interest. It is a fundamental (and
often unspoken) "given" that such standard methods assume that the distribution of the
sample data and the corresponding population distribution are the same, so inferential
statements about the former apply to the latter. However, with data collected via complex
sample designs this situation no longer applies.

A sample design where the distribution of the sample values and population values for a
variable Y differ is said to be informative about Y. Thus, if an unequal probability sample is
taken, with inclusion probabilities proportional to a positive valued size variable Z, then,
provided Y and Z are positively correlated, the sample distribution of Y will be skewed to the
right of its corresponding population distribution. That is, this type of unequal probability
sampling is informative.

An extreme type of informative sampling discussed in chapter 8 by Scott and Wild is case-
control sampling. In its simplest form this is where the variable Y takes two values, 0 (a
control) and 1 (a case), and sampling is such that all cases in the population (of which there
are n << N) are selected, with a corresponding random sample of n of the controls also
selected. Obviously the population proportion of cases is n/N. However, the corresponding
sample proportion (0.5) is very different.

In some cases an informative sampling design may become uninformative given additional
information. For example, data collected via a stratified design with non-proportional
allocation will typically be distributed differently from the corresponding population
distribution. This difference is more marked the stronger the relationship between the
variable(s) of interest and the stratum indicator variables. Within a stratum, however, there
may be no difference between the population and sample data distributions, and so the overall
difference between these distributions is completely explained by the difference in the sample
and population distributions of the stratum indicator variable.

It is standard to characterise this type of situation by saying a sampling method is ignorable
for inference about the population distribution of a variable Y given the population values of
another variable Z if Y is independent of the sample indicator I given the population values of
Z. Thus, if Z denotes the stratum indicator referred to in the previous paragraph, and if
sampling is carried out at random within each stratum, then it is easy to see that I and Y are
independent within a stratum and so this method of sampling is ignorable given Z.

In the rest of this chapter we explore methods for fitting the population regression function
gU(x) in situations where an informative sampling method has been used. In doing so, we
consider both ignorable and non-ignorable sampling situations.
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11.3 Re-expressing the Regression Function

In this section we develop identities which allow us to re-express gU(x) in terms of sample-
based quantities as well as quantities which depend on Z. These identities underpin the
estimation methods defined in Section 11.4.

We use fU(w) to denote the value of the population density of a variable W at the value w, and
fs(w) to denote the corresponding value of the sample density of this variable. This sample
density is defined as the density of the conditional variable W|I = 1. See also chapter 12. We
write this (conditional) density as fs(w) = fU(w|I = 1). To reduce notational clutter, conditional
densities f(w|V = v) will be denoted f(w|v). We also use EU(W) to denote the expectation of W
over the population (i.e. with respect to fU) and Es(W) to denote the expectation of W over the
sample (i.e. with respect to fs). Since development of expressions for the regression of Y on
one or more variables will be our focus, we introduce special notation for this case. Thus, the
population and sample regressions of Y on another (possibly vector-valued) variable W will be
denoted gU(w) = EU(Y|W = w) = EU(Y|w) and gs(w) = Es(Y|W = w) = Es(Y|w) respectively
below.

We now state two identities. Their proofs are straightforward given the definitions of I and 
and the Random Indexing assumption of Section 11.2.1:

fs(w| ) = fU(w| ) (11.1)

and

fU( ) = fs( )EU( )/  = fs( )/( Es(1/ )). (11.2)

Consequently

    
fU (w) =

−1 fs(w | ) fs( )d∫
Es

−1[ ] (11.3)

and so

    
EU (W ) = Es

−1Es(W | )[ ] Es
−1[ ].

Recollect that gU(x) is the regression of Y on X at X = x in the population. Following an
application of Bayes theorem, one can then show

    
gU (x) =

Es
−1 fs(x | )gs (x, )[ ]

Es
−1 fs(x | )[ ] . (11.4)

From the right hand side of (11.4) we see that gU(x) can be expressed in terms of the ratio of
two sample-based unconditional expectations. As we see later, these quantities can be
estimated from the sample data, and a plug-in estimate of gU(x) obtained.
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12.3.1 Incorporating a covariate

So far, no attempt has been made to incorporate information from the design covariate Z.
However, since the development leading to (11.4) holds for arbitrary X, and in particular
when X and Z are amalgamated, and since gU(x) = EU(gU(x,Z)|x), we can apply (11.4) twice to
obtain

    
gU (x) =

Es
−1 fs(x | )Es gU (x,Z ) |x,( )[ ]

Es
−1 fs(x | )[ ] (11.5a)

where

    
gU (x, z) =

Es
−1 fs (x,z | )g s(x, z, )[ ]
Es

−1 fs (x,z | )[ ] . (11.5b)

An important special case is where the method of sampling is ignorable given Z, that is the
random variables Y and X are independent of the sample indicator I (and hence ) given Z.
This implies that gU(x,z) = gs(x,z) and hence

    
gU (x) =

Es
−1 fs(x | )Es g s(x,Z ) |x,( )[ ]

Es
−1 fs (x | )[ ] . (11.6)

Under ignorability given Z, it can be seen that Es(gs(x,Z)|x, ) = gs(x, ), and hence (11.6)
reduces to (11.4). Further simplification of (11.4) using this ignorability then leads to

    
gU (x) = Es

−1 fs(x | Z)g s( x, Z)[ ] Es
−1 fs (x | Z )[ ], (11.7)

which can be compared with (11.4).

11.3.2 Incorporating population information

The identities (11.4), (11.5) and (11.7) all express gU(x) in terms of sample moments.
However, there are situations where we have access to population information, typically
about Z and . In such cases we can weave this information into estimation of gU(x) by
expressing this function in terms of estimable population and sample moments.

To start, note that

    
1 Es

−1 | x[ ] = E fs(x | )[ ] E fs (x | )[ ]

and so we can rewrite (11.4) as

    
gU (x) =

Es
−1 fs(x | )gs (x, )[ ]
Es fs(x | )[ ]

EU fs(x | )[ ]
EU fs(x | )[ ] . (11.8)
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The usefulness of this re-expression of (11.4) depends on whether the ratio of population
moments on the right hand side of (11.8) can be evaluated from the available data. For
example, suppose all we know is that EU( ) = n/N, and that fs(x| ) = fs(x). Here n is the
sample size. Then (11.8) reduces to

    
gU (x) =

n

N
Es

−1gs (x, )[ ].

Similarly, when population information on both  and Z is available, we can replace (11.5)
by

    
gU (x) =

Es
−1 fs(x | )Es gU (x,Z ) |x,( )[ ]

Es fs (x | )[ ]
EU fs (x | )[ ]
EU f s(x | )[ ] (11.9a)

where

    
gU (x, z) =

Es
−1 fs (x,z | )g s(x, z, )[ ]

Es fs (x, z | )[ ]
EU fs(x, z | )[ ]
EU fs(x, z | )[ ] . (11.9b)

The expressions above are rather complicated. Simplification does occur, however, when the
sampling method is ignorable given Z. As noted earlier, in this case gU(x,z) = gs(x,z), so gU(x)
= EU(gs(x,Z)|x). However, since fU(x|z) = fs(x|z) it immediately follows

  gU (x) = EU fs x Z( )g s x,Z( )[ ] EU fs x Z( )[ ]. (11.10)

A method of sampling where fU(y|x) = fs(y|x), and so gU(x) = gs(x) is non-informative. Observe
that ignorability given Z is not the same as being non-informative since it does not generally
lead to gU(x) = gs(x). For this we also require that the population and sample distributions of Z
are the same, that is, fU(z) = fs(z).

We now combine the results on gU(x) obtained in the previous section with the data scenarios
above to develop estimators that capitalise on the extent of the survey data that are available.

11.4 Design-Adjusted Smoothing

11.4.1 Plug-in methods based on sample data only

The basis of the plug-in approach is simple. We replace sample-based quantities in an
appropriately chosen representation of gU(x) by corresponding sample estimates. Effectively
this is method of moments estimation of gU(x). Thus, in scenario A in section 11.2.2 we only
have sample data on Y, X and . The identity (11.4) seems most appropriate here since it
depends only on the sample values of Y, X and . Our plug-in estimator of gU(x) is

    
ˆ g U (x) = t

−1 ˆ f s(x | t) ˆ g s (x, t )
s

∑ t
−1 ˆ f s (x | t )

s
∑ (11.11)

where   
ˆ f s(x | ) denotes the value at x of a nonparametric estimate of the conditional density

of the sample X values given  = , and   ̂  g s (x, ) denotes the value at (x, ) of a nonparametric
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smooth of the sample Y values against the sample X and  values. Both these nonparametric
estimates can be computed using standard kernel-based methods, see Silverman (1986) and
Härdle (1990).

Under scenario B we have extra sample information, consisting of the sample values of Z. If
these values explain a substantial part of the variability in , then it is reasonable to assume
that the sampling method is ignorable given Z, and representation (11.7) applies. Our plug-in
estimator of gU(x) is consequently

    
ˆ g U (x) = t

−1 fs(x | zt) ˆ g s (x, zt )
s

∑ t
−1 fs(x | zt)

s
∑ . (11.12)

If the information in Z is not sufficient to allow one to assume ignorability then one can fall
back on the two level representation (12.5). That is, one first computes an estimate of the
population regression of Y on X and Z,

    
ˆ g U (x, z) = t

−1 ˆ f s (x,z | t) ˆ g s (x,z, t)
s

∑ t
−1 ˆ f s (x, z | t)

s
∑ . (11.13a)

and then smooths this estimate further (as a function of Z) against X and  to obtain

    
ˆ g U (x) = t

−1 ˆ f s(x | t)
ˆ E s ˆ g U (x, Z) | x, t( )

s
∑ t

−1 ˆ f s(x | t)
s

∑ (11.13b)

where   
ˆ E s ˆ g U (x, Z) | x, t( ) denotes the value at (x, t) of a sample smooth of the values

  ̂  g U (x, zt)  against the sample X and  values.

11.4.2 Examples

The precise form and properties of these estimators will depend on the nature of the
relationship between Y, X, Z and . To illustrate, we consider two situations, corresponding to
different sample designs.

Stratified Sampling on Z

We assume a scenario B situation where Z is a mix of stratum indicators Z1 and auxiliary
covariates Z2. We further suppose that sampling is ignorable within a stratum, so (11.12)
applies. Let h index the overall stratification, with sh denoting the sample units in stratum h.
Then (11.12) leads to the estimator

    
ˆ g U (x) = t

−1 ˆ f sh(x | z2t) ˆ g sh(x, z2t )
t∈sh

∑
h

∑ t
−1 ˆ f sh(x | z2t)

t ∈sh

∑
h

∑ (11.14)

where   
ˆ f sh denotes a nonparametric density estimate based on the sample data from stratum h.

In some circumstances, however, we will be unsure whether it is reasonable to assume
ignorability given Z. For example, it could be the case that  is actually a function of Z = (Z1,
Z2) and a unobserved third variable Z3 that is correlated with Y and X. Here the two-stage
estimator (11.13) is appropriate, leading to
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ˆ g U (x, z1 = h, z2 ) = ˆ g h(x, z2 ) =
t
−1 ˆ f sh(x, z2 | t)

ˆ f sh( t) ˆ g sh(x, z2, t)
s

∑
t
−1 ˆ f sh (x, z2 | t )

ˆ f sh( t )
s

∑
(11.15a)

and hence

      
ˆ g U (x) = t

−1 ˆ f s(x | t)
ˆ E s ˆ g z1 t

(x, z2t ) |x, t( )
s

∑ t
−1 ˆ f s(x | t)

s
∑ (11.15b)

where   
ˆ f sh( ) denotes an estimate of the probability that a sample unit with  =  is in

stratum h, and 
      
ˆ E s ˆ g z1

(x, z2 ) | x,( ) denotes the value at (x, ) of a nonparametric smooth of the

sample     
ˆ g z1 (x, z2 ) values defined by (11.15a) against the sample (X, ) values.

Calculation of (11.15) requires “smoothing within smoothing” and so will be computer
intensive. A further complication is that the sample     

ˆ g z1 (x, z2 ) values smoothed in (11.15b)

will typically be discontinuous between strata, so that standard methods of smoothing may be
inappropriate.

Array Sampling on X

Suppose the random variable X takes n distinct values {xt; t = 1, 2, ..., n} on the population U.
Suppose furthermore that Z is univariate, taking mt distinct (and strictly positive) values {zjt; j
= 1, 2, ..., mt} when X = xt and that we have Y = X + Z. The population values of Y and Z so
formed can thus be thought of as defining an array, with each row corresponding to a distinct
value of X. Finally suppose that the sampling method chooses one population unit for each
value xt of X (so the overall sample size is n) with probability

  
jt = z jt z jt

j∈t
∑ = z jt st .

Given this set-up, inspection of the sample data (which includes the values of ) allows one
to immediately observe that gs(x,z) = x + z and to calculate the realised value of st as zst/ st

where zst and st denote the sample values of Z and  corresponding to X = xt. Furthermore,
the method of sampling is ignorable given Z, so gU(x,z) = gs(x,z) and hence gU(x) = x + ,
where  = EU(Z). If the total population size N were known, an obvious (and efficient)
estimator of  is

    
ˆ = mt

t =1

n

∑ 
  

 
  

−1

st
t=1

n

∑ 
  

 
  = N −1

st
−1zst

t =1

n

∑

and so gU(x) can be estimated with considerable precision. However, we do not know N and
so are in scenario B. The above method of sampling ensures that every distinct value of X in
the sample is observed once and only once. Hence   

ˆ f s(x | z) = 1/n. Using (11.12), our
estimator of gU(x) then becomes
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ˆ g U (x) = st

−1

t =1

n

∑ 
  

 
  

−1

st
−1 x + zst( )

t =1

n

∑ 
  

 
  = x + st

−1

t =1

n

∑ 
  

 
  

−1

st
−1zst

t =1

n

∑ 
  

 
  . (11.16)

This is an approximately unbiased estimator of gU(x). To see this we note that, by
construction, each value of st represents an independent realisation from a distribution
defined on the values { jt} with probabilities { jt}, and so     EU ( st

−1) = mt . Hence

    
EU ( ˆ g U (x)) ≈ x + mt

t =1

n

∑ 
  

 
  

−1

mt
t =1

n

∑ 
  

 
  = x + = gU (x).

11.4.3 Plug-in methods which use population information

We now turn to the data scenarios where population information is available. To start
consider scenario C. This corresponds to having additional summary population information,
typically population average values, available for Z and . More formally, we know the value
of the population size N and one or both of the values of the population averages  and   z .

How this information can generally be used to improve upon direct sample-based estimation
of gU(x) is not entirely clear. The fact that this information can be useful, however, is evident
from the array sampling example described in the previous section. There we see that, given
the sample data, this function can be estimated very precisely once either the population mean
of Z is known, or, if the method of sampling is known, once we know the population size N.
This represents a considerable improvement over the estimator (11.16) which is only
approximately unbiased for this value.

However, it is not always the case that such dramatic improvement is possible. For example
suppose that in the array sampling situation we are not told (a) the sample values of Z and (b)
that sampling is proportional to Z within each row of the array. The only population
information is the value of N. This is precisely the situation described following (11.8), and so
we could use the estimator

    
ˆ g U (x) = N −1

st
−1 ˆ g s x, st( )

t =1

n

∑ (11.17)

where   ̂  g s (x, ) is the estimated sample regression of Y on X and . It is not immediately clear
why (11.17) should in general represent an improvement over (11.16). Note that the
regression function   ̂  g s (x, ) in (11.17) is not “exact” ( unlike gs(x,z) = x + z) and so (11.17)
will include an error arising from this approximation.

Finally, we consider scenario D. Here we know the population values of Z and . In this case
we can use the two level representation (11.9) to define a plug-in estimator of gU(x) if we
have reason to believe that sampling is not ignorable given Z. However, as noted earlier, this
approach seems overly complex. Equation (11.10) represents a more promising alternative
provided that the sampling is ignorable given Z, as will often be the case for this type of
scenario (detailed population information available). This leads to the estimator

    
ˆ g U (x) = ˆ f s(x | zt) ˆ g s (x, zt )

t =1

N

∑ ˆ f s (x | zt )
t =1

N

∑ . (11.18)
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Clearly, under stratified sampling on Z, (11.18) takes the form

    
ˆ g U (x) = ˆ f sh(x | z2t ) ˆ g sh(x,z2t)

t∈h
∑

h
∑ ˆ f sh(x | z2t )

t ∈h
∑

h
∑ (11.19)

which can be compared with (11.14). In contrast, knowing the population values of Z under
array sampling on X means we know the values mt and st for each t and so we can compute a
precise estimate of gU(x) from the sample data.

11.4.4 The estimating equation approach

The starting point for this approach is equation (11.4), which can be equivalently written

    gU (x) = Es(
−1Y X = x ) Es(

−1 X = x) (11.20)

providing     Es(
−1 X = x) > 0. That is, gU(x) can always be represented as the solution of the

equation

Es[ −1(Y – gU(x)) | X = x ] = 0. (11.21)

Replacing the left hand side of (11.21) by a kernel-based estimate of the regression function
value leads to the estimating equation (hs(x) is the bandwidth)

    
K

x − x t

hs(x )

 
 
  

 
 

t
−1(Yt − ˆ g U (x))

s
∑ = 0 (11.22)

which has the solution

    
ˆ g U (x) = K

x − x t

hs(x)

 
 
  

 
 

t
−1y t

s
∑ K

x − xt

hs (x)

 
 
  

 
 

t
−1

s
∑ . (11.23)

This is a standard Nadaraya-Watson type estimator of the sample regression of Y on X, but
with kernel weights modified by multiplying them by the inverses of the sample inclusion
probabilities.

The Nadaraya-Watson nonparametric regression estimator is known to be inefficient
compared to local polynomial alternatives when the sample regression function is reasonably
smooth (Fan, 1992). Since this will typically be the case, a popular alternative solution to
(11.22) is one that parameterises   ̂  g U (x) as being locally linear in x. That is we write

  ̂  g U (x) = ˆ a (x) + ˆ b (x)x (11.24)

and hence replace (11.22) by

    
K

x − x t

hs(x )

 
 
  

 
 

t
−1(y t − ˆ a (x) − ˆ b (x)x t)

s
∑ = 0 . (11.25)
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The parameters   ̂  a (x) and   
ˆ b (x) are obtained by weighted local linear least squares estimation.

That is, they are the solutions to

    
t
−1K

x − x t

hs(x )

 
 
  

 
 y t − ˆ a (x) − ˆ b (x)xt( ) 1

xt

 
 
  

 s
∑ =

0

0

 
 
  

 
. (11.26)

Following arguments outlined in Jones (1991) it can be shown that, for either (11.23) or
(11.24), a suitable bandwidth hs(x), in terms of minimising the mean squared error

    Es
ˆ g U (x) − gU (x)( )2

, must be of order n-1/5.

One potential drawback with this approach is that there seems no straightforward way to
incorporate population auxiliary information. These estimators are essentially Scenario A
estimators. One ad-hoc solution to this is to replace the inverse sample inclusion probabilities
in (11.22) and (11.26) by sample weights which reflect this information (e.g. weights that are
calibrated to known population totals). However, it is not obvious why this modification
should lead to improved performance for either (11.23) or (11.24).

11.4.5 The bias calibration approach

Suppose   ̂  g s (x) is a standard (i.e. unweighted) nonparametric estimate of the sample
regression of Y on X at x. The theory outlined in section 11.3 shows that this estimate will
generally be biased for the value of the population regression of Y on X at x if the sample and
population regression functions differ. One way around this problem therefore is to
nonparametrically bias calibrate this estimate. That is, we compute the sample residuals,

  rt = y t − ˆ g s(x t) , and re-smooth these against X using a methodology that gives a consistent
estimator of their population regression on X. This smooth is then added to   ̂  g s (x). For
example, if (11.11) is used to estimate this residual population regression, then our final
estimate of gU(x) is

    

ˆ g U (x) = ˆ g s( x) +
t
−1 ˆ f s(x | t) ˆ g sR (x, t )

s
∑

t
−1 ˆ f s(x | t )

s
∑

(11.27)

where   ̂  g sR (x, )  denotes the value at (x, ) of a sample smooth of the residuals rt against the
sample X- and -values. Other forms of (11.27) can be easily written down, based on
alternative methods of consistently estimating the population regression of the residuals at x.

This approach is closely connected to the concept of twicing or double smoothing for bias
correction (Tukey, 1977; Chambers, Dorfman and Wehrly, 1993).

11.5 Simulation Results

Some appreciation for the behaviour of the different nonparametric regression methods
described in the previous section can be obtained by simulation. We therefore simulated two
types of populations, both of size N = 1000, and for each we considered two methods of
sampling, one non-informative and the other informative. Both methods had n = 100, and
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were based on application of the procedure described in Rao, Hartley and Cochran (1962),
with inclusion probabilities as defined below.

The first population simulated was defined by the equations:

Y = 1 + X + XZ + Y (11.28a)
X = 4 + 0.5Z + X (11.28b)
Z = 4 + 2 Z (11.28c)

where Y, X and Z are independent standard normal variates. It is straightforward to see that
gU(x) = EU(Y|X = x) = 1 – x + x2. Figure 11.1 shows a realisation of this population. The two
sampling procedures we used for this population were based on inclusion probabilities that
were approximately proportional to the population values of Z (PPZ: an informative sampling
method) and X (PPX: a non-informative sampling method). These probabilities were defined
by

PPZ: 
    

t =100(zt + minU (z) + 0.1) (zu + minU (z) + 0.1)
u=1

N

∑
and

PPX: 
    

t =100(x t + minU ( X ) + 0.1) (xu + minU (X ) + 0.1)
u=1

N

∑

respectively.

Figure 11.1 about here

The second population type we simulated reflected the heterogeneity that is typical of many
real populations and was defined by the equations

Y = 30 + X + 0.0005ZX2 + 3√X Y (11.29a)
X = 20 + 100 X (11.29b)

where Y is a standard normal variate, X is distributed as Gamma(2) independently of Y, and
Z is a binary variable that takes the values 1 and 0 with probabilities 0.4 and 0.6 respectively
independently of both Y and X. Figure 11.2 shows a realisation of this population. Again,
straightforward calculation shows that for this case gU(x) = EU(Y|X = x) = 30 + x + 0.0002x2.

As with the first population type (11.28), we used two sampling methods with this population,
corresponding to inclusion probabilities proportional to Z (PPZ: an informative sampling
method) and proportional to X (PPX: a non-informative sampling method). These
probabilities were defined by

PPZ: 
    

t =100(zt + 0.5) (zu + 0.5)
u=1

N

∑
and

PPX: 
    

t =100x t xu
u=1

N

∑
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respectively. Note that PPZ above corresponds to a form of stratified sampling, in that all
population units with Z = 1 have a sample inclusion probability that is three times greater than
that of population units with Z = 0.

Figure 11.2 about here

Each population type was independently simulated 200 times and for each simulation two
samples were independently drawn using PPZ and PPX inclusion probabilities. Data from
these samples were then used to fit a selection of the nonparametric regression smooths
described in the previous section. These methods are identified in Table 11.1. The naming
convention used in this table denotes a plug-in (moment) estimator by “M” and one based on
solution of an estimating equation by “E”. The amount of sample information required in
order to compute an estimate is denoted by the symbols that appear within the parenthese
associated with its name. Thus, M( s) denotes the plug-in estimator defined by (11.11) that
requires one to know the sample values of  and nothing more (the sample values of Y and X
are assumed to be always available). In contrast, M(Z) is the plug-in estimator defined by
(11.25) that requires knowledge of the population values of Z before it can be computed. Note
the twiced estimator Elin+Elin. This uses an unweighted locally linear smooth at each stage.
In contrast, the twiced estimator Elin+Elin( s) uses a weighted local linear smoother at the
second stage. We included Elin+Elin in our study for the PPZ sampling scenarios only to see
how much bias from informative sampling would be soaked up just by reapplication of the
smoother. We also investigated the performance of the Nadaraya-Watson weighted smooth in
our simulations. However, since its performance was uniformly worse than that of the locally
linear weighted smooth Elin( s), we have not included it in the results we discuss below.

Table 11.1 about here

Each smooth was evaluated at the 5th, 6th, ..., 95 th percentiles of the population distribution of
X and two measures of goodness of fit were calculated. These were the mean error, defined by
the average difference between the smooth and the actual values of gU(x) at these percentiles,
and the root mean squared error, defined by the square root of the average of the squares of
these differences. These summary measures were then averaged over the 200 simulations.
Tables 11.2 to 11.5 show these average values.

All kernel-based methods used an Epanechnikov kernel. In order to examine the impact of
bandwidth choice on the different methods, results are presented for a range of bandwidths.
These values are defined by a bandwidth coefficient, corresponding to the value of b in the
bandwidth formula:

bandwidth = b × sample range of X × n-1/5.

Tables 11.2 to 11.5 about here

Examination of the results shown in Tables 11.2 – 11.5 shows a number of features:

1. RMSE-optimal bandwidths differ considerably between estimation methods,
population types and methods of sampling. In particular, twicing-based estimators
tend to perform better at longer bandwidths, while plug-in methods seem to be more
sensitive to bandwidth choice than methods based on estimating equations.
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2. For population type 1 with PPZ (informative) sampling we see a substantial bias for
the unweighted methods Elin and Elin+Elin, and consequently large RMSE values.
Somewhat surprisingly the plug-in method M(Zs s) also displays a substantial bias
even though its RMSE values are not excessive. Another surprise is the comparatively
poor RMSE performance of the plug-in method M(Z) that incorporates population
information. Clearly the bias calibrated method Elin+Elin( s) is the best overall
performer in terms of RMSE, followed by Elin( s).

3. For population type 1 with PPX (non-informative) sampling there is little to choose
between any of the methods as far as bias is concerned. Again, we see that the plug-in
method M(Z) that incorporates population information is rather unstable and the
overall best performer is bias calibrated method Elin+Elin( s). Not unsurprisingly, for
this situation there is virtually no difference between Elin and Elin( s).

4. For population type 2 and PPZ (informative) sampling there are further surprises. The
plug-in method M(Zs s), the standard method Elin and the bias calibrated method
Elin+Elin( s) all display bias. In the case of M(Zs s) this reflects behaviour already
observed for population type 1. Similarly, it is not surprising that Elin is biased under
informative sampling. However, the bias behaviour of Elin+Elin( s) is hard to
understand, especially when compared to the good performance of the unweighted
twiced method Elin+Elin. In contrast, for this population all the plug-in methods (with
the exception of M(Zs s)) work well. Finally we see that in this population longer
bandwidths are definitely better, with the optimal bandwidth coefficients for all
methods except Elin and M(Zs s) most likely greater than b = 7.

5. Finally, for population type 2 and PPX (non-informative) sampling, all methods (with
the exception of M(Zs s)) have basically similar bias and RMSE performance.
Although the bias performance of M(Zs s) is unremarkable we see that in terms of
RMSE, M(Zs s) is again a relatively poor performer. Given the PPX sampling method
is non-informative, it is a little surprising that the unweighted smoother Elin performs
worse than the weighted smoother Elin( s). In part this may be due to the
heteroskedasticity inherent in population type 2 (see Figure 11.2), with the latter
smoother giving less weight to the more variable sample values.

6. The preceding analysis has attempted to present an overview of the performance of the
different methods across a variety of bandwidths. In practice however, users may well
adopt a default bandwidth that seems to work well in a variety of situations. In the
case of local linear smoothing (the underlying smoothing method for all the methods
for which we present results), this corresponds to using a bandwidth coefficient of b =
3. Consequently it is also of some interest to just look at the performances of the
different methods at this bandwidth. Here we see a much clearer picture. For
population type 1, Elin( s) is the method of choice, while M(Zstr) is the method of
choice for population type 2.

It is not possible to come up with a single recommendation for what design-adjusted
smoothing method to use on the basis of these (very limited) simulation results. Certainly they
indicate that the bias calibrated method Elin+Elin( s), preferably with a larger bandwidth
than would be natural, seems an acceptable general purpose method of nonparametrically
estimating a population regression function. However, it can be inefficient in cases where
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plug-in estimators like M(Zstrs strs) and M(Zstr) can take advantage of nonlinearities in
population structure caused by stratum shifts in the relationship between Y and X. In contrast,
the plug-in method M(Zs s) that combines sample information on both  and Z seems too
unstable to be be seriously considered, while both the basic plug-in method M( s) and the
more complex population Z-based M(Z) are rather patchy in their performance – both are
reasonable with population type 2, but are rather unstable with population type 1. In the latter
case this seems to indicate that it is not always beneficial to include auxiliary information into
estimation of population regression functions, even when the sampling method (like PPZ) is
ignorable given this auxiliary information.

11.6 To Weight or Not To Weight? (with apologies to Smith, 1988)

The results obtained in the previous section indicate that some form of design adjustment is
advisable when the sampling method is informative. However, adopting a blanket rule to
always use a design-adjusted method may lead to loss of efficiency when the sampling
method is actually non-informative. On the other hand it is not always the case that
inappropriate design adjustment leads to efficiency loss, compare Elin and Elin( s) in Table
11.5.

Is there a way of deciding whether one should use design-adjusted (e.g. weighting) methods?
Equivalently, can one, on the basis of the sample data, check whether the sample is likely to
have been drawn via an informative sampling method?

A definitive answer to this question is unavailable at present. However, we describe two
easily implementable procedures that can provide some guidance.

To start, we observe that if a sampling method is noninformative, that is if fU(y|x) = fs(y|x),
then design adjustment is unnecessary and we can estimate gU(x) by simply carrying out a
standard smooth of the sample data. As was demonstrated in Pfeffermann, Krieger and Rinott
(1998) and Pfeffermann and Sverchkov (1999), non-informativeness is equivalent to
conditional independence of the sample inclusion indicator I and Y given X in the population,
which in turn is equivalent to the identity

    Es(
−1 | X = x,Y = y) = EU ( | X = x,Y = y) = EU ( | X = x) = Es (

−1 | X = x).

This identity holds if the sample values of  and Y are independent given X. Hence, one way
of checking whether a sample design is noninformative is to test this conditional
independence hypothesis using the sample data. If the sample size is very large, this can be
accomplished by partitioning the sample distributions of , Y and X, and performing
chisquare tests of independence based on the categorised values of  and Y within each
category of X. Unfortunately this approach depends on the overall sample size and the degree
of categorisation, and it did not perform well when we applied it to the sample data obtained
in our simulation study.

Another approach, and one that reflects practice in this area, is to only use a design-adjusted
method if it leads to significantly different results compared with a corresponding standard
(e.g. unweighted) method. Thus, if we let   ̂  g s (x) denote the standard estimate of gU(x), with

  ̂  g U (x) denoting the corresponding design-adjusted estimate, we can compute a jackknife
estimate vJ(x) of var(  ̂  g s (x) − ˆ g U (x )) and hence calculate the standardised difference
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  W(x ) = [ ˆ g s (x) − ˆ g U (x)] vJ (x) . (11.30)

We would then only use   ̂  g U (x) if W(x) > 2. A multivariate version of this test, based on a
Wald statistic version of (11.30), is easily defined. In this case we would be testing for a
significant difference between these two estimates at k different x-values of interest. This
would require calculation of a jackknife estimate of the variance-covariance matrix of the
vector of differences between the g-values for the standard method and those for the design-
adjusted method at these k different x-values. The Wald statistic value could then be
compared with, say, the 95th percentile of a chi-squared distribution with k degrees of
freedom. Table 11.6 shows how this approach performed with the sample data obtained in our
simulations. We see that it works well at identifying the fact that the PPX schemes are non-
informative. However, its ability to detect the informativeness of the PPZ sampling schemes
is not as good, particularly in the case of population type 2. We hypothesise that this poor
performance is due to the heteroskedaticity implicit in this population’s generation
mechanism.

The problem with the Wald statistic approach is that it does not test the hypothesis that is
really of interest to us in this situation. This is the hypothesis that gU(x) = gs(x). In addition,
nonrejection of the noninformative sampling “hypothesis” may result purely because the
variance of the design-adjusted estimator is large compared to the bias of the standard
estimator.

A testing approach which focuses directly on whether gU(x) = gs(x) can be motivated by
extending the work of Pfeffermann and Sverchkov (1999). In particular, from (11.21) we see
that this equality is equivalent to

Es[ −1(Y – gs(x)) | X = x ] = 0. (11.31)

The twicing approach of section 11.4.5 estimates the left hand side of (11.31), replacing gs(x)
by the standard sample smooth   ̂  g s (x). Consequently, testing gU(x) = gs(x) is equivalent to
testing whether the twicing adjustment is significantly different from zero.

A smooth function can be approximated by a polynomial, so we can always write

    
Es(

−1(Y − g s (x) ) |X = x) = a jx
j

j ≥0
∑ . (11.32)

We can test H: gU(x) = gs(x) by testing whether the coefficients aj of the regression model
(11.32) are identically zero. This is equivalent to testing the sequence of sub-hypotheses

H0:     cors(
−1,(Y − g s( X ))) = 0

H1:     cors(
−1(Y − gs (X )), X ) = 0

H2:     cors(
−1(Y − gs (X )), X 2) = 0

….

In practice gs(x) in these sub-hypotheses is replaced by   ̂  g s (x). Assuming normality of all
quantities, a suitable test statistic for each of these sub-hypotheses is then the corresponding t-
value generated by the cor.test function within S-Plus (Statistical Sciences, 1990). We
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therefore propose that the hypothesis H be rejected at a “95% level” if any one of the absolute
values of these t-statistics exceeds 2. Table 11.6 shows the results of applying this procedure
to the sample data in our simulations, with the testing restricted to the sub-hypotheses H0, H1

and H2. Clearly the test performs rather well across all sampling methods and population
types considered in our simulations. However, even in this case we see that there are still
problems with identifying the informativeness of PPZ sampling for population type 2.

Table 11.6 about here

11.7 Discussion

The preceding development has outlined a framework for incorporating information about
sample design, sample selection and auxiliary population information into nonparametric
regression applied to sample survey data. Our results provide some guidance on choosing
between the different estimators that are suggested by this framework.

An important conclusion that can be drawn from our simulations is that it pays to use some
form of design-adjusted method when the sample data have been drawn using an informative
sampling scheme, and there is little loss of efficiency when the sampling scheme is non-
informative. However, we see that there is no single design-adjusted method that stands out.
Local linear smoothing incorporating inverse selection probability weights seems to be an
approach that provides reasonable efficiency at a wide range of bandwidths. But locally linear
plug-in methods that capitalise on “stratum structure” in the data can improve considerably on
such a weighting approach. For nonparametric regression, as with any other type of analysis
of complex survey data, it helps to find out as much as possible about the population structure
the sample is supposed to represent. Unfortunately there appears to be no general advantage
from incorporating information on an auxiliary variable into estimation, and in fact there can
be a considerable loss of efficiency probably due to the use higher dimensional smoothers
with such data.

An important ancillary question we have also considered is identifying situations where in
fact the sampling method is informative. Here an examination of the correlations between
weighted residuals from a standard (unweighted) nonparametric smooth and powers of the X
variable is a promising diagnostic tool.

Our results indicate there is need for much more research in this area. The most obvious is
development of algorithms for choosing an optimal bandwidth (or bandwidths) to use with the
different design-adjusted methods described in this chapter. In this context Breunig (1999,
2001) has investigated optimal bandwidth choice for nonparametric density estimation from
stratified and clustered sample survey data, and it should be possible to apply these ideas to
the nonparametric regression methods investigated here. The extension to clustered sample
data is an obvious next step.
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Table 11.1 Nonparametric smoothing methods evaluated in the simulation study

Name Estimator type Definition
M( s) Scenario A plug-in (11.11)
M(Zs s) Scenario B plug-in (11.12)
M(Zstrs strs) Stratified scenario B plug-in (11.14)
M(Z) Scenario D plug-in (11.18)
M(Zstr) Stratified scenario D plug-in (11.19)
Elin( s) Weighted local linear smooth (11.24)
Elin+Elin( s) Unweighted+weighted smooth (11.27**)
Elin Unweighted local linear smooth (11.24*)
Elin+Elin Unweighted+unweighted

smooth
(11.27**)

* Based on (11.25) with t = 1.
** These are bias calibrated or “twiced” methods, representing two variations on the

form defined by (11.27). In each case the first component of the method’s name is
the name of the initial (potentially biased) smooth and the second component (after
“+”) is the name of the second smooth that is applied to the residuals from the first.
Note that the “twiced” standard smooth Elin+Elin was only investigated in the case
of PPZ (i.e. informative) sampling.

Table 11.2 Simulation results for Population type 1 (11.28) under PPZ sampling

METHOD BANDWIDTH COEFFICIENT
.5 1 2 3 4 5 6 7

AVERAGE MEAN ERROR
M( s) 0.20 -0.09 -0.31 -0.35 -0.17 0.09 0.29 0.39
M(Zs s) 1.51 1.79 2.09 2.23 2.33 2.39 2.43 2.44
M(Z) 0.22 0.02 -0.36 -0.38 -0.18 0.08 0.26 0.35
Elin( s) 0.28 0.24 0.40 0.64 0.84 0.93 0.95 0.91
Elin+Elin( s) 0.27 0.17 0.13 0.17 0.25 0.36 0.45 0.52
Elin 1.85 1.91 2.13 2.38 2.56 2.64 2.64 2.59
Elin+Elin 1.82 1.83 1.86 1.91 1.99 2.09 2.18 2.24

AVERAGE ROOT MEAN SQUARED ERROR
M( s) 3.80 2.48 2.21 3.54 4.81 5.66 6.13 6.36
M(Zs s) 14.08 5.03 2.93 2.65 2.65 2.71 2.77 2.83
M(Z) 3.36 2.28 2.16 3.54 4.79 5.60 6.03 6.24
Elin( s) 2.50 1.94 1.48 1.40 1.43 1.48 1.54 1.61
Elin+Elin( s) 2.95 2.27 1.67 1.44 1.33 1.26 1.25 1.29
Elin 2.93 2.57 2.45 2.60 2.74 2.84 2.88 2.90
Elin+Elin 3.30 2.77 2.36 2.26 2.67 2.32 2.40 2.48
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Table 11.3 Simulation results for population type 1 (11.28) under PPX sampling

METHOD BANDWIDTH COEFFICIENT
.5 1 2 3 4 5 6 7

AVERAGE MEAN ERROR
M( s) 0.01 0.04 0.05 -2.25 0.05 0.10 0.18 0.25
M(Zs s) -0.17 0.29 0.31 0.44 0.53 0.57 0.58 0.56
M(Z) -1.13 -1.19 -1.24 -0.95 -0.52 -0.12 0.14 0.26
Elin( s) 0.09 0.14 0.36 0.62 0.82 0.92 0.93 0.89
Elin+Elin( s) 0.05 0.06 0.11 0.18 0.26 0.35 0.43 0.50
Elin 0.09 0.14 0.35 0.58 0.73 0.78 0.75 0.68

AVERAGE ROOT MEAN SQUARED ERROR
M( s) 3.79 2.93 1.92 4.34 1.41 1.37 1.44 1.55
M(Zs s) 12.71 5.47 2.26 1.69 1.60 1.61 1.66 1.74
M(Z) 4.05 2.49 2.59 3.81 4.98 5.77 6.21 6.42
Elin( s) 2.46 1.92 1.47 1.38 1.42 1.49 1.57 1.64
Elin+Elin( s) 2.96 2.29 1.70 1.45 1.33 1.27 1.27 1.32
Elin 2.46 1.93 1.48 1.37 1.39 1.45 1.53 1.63

Table 11.4 Simulation results for population type 2 (11.29) under PPZ sampling

METHOD BANDWIDTH COEFFICIENT
.5 1 2 3 4 5 6 7

AVERAGE MEAN ERROR
M( s) 1.25 1.01 1.05 1.17 1.35 1.45 1.48 1.52
M(Zs s) 7.90 9.49 8.97 9.05 9.40 9.74 10.11 10.46
M(Zstrs strs) 1.72 1.11 1.10 1.28 1.38 1.42 1.39 1.36
M(Z) 1.12 0.95 0.99 1.11 1.29 1.39 1.42 1.45
M(Zstr) 1.67 1.06 1.06 1.25 1.35 1.39 1.37 1.33
Elin( s) 1.52 1.29 1.44 1.58 1.70 1.80 1.86 1.93
Elin+Elin( s) -5.28 -5.57 -5.58 -5.99 -1.07 -6.02 -5.93 -5.81
Elin 8.06 8.28 8.90 9.41 9.75 9.99 10.15 10.30
Elin+Elin 0.20 0.21 0.30 0.41 0.43 0.51 0.64 0.78

AVERAGE ROOT MEAN SQUARED ERROR
M( s) 28.19 17.11 10.40 8.98 8.18 7.68 7.44 7.38
M(Zs s) 75.21 41.54 23.44 16.65 15.03 14.92 15.21 15.79
M(Zstrs strs) 15.78 12.20 9.66 8.61 8.15 7.90 7.73 7.67
M(Z) 28.47 17.51 10.34 8.90 8.07 7.55 7.27 7.20
M(Zstr) 15.75 12.12 9.56 8.54 8.07 7.79 7.61 7.52
Elin( s) 15.41 12.77 10.58 9.49 8.87 8.54 8.39 8.41
Elin+Elin( s) 17.60 14.86 12.38 11.43 10.82 10.40 10.13 9.90
Elin 17.15 15.48 14.50 14.36 14.46 14.72 15.05 15.47
Elin+Elin 16.05 12.94 9.91 8.72 8.00 7.58 7.33 7.21
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Table 11.5 Simulation results for population type 2 (11.29) under PPX sampling

METHOD BANDWIDTH COEFFICIENT
.5 1 2 3 4 5 6 7

AVERAGE MEAN ERROR
M( s) 0.09 0.07 0.03 -0.09 -0.11 -0.09 -0.13 -0.19
M(Zs s) 16.62 0.58 0.50 0.51 0.51 0.59 0.59 0.54
M(Zstrs strs) 0.36 0.47 0.72 0.80 0.82 0.75 0.60 0.34
M(Z) -0.09 0.46 0.66 0.71 0.77 0.70 0.50 0.28
M(Zstr) 0.31 0.42 0.66 0.74 0.76 0.71 0.56 0.29
Elin( s) 0.27 0.49 0.83 1.06 1.19 1.27 1.32 1.37
Elin+Elin( s) -0.43 -0.37 -0.32 -0.18 -0.02 0.08 0.18 0.31
Elin 0.27 0.47 0.61 0.71 0.73 0.65 0.48 0.30

AVERAGE ROOT MEAN SQUARED ERROR
M( s) 20.38 14.44 10.03 8.26 7.37 7.01 6.97 7.10
M(Zs s) 217.7 29.72 12.04 10.13 9.43 8.94 8.74 8.79
M(Zstrs strs) 12.06 9.67 7.89 7.18 6.92 6.97 7.19 7.51
M(Z) 15.94 10.23 7.88 7.01 6.62 6.52 6.66 6.99
M(Zstr) 11.92 9.47 7.70 6.97 6.71 6.75 6.96 7.26
Elin( s) 12.79 9.90 7.82 7.08 6.69 6.49 6.42 6.44
Elin+Elin( s) 15.76 12.49 9.52 8.40 7.61 7.08 6.75 6.58
Elin 12.79 9.94 8.03 7.42 7.16 7.10 7.23 7.51

Table 11.6 Results for tests of informativeness. Proportion of samples where null hypothesis
of non-informativeness is rejected at the (approximate) 5% level of significance.

Test Method PPX Sampling
(Non-informative)

PPZ Sampling
(Informative)

Population
type 1

Population
type 2

Population
type 1

Population
type 2

Wald Statistic Test(1) 0.015 0.050 1.000 0.525
Correlation Test(2) 0.010 0.000 0.995 0.910

(1) The Wald Statistic Test was carried out by setting   ̂  g s  = Elin and   ̂  g U  = Elin( s), both with
bandwidth coefficient b = 3. The x-values where these two estimators were compared were
the deciles of the sample distribution of X.

(2) The Correlation Test was carried out using   ̂  g s  = Elin with bandwidth coefficient b = 3. A
sample was rejected as being “informative” if any one of the sub-hypotheses H0, H1 and H2

was rejected at the 5% level.
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Figure 11.1 Scatterplot of Y vs. X for a population of type 1. Solid line is gU(x).
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Figure 11.2 Scatterplot of Y vs. X for a population of type 2. Solid line is gU(x).
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