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1. Introduction

Interviewer fraud can damage the data quality
severely. How can we detect it? Turner et al. (2002)
used response patterns to detect falsification. They
reported that suspected falsifiers could be notice-
able by an unexpectedly high yield of interviews per
assigned sample address, and/or unusual response
rates for specific reported variables on behaviors.
Turner et al. also discussed the systematic differ-
ences between suspected falsifiers and other inter-
viewers in providing the verification means, such as
telephone numbers of the respondents. Biemer &
Stokes (1989) proposed a statistical model for de-
scribing dishonest interviewer behavior, which was
applied to a general quality control sample design
and several associated cost models. A 1982 U.S. Bu-
reau of the Census study indicated a higher degree
of cheating in urban areas (Biemer & Stokes). The
study also shows a substantial and highly signifi-
cant tendency for relatively inexperienced interview-
ers to cheat more frequently for the two largest de-
mographic surveys, the Current Population Survey
and the National Crime Survey (Biemer & Stokes).

We used the leading digits to detect curbstoning in
this paper. The effect of the sampling design, such
as stratification and clustering, on standard Pear-
son chi-squared test statistics for goodness of fit is
investigated.

Statistical methods for analyzing cross-classified
categorical data has been extensively developed un-
der the assumption of multinomial sampling. How-
ever, most of the commonly used survey designs
involve clustering and stratification and hence the
multinomial assumption is violated (Rao & Scott,
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1981). Literature has shown that clustering can have
a substantial effect on the distribution of the stan-
dard Pearson chi-squared test statistic, χ2 and that
some adjustment to χ2 may be necessary, without
which one can get misleading results in practice (Rao
& Scott, 1981). Rao & Scott developed a simple cor-
rection to χ2 which requires only the knowledge of
deffs (or variance estimates) for individual cells in
the goodness of fit problem (Rao & Scott, 1981).
The original Rao & Scott papers considered infer-
ence for one vector of proportions, based on (essen-
tially) one sample.

In this paper, we are considering inference for a
large number of proportion vectors pi, i = 1, ..., I,
where I is the total number of interviewers. Only
a small portion of an interviewer’s workload can be
verified because of the limited resources. Therefore,
we addressed the optimum allocation of resources
such as re-interview time using the optimal decision
rule.

2. Data Collection in Consumer Ex-
penditure Survey

Consumer expenditure surveys are specialized stud-
ies in which the primary emphasis is on collecting
data relating to family expenditures for goods and
services used in day-to-day living (BLS Handbook,
1997, p.160). The current survey consists of two
separate surveys, each with a different data collec-
tion technique and sample: In the Interview sur-
vey, each consumer unit (CU) in the sample is in-
terviewed every 3 months over five calendar quar-
ters. The sample for each quarter is divided into
three panels, with CU’s being interviewed every 3
months in the sample panel of every quarter. The
interviewer uses a structured questionnaire to col-
lect both demographic and expenditure data in the
Interview survey. In the Diary (or recordkeeping)
survey, demographic data is collected by the inter-
viewer, whereas expenditure data is entered on the
diary form by the respondent family for two consec-
utive 1-week periods (BLS Handbook, 1997, p.161).



Both surveys are conducted by personal vis-
its with telephone usage limited to appointment
scheduling and follow-up calls for information missed
at the time of the proposed interview. The cur-
rent method for identification of possible interviewer
fraud or gross reporting error in the Consumer Ex-
penditure Survey is a reinterview program. The
reinterview is conducted by a member of the supervi-
sory staff. A subsample of approximately 6 percent
of households in the Interview survey and 17 percent
in the Diary survey are reinterviewed on an ongoing
basis (BLS Handbook, 1997, p.161).

3. CES Data Overview

Swanson et al.(2003) analyzed overall proportions
of leading digit, and the related covariance matri-
ces. We studied the overall proportions in detail in
this paper. Our first question was whether we see
any distinct patterns in the overall proportions with
respect to quarters. Table 1 shows ratio estimates
from Quarter 2 to Quarter 5. The table also shows
the values of the standard errors from the balanced
repeated replication method (SEBRR) with 44 repli-
cate weights, and the values of the standard errors
that one can obtain from multinomial assumption on
the underlying observations (SEχ2). Note that the
values of SEχ2 is consistently smaller than the ones
of SEBRR. The ratio of these two values, SEBRR

SEχ2
,

can be considered as a deft (Kish, 1995), and is the
range of this ratio is between 0.996 and 1.601. We
did not observe any major change in the values of
proportions with respect to the quarters. When we
formally tested the quarterly effect on the leading
digit 2, the value of test statistic is 5.20 with the
critical value 9.01 at α = 0.05.

In the following sections, we will examine the test
statistics for the proportions collected by each inter-
viewer.

4. Options for Quadratic-Form Test
Statistics

In our example data of the U.S. Consumer Expendi-
ture Survey (CES), individual field representatives
are closely tied to a sample design. We will consider
a household as a cluster within an interviewer. De-
fine xicj = (x1icj , · · · , x9icj)′ a 9×1 vector such that
xdicj = 1 if the leading digit is d, and 0 otherwise,
for a given interviewer i, an interview c and an ex-
penditure item j. Let Jic be the number of non-zero
reports obtained for an interview c by an interviewer

i, and xic =
Jic∑
j=1

xicj = (x1ic, · · · , xdic, · · · , x9ic)′ be

a 9 × 1 vector where xdic is the number of non-zero
reports with a leading digit d for an interview c by
an interviewer i. Let p̂i be a mean vector of leading
digits for interviewer i.

p̂i = (p̂1i, · · · , p̂9i)′

=
1
Ji

ni∑
c=1

Jic∑
j=1

xicj

=
1
Ji

ni∑
c=1

xic

where ni is the number of interviews conducted by

an interviewer i, and Ji =
ni∑

c=1
Jic is the total number

of non-zero reports obtained by an interviewer i.
The general test statistic is:

Ti = (p̂i − p0)′V −1
i (p̂i − p0) .

where p0 is a 9 × 1 reference proportion vector. p0

can be a vector of proportions predicted by Bedford’s
Law, or a vector of empirical CES proportions.

The following are possible estimators of Vi.

4.1 Design-based variance estimator

A design-based variance estimator of p̂i, V̂ (p̂i), is

V̂ (p̂i) = V̂

(
1
Ji

ni∑
c=1

xic

)

= V̂

{
1
ni

ni∑
c=1

(
ni

Ji
xic

)}

= V̂

(
1
ni

ni∑
c=1

yic

)

=
1
ni

1
(ni − 1)

ni∑
c=1

{
(yic − p̂i) (yic − p̂i)

′}

where yic = ni

Ji
xic. A test statistic is:

Ti 1 =
(
p̂i(8) − p0(8)

)′ {
V̂ (p̂i(8))

}−1 (
p̂i(8) − p0(8)

)
where p̂i(8) is the first eight elements of p̂i. Since
V̂ (p̂i)9×9 will be always singular because of the con-
straint on p̂i in our case, we use p̂i(8) to compute
Ti 1.

V̂ (p̂i(8)) can also be singular when ni is small. A
range of ni, the number of interviews covered by an
interviewer i, is 1 to 185 in our example, a mean of
25, a first quartile of 2, a median of 9, and a third
quartile of 37. Among total number of 1235 inter-
viewers, there are 234 interviewers who conducted



Table 1: Quarterly Ratio Estimates and Associated Standard Errors

Quarter 2 Quarter 3 Quarter 4 Quarter 5
R̂Q2 SEBRR R̂Q3 SEBRR R̂Q4 SEBRR R̂Q5 SEBRR

SEχ2 SEχ2 SEχ2 SEχ2

0.3059 0.0012 0.3053 0.0014 0.3010 0.0013 0.3018 0.0015
0.0010 0.0011 0.0011 0.0011

0.1918 0.0011 0.1931 0.0014 0.1953 0.0012 0.1941 0.0013
0.0009 0.0009 0.0010 0.0009

0.1208 0.0010 0.1231 0.0008 0.1246 0.0009 0.1245 0.0010
0.0007 0.0008 0.0008 0.0008

0.0897 0.0008 0.0894 0.0007 0.0911 0.0010 0.0908 0.0008
0.0006 0.0007 0.0007 0.0007

0.1038 0.0007 0.1051 0.0008 0.1050 0.0011 0.1051 0.0011
0.0007 0.0007 0.0007 0.0007

0.0679 0.0006 0.0696 0.0007 0.0693 0.0009 0.0671 0.0006
0.0006 0.0006 0.0006 0.0006

0.0485 0.0007 0.0477 0.0006 0.0463 0.0005 0.0480 0.0006
0.0005 0.0005 0.0005 0.0005

0.0451 0.0006 0.0431 0.0006 0.0434 0.0007 0.0439 0.0005
0.0005 0.0005 0.0005 0.0005

0.0265 0.0005 0.0235 0.0006 0.0241 0.0006 0.0247 0.0004
0.0004 0.0004 0.0004 0.0004

only one interview. This indicates that we have quite
a few interviewers whose ni is very small. We found
that V̂ (p̂i(8)) is too unstable.

4.2 Variance estimator for ratio estimator

Consider the number of non-zero reports obtained
by an interviewer i, Ji, as a random variable. The
ratio estimator is

R̂i =


 ni∑

c=1

Jic∑
j=1

xicj


 /

(
ni∑

c=1

9∑
d=1

xdic

)

=

(
ni∑

c=1

xic

)
/Ji

.

Recall that Ji is the number of non-zero reports ob-
tained by an interviewer i . Then the variance esti-
mator for the ratio estimator is:

V̂ (R̂i)

= {ni(ni − 1)}−1 ×[
(Ji/ni)−2

ni∑
c=1

{
(xic − R̂i Jic)(xic − R̂i Jic)′

}]
.

A test statistic is:

Ti 2 =
(
R̂i − p0(8)

)′ {
V̂ (R̂i(8))

}−1 (
R̂i − p0(8)

)
.

Note that V̂ (R̂i(8)) shares the same problems that
V̂ (p̂i(8)) has with small values of ni.

5. Misspecification Effect Matrices

A misspecification effect is one measure of the effect
of a complex sample design. It measures the bias of
a variance estimator which is computed under mis-
specified design or modeling assumptions. The eigen
structure of a misspecification effect matrix allows
comparison of some sensitivity properties of compet-
ing quadratic-form test methods. Define ∆i a 8 × 8
multivariate design effect matrix for an interviewer,
i. Then

∆i = Σ− 1
2

i ViΣ
− 1

2
i

where Σ− 1
2

i is an inverse of a square root symmetric
matrix of Σi

Σi =
1
Ji

{
diag(p0(8)) − (p0(8))(p0(8))′

}
,

and Vi is a corresponding covariance matrix of our
choice. The misspecification matrix for V̂ (p̂i) is:

∆i 1 = Σ− 1
2

i V̂ (p̂i)Σ
− 1

2
i

The misspecification effect matrix for V̂ (R̂i) is:

∆i 2 = Σ− 1
2

i V̂ (R̂i)Σ
− 1

2
i



The eigenvalues of the misspecification effect ma-
trix are called generalized design effects. Rao &
Scott used the mean and coefficient of variation of
these eigenvalues to develop modifications of certain
chi-square goodness-of-fit test statistics.

5.1 Modified Chi-Squared Tests

Consider a naive χ2 statistic to test how a distrib-
ution of the leading digit proportions from non-zero
reports obtained by an interviewer differs from the
distribution of the reference proportions.

χ2
i = Ji

D∑
d=1

{
(p̂di − pd0)2/pd0

}

where d is 1, · · · , D = 9.
Define λi the eigenvalues and λ̄ the average eigen-

value from the estimated misspecification effect ma-
trix. The first order Rao-Scott adjusted test is:

χ2
iM1 = χ2

i / λ̄

= (D − 1) χ2
i /

(
D∑

d=1

{(1 − p̂di) deffdi}
)

where deffdi = {p̂di(1 − p̂di)/Ji}−1
V̂ (p̂di), and

V̂ (p̂di) is the d-th diagonal element of V̂ (p̂i). The
performance of χ2

iM1 depends on the eigenstructure
of the misspecification effect matrix. When λ̂i are
approximately equal to their average, λ̄, χ2

iM1 is
approximately distributed as a χ2 random variable
with D − 1 degrees of freedom (Lee & Eltinge).

The second order approximation which is the bet-
ter approximation can be used if there is more infor-
mation available on the λ̂i’s (Rao & Scott, 1981).

χ2
iM2 = χ2

iM1 / (1 + â2)

where â2 =
{
(D − 1)λ̄2

}−1
(D−1)∑
d=1

(λ̂di − λ̄)2 .

For example, we have an interviewer who has
conducted 45 interviews with total of 725 non-zero
reports. The following are the computed statis-
tics for the interviewer: Ti 2 = 37.01,χ2

i = 26.47,
χ2

iM1 = 14.74 with λ̄ = 1.80, χ2
iM2 = 14.45 with

â2 = 0.02.

5.2 Other Related Tests

The examination of the expenditure data collected
by the CEQ survey in the year 2000 shows that
the leading digits of those expenditures follow Ben-
ford’s Law quite closely (Swanson, Cho, and Eltinge,
2003). However, digits such as 5’s or 9’s do not follow
Benford’s Law as closely as others. When comparing

the leading digits collected by an unusual field repre-
sentative with overall CEQ’s leading digits distribu-
tion, the leading digit of 5’s or 9’s of an unusual field
representative do not follow the overall CEQ’s lead-
ing digits distribution (Swanson, Cho, and Eltinge,
2003). We may test deviations from null propor-
tion only on those leading digits using an univariate
t-test or Bonferroni test statistics:

t =
p̂di − pd0

V̂ (R̂di)

where V̂ (R̂di) is the diagonal element of V̂ (R̂i) for
the leading digit d.

Korn & Graubard demonstrated that Wald sta-
tistics behave poorly when simultaneously testing a
large number of regression coefficients. They sug-
gested that for some applications, the use of Bonfer-
roni inequality on the individually tested regression
coefficients can have greater power than the Wald
procedure. The Bonferroni procedure is preferable
to the Wald procedure when the number of variables
is large compared with the number of sampled PSU’s
(Korn & Graubard).

6. Optimal Decision

Define πi to be the probability that a given item
recorded by interviewer i is erroneous. For simplic-
ity, we will assume that a given interview records
data that can be classified entirely as erroneous or
not erroneous. In an interview that is not erro-
neous, all expenditure amounts are reported accu-
rately. This ideal case would arise, for example, if
the interview subject had maintained comprehensive
and accurate records of all relevant expenditures by
the consumer unit, and based all interview responses
on these records. At the other extreme, we will de-
fine an interview to be erroneous if either: (a) the in-
terviewer has fabricated all responses, i.e., the inter-
view was “curbstoned” or (b) the interviewer accu-
rately recorded all responses given by the interview
subject, but the interview subject’s responses were
based on uninformed guesses. Many practical cases
would fall between these two extremes. For example,
an interviewer might fabricate responses in one sec-
tion for which the interview subject refused to pro-
vide responses; or an interview subject might pro-
vide uninformed guesses about expenditures within
groups for which another family member made the
purchase decisions. However, these more complex
cases are beyond the scope of the current work. In
general, an ideal procedure would be the one that
has a relatively high possibility of identifying inter-
viewers who have digit-reporting patterns that de-
viate substantially from the overall pattern, while



also having a relatively low Type I error rate. For
the Consumer Expenditure Survey data, this issue
is complicated by the fact that the number of inter-
views covered by a given interviewer varies a great
deal as we mentioned in the Section 4.1.

A is the cost of conducting the one reinterview,
B is the cost of including an erroneous report, R
is the number of reinterviews, and U is the num-
ber of undetected erroneous reports. Let Ci be the
optimal cut off point which minimizes E(cost) =
A E(R) + B E(U). If p̂i ≤ Ci, then we reinterview
all of the households which had previously been in-
terviewed by interviewer i. Note that Ci depends on
the number of households (ni), the number of total
items (Ji) reported by interviewer i, and the design
effects.

E(R, interviewer i)
= ni P (p̂i ≤ Ci)
= niP (p̂i ≤ Ci|Err) πi

+ niP (p̂i ≤ Ci|NotErr) (1 − πi)

= niπi P

(
p̂i − EGE(p̂i)√

VGE(p̂i)
≤ Ci − EGE(p̂i)√

VGE(p̂i)
|Err

)

+ ni(1 − πi)

× P

(
p̂i − EGT (p̂i)√

VGT (p̂i)
≤ Ci − EGT (p̂i)√

VGT (p̂i)
|Non

)

≈ ni πi Φ

(
Ci − EGE(p̂i)√

VGE(p̂i)

)

+ ni (1 − πi) Φ

(
Ci − EGT (p̂i)√

VGT (p̂i)

)

= ni πi γE(Ci) + ni (1 − πi) γT (Ci)

where GE and GT are the distributions of the er-
roneous reports and the truthful reports respec-
tively, VGE(p̂i) = pi,GE(1−pi,GE)

Ji
deff , pi,GE =

EGE(p̂i), VGT (p̂i) = pi,GT (1−pi,GT )
Ji

deff , pi,GT =

EGT (p̂i), γE(Ci) = Φ
(

Ci−EGE(p̂i)√
VGE(p̂i)

)
, γT (Ci) =

Φ
(

Ci−EGT (p̂i)√
VGT (p̂i)

)
.

E(U, interviewer i)
= ni P (undetected erroneous report | Err)
= niπi P (p̂i ≥ Ci| Err)

= niπiP

{
p̂i − EGE(p̂i)√

VGE(p̂i)
≥ Ci − EGE(pi)√

VGE(p̂i)
|Err

}

≈ niπi

{
1 − Φ

(
Ci − EGE(pi)√

VGE(p̂i)

)}

= niπi {1 − γE(Ci)}

Option 2: Find Ci to minimize E(R) subject to
E(U) ≤ Ri = niR0. From the definitions of E(R)
and E(U), note that E(R) is monotone increasing
with respect to Ci, and E(U) is monotone decreasing
with respect to Ci. Hence the minimum of E(R)
can be obtained when E(U) = niR0, i.e. when Ci =
γ−1

E (1 − R0/πi) .

Option 3: Find Ci to minimize E(U) subject to
E(R) ≤ Ui = niU0. From the definitions of E(U)
and E(R), note that E(U) is monotone decreasing
with respect to Ci, and E(R) is monotone increasing
with respect to Ci.

Define γ(Ci) = niπi γE(Ci) + ni(1 − πi)γT (Ci)
Then the minimum of E(U) can be obtained when
E(R) = niU0, i.e. when Ci = γ−1 (niU0) .

7. Discussion

We tested in the section 3 whether the quarter in
which the data was collected matters. The same
test can be applied for the level of experience of in-
terviewers, or other relevant factors.

We considered the univariate case in the Section 6,
but this can be extended to the more complex cases
such as the multivariate one. One can also apply the
mixture modeling method for parameters of GE and
GT . A sensitivity analysis for the optimal decision
would be of interest.
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