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Abstract. The parameter estimates based on an econometric equation are biased and can also be
inconsistent when relevant regressors are omitted from the equation or when included regressors are
measured with error. This problem gets complicated when the ‘true’ functional form of the equation
is unknown. Here, we demonstrate how auxiliary variables, called concomitants, can be used to
remove omitted-variable and measurement-error biases from the coefficients of an equation with
the unknown ‘true’ functional form. The method is specifically designed for panel data. Numerical
algorithms for enacting this procedure are presented and an illustration is given using a practical
example of forecasting small-area employment from nonlinear autoregressive models.
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1. Introduction

The coefficient of a regressor in an econometric or a time-series model is free
from bias when no relevant variable is omitted from the model, when included
regressors are not measured with error, and when the ‘true’ functional form of the
model is known. There are conceptual and practical obstacles to finding consistent
estimators of bias-free coefficients, which include the biasing effects of omitted
variables, measurement errors, and inaccuracies in the specified functional forms,
and the practical difficulty of avoiding such biases. In this article, we demonstrate
how, given suitable auxiliary variables called concomitants, omitted-variable and
measurement-error biases can be removed even when the ‘true’ functional forms
are unknown. Our method is consistent with that of Chang, Swamy, Hallahan and
� The views expressed in this paper are the authors’ own and are not necessarily those of their

respective institutions.
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Tavlas (2000) and Swamy and Tavlas (2001) who do not deal with autoregressive
models and panel data, which are the main focus in this paper.

We apply this approach to studies of the behavior over time of employment
numbers for small domains, defined by, e.g., the intersections of Metropolitan Sta-
tistical Areas (MSAs) and Allocation Industry Codes (AICs) within each State of
the U.S.

Section 2 considers a situation in which (i) the stochastic processes followed by
economic variables are both neither stationary nor unit-root nonstationary, (ii) rele-
vant regressors are omitted from the specified time series models, and (iii) variables
included in these models are measured with error. It shows that, in this situation,
the coefficients of autoregressive models are the sums of bias-free components
and omitted-variable and measurement-error biases. The section also develops
a consistent method for obtaining bias-corrected estimates of the coefficients of
autoregressive models. Since a primary application of autoregressive models is
forecasting, Section 3 proposes various measures for assessing the predictive ac-
curacy of these models. Section 4 presents a consistent method for forecasting
with autoregressive models when their coefficients contain omitted-variable and
measurement-error biases. Section 5 uses this method to obtain the predictions of
as yet unobserved values of small-area employment. Section 6 concludes.

2. Omitted Variables and Measurement Errors in Autoregressive Models

In this article, we are concerned exclusively with the problem of estimating em-
ployment totals for small domains, such as the intersections of States, MSAs,
and AICs. There is need for such estimation because it can yield local-area un-
employment estimates. State and local governments use local-area unemployment
estimates to determine whether there is need for local employment and training
services and programs. Local-area unemployment estimates are also used to deter-
mine the eligibility of an area for benefits in various Federal assistance programs.
The U.S. Bureau of Labor Statistics (BLS) assumed technical responsibility for the
program of computing such estimates. It uses a sample survey method to estimate
total employment at the National and State levels. The criterion for this sample de-
sign is minimization of the variances of state-level estimators. Minimization of the
variances of small-domain-level estimators is not done because it is prohibitively
expensive. As a consequence, the sample sizes for small domains are very small if
not zero.

Direct survey estimates of employment for a small area, based on data only
from the sample units within the area, are not any more reliable than the estimates
based on little or no sample information. To improve these estimates, we need to
look for additional sources of information about employment for each and every
small domain of interest. The Covered Employment and Wages program, generally
known as the employment security 202 (ES202) program, is one such source. This
program provides a virtual census of nonagricultural employees covered by State
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unemployment insurance laws and of civilian workers covered by the program of
Unemployment Compensation for Federal Employees. In addition, it covers about
47% of all workers in agricultural industries. Even though the ES202 program is
a comprehensive and accurate source of employment and wage data, by industry,
at the national, state, and county levels, the problem is that ES202 data come in
with a lag. These data for a given month are not available until after approximately
9 months. Because of this lag, estimates of small-area employment totals for the
current quarter can be obtained only by averaging 10- to 12-month-ahead forecasts
of those totals. For this reason, accurate 10- to 12-month-ahead forecasts need to
be generated from the available ES202 data.

We cannot accurately model the behavior over time of small-area employ-
ment unless we understand this behavior very well. The findings of economists
that inform us about such a behavior are: (i) the U.S. unemployment rate has a
strong tendency to move counter-cyclically, upward in general business contrac-
tions and downward in expansions, (ii) this cyclical behavior is asymmetric in
the sense that the unemployment rate increases at a faster rate than it decreases,
and (iii) expansions tend to last longer than contractions. To these results, Mont-
gomery, Zarnowitz, Tsay and Tiao (1998) add the results that (i) a linear univariate
autoregressive integrated moving average model, denoted by ARIMA(p, d, q),
or such a model with a multiplicative seasonal ARIMA factor, denoted by
ARIMA(p, d, q)(P,D,Q), failed to accurately represent the asymmetric cycli-
cal behavior of the quarterly U.S. unemployment rate and (ii) a nonlinear model
called the threshold autoregressive (TAR) model outperforms a seasonal univariate
ARIMA model in terms of the mean squared error for multi-step-ahead forecasts
during contractions or periods of rapidly increasing unemployment. They end their
study with the remark that forecasting methods that fully exploit the non-linearity
of employment or unemployment series remain to be developed. In this section,
we explore the possibility that a generalized TAR model helps forecast small-area
employment well in both economic contractions and expansions.

2.1. MONTHLY NONSTATIONARY AUTOREGRESSIVE MODELS

Let y∗
gt be the ‘true’ value of the employment for small area g and month t relative

to its ‘true’ value in a base period. By ‘true’ value we mean the value that does not
contain any measurement error. We assume that the process {y∗

gt} is generated by a
nonstationary moving average process of an order Qgt ≤ ∞(MA(Qgt)):

y∗
gt = π0gt + π1gtagt + π2gtag,t−1 + · · · + πQgt+1,gtag,t−Qgt

, (1)

where {agt} is a white-noise process, and both the coefficients and the order are
allowed to depend on g and t .

We also assume that the true functional form of Equation (1) exists but we
do not know what it is. Allowing the coefficients of (1) to vary over time, we
obtain a class of functional forms. Different patterns of variation in the πs generate
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different functional forms, and an unlimited number of functional forms of (1) can
be generated by permitting the πs to vary freely. We do not know which one of
these functional forms is ‘true’. Moreover, the ‘true’ functional form of (1) may
vary with g.

From Cramer’s generalization of Wold’s decomposition theorem for stationary
processes (Greene, 2000, pp. 759–760), we know that Equation (1) represents a
class of nonstationary processes. The intercept of (1) includes the deterministic
component of this class. Given that we want (1) to capture the nonlinearities and
nonstationarities inherent in the {y∗

gt}-process, these assumptions are reasonable.1

If any relevant variable is excluded from (1), then we can extend this equation
to include it. Since we do not impose any specific functional form on (1) and do
not exclude from it any relevant variable, it can cover the ‘true’ functional form as
a special case, provided its coefficients are unrestricted. Therefore, we assume that
for a particular pattern of variation in its coefficients, Equation (1) coincides with
the ‘true’ model. We call such a pattern of variation the ‘true’ pattern.

We can rewrite Equation (1) in an autoregressive (AR) form as

y∗
gt = π0gt +

(
π1gtagt

y∗
g,t−1

)
y∗
g,t−1 +

(
π2gtag,t−1

y∗
g,t−2

)
y∗
g,t−2 + · · ·

+
(
πQgt+1,gtag,t−Qgt

y∗
g,t−Qgt−1

)
y∗
g,t−Qgt−1

= φ0gt + φ1gty
∗
g,t−1 + φ2gty

∗
g,t−2 + · · · + φQgt+1,gty

∗
g,t−Qgt−1.

(2)

The biasing effects of omitted regressors, measurement errors, and of inaccuracies
in the specified functional forms are known in econometrics. These effects are not
present in the coefficients of Equation (2) because by construction, this equation
does not have omitted or incorrectly measured variables and is not forced to follow
a specific functional form. Hence, we call its coefficients with the ‘true’ pattern
of variation ‘the bias-free coefficients’. However, the problem with (2) is that its
regressors are unlikely to be independent of its coefficients unless {y∗

gt} is a station-
ary and invertible process, defined, e.g., in Greene (2000, pp. 752–754). Another
problem is that the order, Qgt + 1, is unknown. Consequently, the order of any
specified AR process may not be equal to Qgt + 1. Suppose that we specify the
following AR model of order p:

y∗
gt = φ∗

0gt + φ∗
1gty

∗
g,t−1 + φ∗

2gty
∗
g,t−2 + · · · + φ∗

pgty
∗
g,t−p. (3)

If we are lucky, then p will be bigger than Qgt + 1 for all t , in which case the
first Qgt + 2 coefficients of Equation (3) will be the same as those of Equation
(2) and the remaining p −Qgt − 2 coefficients will be zero. If we are unlucky, p
will be smaller than Qgt + 1 for all g and t . In this case, (3) differs from the ‘true’
model, a member of the class in (1), in that the lagged values, y∗

g,t−p−j , j = 1,
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2, . . . ,Qgt − p + 1, are omitted. Suppose that these omitted values are related to
the lagged values in (3) according to the equation

y∗
g,t−p−j = β0jgt + β1jgty

∗
g,t−1 + β2jgty

∗
g,t−2 + · · · + βpjgty

∗
g,t−p .

(j = 1, 2, . . . ,Qgt − p + 1).
(4)

Substituting Equation (4) into Equation (2) gives

y∗
gt =


φ0gt +

Qgt−p+1∑
j=1

φp+j,gtβ0jgt


+


φ1gt +

Qgt−p+1∑
j=1

φp+j,gtβ1jgt


 y∗

g,t−1 + · · ·

+

φpgt +

Qgt−p+1∑
j=1

φp+j,gtβpjgt


 y∗

g,t−p ,

(5)

where each coefficient is equal to the corresponding coefficient in (3).
The coefficients of (5) have the invariance property that they are not altered

when (2) is rewritten in terms of (y∗
g,t−1, y

∗
g,t−2, . . . , y

∗
g,t−p) and a function of

(y∗
g,t−1, y

∗
g,t−2, . . . , y

∗
g,t−p) and (y∗

g,t−p−1, y
∗
g,t−p−2, . . . , y

∗
g,t−Qgt−1) (see Swamy et

al., 1996). This result would not obtain if (4) were not used to derive Equation (5)
from (2) (see Pratt and Schlaifer, 1984). The coefficients of (2) do not possess the
invariance property. For this reason, the regressors of (2) that are omitted from
(3) and the coefficients of Equation (2) are not unique, as shown by Pratt and
Schlaifer (1984, p. 13). By contrast, the real-world relations are unique because
they remain invariant against mere changes in the language we use to describe
them (see Basmann, 1988, pp. 72–74). Thus, (5) shares this invariance property
with the real-world relations.

We can get monthly time series data on employment for a number of small
areas. Let the observations on the dependent variable of Equation (5) constructed
from these data be denoted by ygt , g = 1, 2, . . . ,G, t = 1, 2, . . . , Tg . Suppose
that these observations are measured with error and are equal to the sums of the
‘true’ values (y∗

gt ) and measurement errors, denoted by vgt , i.e., ygt = y∗
gt + vgt .2

Substituting these observations into Equation (5) gives

ygt =

φ0gt +

Qgt−p+1∑
j=1

φp+j,gtβ0jgt + vgt


 +

+

φ1gt +

Qgt−p+1∑
j=1

φp+j,gtβ1jgt


(1−vg,t−1

yg,t−1

)
yg,t−1 + · · ·

+

φpgt +

Qgt−p+1∑
j=1

φp+j,gtβpjgt


(1−vg,t−p

yg,t−p

)
yg,t−p

= γ0gt + γ1gtyg,t−1 + · · · + γpgtyg,t−p ,

(6)
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where

γ0gt =

φ0gt +

Qgt−p+1∑
j=1

φp+j,gtβ0jgt + vgt


 and for i = 1, 2, . . . , p :

γigt = φigt +
Qgt−p+1∑
j=1

φp+j,gtβijgt−

φigt +

Qgt−p+1∑
j=1

φp+j,gtβijgt


 vg,t−i
yg,t−i

.

These definitions provide natural interpretations to the γ s and any assumptions
we might now make about them should not contradict these interpretations. We
now provide these interpretations.

Interpretations of the coefficients of Equation (6): We call (y∗
g,t−1, y

∗
g,t−2, . . . ,

y∗
g,t−p) the included regressors because they are included in both models (2) and

(3). We call (y∗
g,t−p−1, y

∗
g,t−p−2, . . . , y

∗
g,t−Qgt−1) omitted regressors because they

are included in model (2) but not in model (3). It can be seen that the intercepts
of equations in (4) are the portions of the omitted regressors remaining after the
effects of the included regressors have been removed. Therefore, an interpretation
of the intercept of (6) is that it is the sum of the bias-free intercept of model
(2), a combination of the portions, β0jgt , of omitted regressors having the coef-
ficients, φp+j,gt , on omitted regressors as its coefficients, and the measurement
error in the dependent variable of (6). The coefficient on the i-th non-constant
regressor of (6) is also the sum of three terms, φigt ,

∑Qgt−p+1
j=1 φp+j,gtβijgt , and

(φigt +∑Qgt−p+1
j=1 φp+j,gtβijgt )(− vg,t−i

yg,t−i ), which have the following interpretations:
The first term with the ‘true’ pattern of variation is the bias-free coefficient on
the i-th non-constant regressor of Equation (2). The second term represents the
indirect effect due to the fact that the ‘true’ value of the i-th included regressor
affects the ‘true’ values of omitted regressors (Equation (4)) that, in turn, affect the
‘true’ value of the dependent variable (Equation (2)). This term is called ‘omitted-
variables bias’. The coefficients of (6) do not contain the same magnitude of
omitted-variables bias because the coefficients of (4) are not equal to each other.
Finally, the third term captures the effect of incorrectly measuring the i-th included
regressor. It is called ‘measurement-error bias’. This bias is also not the same for
different coefficients in (6). We call the coefficients of (6) the ‘impure’ coefficients
because they are contaminated by omitted-variable and measurement-error biases.
If these biases are present, as they usually are, then the coefficients of (6) may not
be constant and may have the real-world sources of variation.

The real-world sources of variation in the coefficients of Equation (6): The first
term of each of the coefficients of (6) is not constant if the ‘true’ Equation in (2)
is not linear. We have already pointed out that a model that accurately represents
the asymmetric cyclical behavior of employment series cannot be linear. The sec-
ond term of each of the coefficients of (6) is also not constant if Equations (2)
and (4) are not linear and the set of omitted variables changes over time. Under
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all these conditions and the variations in the ratios of measurement errors to the
corresponding included regressors, the third term of each of the coefficients of (6)
is a variable.

We have already pointed out that in Equation (2), the regressors can be corre-
lated with their own coefficients. These types of correlations are usually present in
linear-in-variables representations of nonlinear equations (see, e.g., Narasimham
et al., 1988). The correlations between the regressors of (2) and their coefficients
get strengthened further as we go from (2) to (6). Note that the third term of the
coefficient on the i-th non-constant regressor in (6) involves the regressor itself.
For this reason, the third terms of the coefficients of (6) are the additional factors
strengthening the correlations between the coefficients and the regressors of (6)
further. These coefficients are also not independent of each other because they have
a common source of variation from the coefficients, φp+j,gt , on omitted regressors.
The implication of the lack of independence between the regressors and the co-
efficients of (6) is that the conditional expectation of ygt given its lagged values
included in (6) is not just a linear function of the conditioning variables. Any tests
of hypotheses about the ‘true’ order and the coefficients of Equation (2) can give
false conclusions if they are based on such a linear function.

2.2. SEPARATION OF BIAS-FREE COEFFICIENTS FROM OMITTED-VARIABLE

AND MEASUREMENT-ERROR BIASES

One question that needs to be answered before estimating (6) is that of parametriza-
tion: which features of Equation (6) ought to be treated as constant parameters?
While the correct answer is unknown, it is clear that Equation (6) suffers from
internal inconsistencies if we adopt a parametrization that is not consistent with
the interpretations of the coefficients of (6) given above. Under certain conditions
to be specified below, the following assumption avoids such inconsistencies.

ASSUMPTION 1. (i) The coefficients of Equation (6) satisfy the stochastic
equations

γigt = γ̄i +
K−1∑
h=1

αihzhgt + µig +
m∑
"=1

lieε"gt ,

(i = 0, 1, . . . , p, g = 1, 2, . . . ,G, t = 1, 2, . . . , Tg),

(7)

where the zhgt are called the ‘concomitants’, no zhgt is equal to 1 for all t, and the
li" are known constants;

(ii) The m-vector εgt = (ε1gt , ε2gt , . . . , εmgt )
′ follows the stochastic equation

εgt = ϕgεg,t−1 + agt , (8)
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where ϕg is an m × m matrix, agt = (a1gt , a2gt , . . . , amgt )
′ is distributed with

Eagt = 0 and

Eagta
′
g′t ′ =

{
σ 2
g)g if g = g′ and t = t ′

0 if g �= g′ and t �= t ′ ;

(iii) The (p+1)-vector µg = (µ0g, µ1g, . . . , µpg)
′ is distributed withEµg = 0,

and

Eµgµ
′
g′ =

{
) if g = g′
0 if g �= g′ ;

(iv) The vectors µg and εgt are independent of each other for all g and t and
each of them varies independently across g.

The concomitants are introduced to explain the variation in the coefficients of
Equation (6). The greater the proportion of the variation explained by the con-
comitants the better. In (7), the term µig is constant through time; it is an attribute
of small area g that is unaccounted for by the included concomitants. The term ε"gt
differs among small areas both at a point in time and through time; it is a portion
of γigt that is not explained by the other terms on the right-hand side of (7). Recall
that the omitted-variables and measurement-error bias contained in γigt is equal
to the difference between γigt and φigt in (2). We can assume that the first term
on the right-hand side of Equation (7) is equal to φigt , unless the process {y∗

gt} is
non-stationary or nonlinear, in which case φigt can be equal to γ̄i + ∑

h∈Pi αihzhgt ,
where Pi ⊂ P = {1, 2, . . . , K − 1}, which is the ‘index set’ formed by the values
of h. Recall that φigt with the ‘true’ pattern of variation is a bias-free coefficient
and an estimate of γ̄i +∑h∈Pi αihzhgt is treated as a bias-corrected estimate of φigt .
Judgments about the goodness of the fit of Equation (2) to given data should be
based on the estimates of the bias-free terms of the coefficients of Equation (6), but
not on the estimates of its impure coefficients. Estimation of the fixed coefficients
and the error terms of Equation (7) will be discussed in Section 4 below. The coeffi-
cients li" are included in Equation (7) to give the user the option of not including an
error term in some coefficients of Equation (6). If li" is zero for all ", then γigt does
not have an error term other than µig . The number of error terms in Equation (7) is
(p+ 1)(m+ 1). This number can be reduced to 2(p+ 1) by setting (i) p+ 1 = m

and (ii) li" = 1 if i = " and = 0 if i �= ". We usually impose these restrictions.
We also usually restrict ϕg in Equation (8) to be diagonal. This does not mean that
a non-diagonal ϕg is never appropriate. We need to use a Monte Carlo algorithm
developed in Chang et al. (2000) to achieve convergence of an iterative estimation
method we apply to Equations (6)–(8) when ϕg is non-diagonal. This algorithm
is very time consuming. We use a quadratic programming algorithm to estimate
diagonal ϕg matrices under the restrictions that their diagonal elements lie between
–1 and 1 (Chang et al., 2000). This algorithm generally converges.
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Assumption 1 gives a parametrization of Equation (6) and the conditional mo-
ments of ygt , given the values of the concomitants, if Equation (7) includes only
those concomitants that satisfy the following assumption.

ASSUMPTION 2. Given the values of the concomitants in (7), the regressors of
(6) are independent of the µig and ε"gt in (7) for all g and t.

To understand this assumption, note that the decompositions of the γigts in (7),
unlike those in Equation (6), depend on our choice of concomitants. Assumption 2
incorporates the idea that the regressors of (6) can be conditionally independent of
the µig and ε"gt , given the values of the concomitants, even though they are not
unconditionally independent of their coefficients. What Assumption 2 really says
is that the regressors of (6) are correlated with their coefficients because of the first
K terms on the right-hand side of Equation (7), but once these terms are subtracted
from the coefficient on the left-hand side of Equation (7), the error terms on the
right-hand side of Equation (7) are independent of the regressors of (6). Thus, by
using a decomposition of the coefficients of (6) in (7) that is different from that
given right below (6), we find a solution to the problem of correlation between the
regressors of (6) and their coefficients. If the decompositions of the coefficients of
(6) given in (7) were the same as those given right below (6), then Assumption 2
would be false.

2.3. CONDITIONAL EXPECTATIONS IN THE PRESENCE OF OMITTED-VARIABLE

AND MEASUREMENT-ERROR BIASES

Substituting (7) into (6) gives an equation whose fixed coefficients can be
consistently estimated:

ygt = γ̄0 + γ̄1yg,t−1 + · · · + γ̄pyg,t−p +
K−1∑
h=1

α0hzhgt +

+
K−1∑
h=1

α1hzhgtyg,t−1 + · · · +
K−1∑
h=1

αphzhgtyg,t−p

µ0g +
m∑
"=1

l0"ε"gt +
(
µ1g +

m∑
"=1

l1"ε"gt

)
yg,t−1 + · · ·

+
(
µpg +

m∑
"=1

lp"ε"gt

)
yg,t−p

(g = 1, 2, . . . ,G, t = 1, 2, . . . , Tg).

(9)

This is a nonlinear AR model whose desirability is that it is derived from (6)
without contradicting the interpretations of the coefficients of (6). The error terms
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in (9) are both heteroscedastic and serially correlated. Our derivation of Equa-
tion (9) is justified by its producing such errors with no appeal to any arbitrary
heteroscedasticity assumption.

Under Assumptions 1 and 2, the right-hand side of (9) with the error terms
suppressed gives the conditional expectation of ygt as a nonlinear function of the
conditioning variables. Equation (9) is a generalized TAR model if one of its zhgt is
equal to the logarithm of yg,t−2/yg,t−3. This can be compared with the Montgomery
et al. (1998, p. 482) type TAR model for the first difference of ygt , which is an AR
model of order 2 with only two distinct sets of values for its coefficients. One
of these two sets is obtained if yg,t−2 − yg,t−3 ≤ 0.1 and the other is obtained
otherwise. Note that exact multicollinearity results if yg,t−2 − yg,t−3 is used as one
of the zhgt in (9).

3. Assessing the Predictive Accuracy of Equation (9)

By changing the set of concomitants in (7) and/or changing the value of p we can
derive different versions of Equation (9). ARIMA models of ygt are the competitors
to all these versions. One of the five criteria that Swamy and Tavlas (2001) use to
choose among different models is predictive testing – extrapolation to data outside
the sample. To facilitate the use of this criterion, we, in this section, give our own
answer to the question: How to measure the goodness of forecasts generated from
different versions of Equation (9) and their competitors? We will also show in
this section how to derive an optimal predictor of the out-of-sample values of the
dependent variable of (9).

Let Tg be the ending month of an estimation period and let yg,T g+f denote an
employment relative for small area g in an out-of-sample month t = Tg + f . To
generate the forecasts of yg,T g+f from the models of ygt , we may either fix Tg
or fix f . By fixing Tg and varying f we obtain multi-step-ahead forecasts and
by fixing f and varying Tg we obtain f -step-ahead forecasts. Let ŷg,T g+f denote a
predictor of yg,T g+f given by a version of Equation (9). Then the values of ŷg,T g+f ,
f = 1, 2, . . ., F , with fixed Tg denote multi-step-ahead forecasts and the values of
ŷg,T g+f , Tg = n+1, n+2, . . . , n+ τ , with fixed f denote f -step-ahead forecasts.
For ease of exposition, we only consider the multi-step-ahead forecasts below. For
such forecasts, the root mean squared error (RMSE) is given by the expression√√√√ 1

F

F∑
f=1

(ŷg,Tg+f − yg,Tg+f )
2. (10)

This has an obvious scaling problem. Several measures that do not are√√√√ 1

F

F∑
f=1

(
ŷg,Tg+f − yg,Tg+f

yg,Tg+f

)2

, (11)
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Theil’s statistics:

U =

√√√√√√√√√√
(1/F)

F∑
f=1

(ŷg,Tg+f − yg,Tg+f )
2

(1/F)
F∑
f=1

y2
g,Tg+f

, (12)

U) =

√√√√√√√√√√
(1/F)

F∑
f=1

(δdδDs ŷg,Tg+f − δDδDs yg,Tg+f )
2

(1/F)
F∑
f=1

(δdδDs yg,Tg+f )
2

, (13)

where δd = (1 − B)d and δs = (1 − Bs) when B is a backward shift operator
defined as Byt = yt−1 or more generally as Bsyt = yt−s , (1 − B)dyt is the first
difference of yt taken d times, and δDs yt = (1 − Bs)Dyt is the difference yt−yt−s
taken D times.

A competitor to the above measures is Relative Mean Absolute Error (RMAE):

1

F

F∑
f=1

|ŷg,Tg+f − yg,Tg+f |
yg,Tg+f

, (14)

when yg,T g+f > 0. The relative mean squared error (MSE) formula of Mont-
gomery et al. (1998) is different from (11)–(14). For Equation (9), that formula
can be expressed as

Relative MSE = MSE of f -step-ahead forecasts from Equation (9)

MSE of f -step-ahead forecasts from a benchmark model
, (15)

where f has the same value in both the numerator and the denominator. The lim-
itation of this relative MSE is that it does not reflect the absolute increases in its
numerator.

The statistical theory of forecasting shows that formulas (10)–(15) are not al-
ways valid. When they are invalid, their use may lead to the choices of bad models.
We state below the conditions under which formulas (10)–(15) are valid. The prob-
lem we are dealing with here is the determination of a suitable predictor, that is,
a real-valued function ŷg,T g+f defined over a sample space, of which it is hoped
that ŷg,T g+f will tend to be close to the actual value yg,T g+f . A predictor ŷg,T g+f
is to be close to yg,T g+f and, since ŷg,T g+f is a random variable, we shall interpret
this to mean that the actual value yg,T g+f is covered by an interval of values,
which ŷg,T g+f takes with a high probability. To make this requirement precise, we
specify three measures of the closeness of (or distance from) a predictor to yg,T g+f .
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Let ỹg,T g+f denote a predictor of yg,T g+f given by a competitor to the version of
Equation (9) that gave ŷg,T g+f .

Criterion of Highest Concentration

The predictor ŷg,T g+f is better than the predictor ỹg,T g+f if their distributions
satisfy the condition

pr(yg,T g+f−λ1 < ŷg,T g+f < yg,T g+f + λ2) ≥
pr(yg,T g+f−λ1 < ỹg,T g+f < yg,T g+f + λ2)

(16)

for all possible values of λ1 and λ2 in a chosen interval (0, λ) for all possible
realizations yg,T g+f (Rao, 1973, p. 315).

Unfortunately, the predictors that satisfy condition (16) do not exist, as the
following theorem shows.

Oakes’ (1985) Theorem

There is no universal algorithm to guarantee accurate forecasts forever.
We are not aware of any forecasting work done in the past that contradicts this

theorem. More recent evidence that supports the theorem comes from Montgomery
et al. (1998). After generating the out-of-sample forecasts from a variety of linear
and nonlinear time series models for quarterly and monthly U.S. unemployment
rate, Montgomery et al. conclude: “All of these forecasts share certain strengths
and weaknesses, but clearly they are not perfectly correlated, and none dominates
the others” (p. 488). So we cannot expect one set of regressors, one set of con-
comitants, and one set of the estimates of the coefficients of Equation (9) to yield
accurate forecasts of employment for all future periods, even for a single small
area. However, it is possible that one model dominates in a specific region/state
compared with others in a finite forecast period.

A necessary condition for condition (16) to be satisfied for all λ is that

E(ŷg,T g+f−yg,T g+f )2 ≤ E(ỹg,T g+f−yg,T g+f )2 ; (17)

that is, the mean square error of ŷg,T g+f about the actual value yg,T g+f is a mini-
mum (Rao, 1973, p. 315). If this condition does not hold, then condition (16) fails.
Furthermore, it can be seen from (17) that if ŷg,T g+f does not possess a finite mean
square error, then any predictor with finite mean square error dominates ŷg,T g+f
and ŷg,T g+f does not satisfy either the criterion of highest concentration in (16) or
the minimum mean square error condition in (17). In this case, formulas (10)–(12)
and (15) are inappropriate.

Large values of formulas (10)–(12) and (15) indicate a low accuracy of ŷg,Tg+f
if the loss attached to the forecast errors, ŷg,Tg+f −yg,Tg+f , f = 1, 2, . . . , F , is the
sum of (relative) squared errors. Similarly, large values of formula (14) indicate a
low accuracy of ŷg,Tg+f if the loss attached to the forecast errors, ŷg,Tg+f −yg,Tg+f ,
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f = 1, 2, . . . , F , is the sum of (relative) absolute errors. These functional forms
for the loss may not be appropriate for the following reasons. The adverse social
impact of unemployment is higher during contraction periods than during expan-
sion periods. Therefore, the loss attached to the forecast error ŷg,Tg+f − yg,Tg+f
is greater if Tg + f occurs during a contraction period than if it occurs during
an expansion period (Montgomery et al., 1998, pp. 478, 485). In other words, if
L(ŷg,Tg+f , yg,Tg+f ) represents a loss in predicting yg,T g+f by ŷg,T g+f , then it is
neither (relative) squared error nor (relative) absolute error and the formulas (10)–
(15) are inappropriate. However, the squared- or absolute-error loss function may
provide a good local approximation to the correct loss function one should use in
this situation. If we knew the correct functional form of L(ŷg,T g+f , yg,T g+f ), then
we could use the following definition of forecast accuracy.

Pitman’s Nearness

The predictor ŷg,T g+f is nearer to the value yg,T g+f than the predictor ỹg,T g+f if

pr[L(ŷg,T g+f , yg,T g+f ) < L(ỹg,T g+f , yg,T g+f )] > 1
2 (18)

(Peddada, 1985).
This definition eliminates the following difficulty caused by criteria (16) and

(17): The predictor ŷg,T g+f with no finite mean square error may satisfy condition
(18), even though it does not satisfy conditions (16) and (17). Criterion (18) may
actually choose such a predictor, which criteria (16) and (17) rule out a priori.

If the value yg,T g+f is unknown, as it is if Tg + f is a period that has not yet
occurred, then the minimum mean square error predictor defined in (17) involves
this unknown value and hence is not operational (Lehmann and Casella, 1998,
p. 212, Problems 3.6(a) and 3.7(a)). For this reason, optimal predictors are found
in the statistics literature by using the criterion:

Minimum Average Mean Square Error

min
ŷg,Tg+f

E(ŷg,Tg+f − Yg,Tg+f )
2, (19)

where the expectation is taken with respect to variations in both ŷg,T g+f and
Yg,T g+f , whose values we have been denoting by yg,T g+f .

If we impose only minimal restrictions on the form of ŷg,T g+f , then the solution
to the minimization problem in (19) is extremely simple. For we know from the
Cramer and Doob result (Rao, 1973, p. 264) that when we have the vector of ran-
dom variables (Yg1, Yg2, . . . , YgT g )

′ in addition to Yg,T g+f , and wish to predict the
value yg,T g+f from a Borel measurable function ŷg,T g+f = f (Y g1, Yg2, . . . , Y gT g ),
then among all such functions with finite second-order moments, that which min-
imizes the average mean square error in (19) is the conditional expectation of
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Yg,T g+f , given Yg1 = yg1, Yg2 = yg2, . . . , YgT g = ygT g , i.e., the lower bound
of the average mean square error in (19) is attained when

f (yg1, yg2, . . . , ygT g ) = E(Yg,T g+f |yg1,yg2, . . . , ygT g ). (20)

The proof of this result can be traced back to Cramer and Doob. That is why we
call it the Cramer and Doob result.

Can we determine when the conditional expectation in (20) gives good forecasts
of yg,T g+f and when it gives poor forecasts? An answer is as follows. It should
be recognized that the use of the minimum average mean square error predictor
(20) requires that attention be restricted to predictors that possess finite second-
order moments and that the loss attached to forecast errors be the sum of squared
errors. Unfortunately, the sum of squared-error loss function is inappropriate to
the problem of forecasting employment numbers, as we have already shown. An-
other difficulty is that the ‘true’ functional form of the conditional expectation
in (20) is usually unknown. Misspecifications of conditional expectations occur
all the time in practice. To quote Montgomery et al. (1998, p. 480), “all models
are misspecified . . . ”. Conditional expectations with wrong functional forms may
generate poor forecasts. To guard against such possibilities, we have employed in
the previous section a rich class of functional forms to derive the conditional expec-
tation of Yg,T g+f without ignoring omitted-regressors and measurement-error bias.
Montgomery et al. (1998) cannot say that Equation (9) is as badly misspecified as
models which they say are misspecified. The minimum average mean square error
criterion in (19) is useful for our purpose of generating small-area employment
forecasts, provided we are willing to ignore the fact that L(ŷg,T g+f , yg,T g+f ) is
neither (relative) squared error nor (relative) absolute error. As we have mentioned
above, changing the set of concomitants in Equation (7), we can generate from
Equation (9) a variety of functional forms for the conditional expectation in (20).
Assumptions I and II imply that the average mean square error in (19) is finite.
In these cases, Theil’s U statistics in (12) is a valid measure of forecast accuracy,
provided, of course, L(ŷg,T g+f , yg,T g+f ) is (relative) squared error summed over f .

Now we outline briefly the proof of the Cramer and Doob result. For any
predictor, say f , which is a Borel function of (Yg1,Yg2, . . . , YgT g )

′,

E[Yg,T g+f − E(Yg,T g+f |yg1, yg2, . . . , ygT g )]
[E(Yg,T g+f |yg1, yg2, . . . , ygT g )− f ] = 0

(21)

so that

E(Yg,T g+f − f )2 = E[Yg,T g+f − E(Yg,T g+f |yg1, yg2, . . . , ygT g )]2 +
+ E[E(Yg,T g+f |yg1, yg2, . . . , ygT g )− f ]2

≥ E[Yg,T g+f − E(Yg,T g+f |yg1, yg2, . . . , ygT g )]2,

(22)

which is the lower bound for the average mean square error E(Yg,T g+f − f )2.
This lower bound is attained when condition (20) is satisfied, showing that the best



CORRECTING FOR OMITTED-VARIABLE AND MEASUREMENT-ERROR BIAS 239

choice of the predictor that minimizes the average mean square error in (19) is
the conditional expectation in (20). This result critically depends on condition (21)
that holds if E|Yg,T g+f | < ∞ and E|Yg,T g+f f | < ∞ (Rao, 1973, p. 97, (2b.3.8)).
These conditions are not satisfied when Yg,T g+f follows a random walk or, more
generally, an ARIMA model.

To see this, suppose that Yg,T g+f follows a random walk model, denoted by
Yg,T g+f = Yg,T g+f−1 + ag,T g+f , where ag,T g+f is white noise with mean zero
and finite variance. Then Yg,T g+f = ∑∞

j=0 ag,T g+f−j . From this equation it fol-
lows that Yg,T g+f does not possess a finite unconditional variance, even though
its conditional variance given yg,T g+f−1 is finite, implying that the unconditional
average mean square error in (19) is not finite (Rao, 1973, p. 111, (2c.2.6)).3 No
infinite value can be minimized. Thus, the minimization problem in (19) is not
solvable if Yg,T g+f follows a random walk. Extending this result to ARMA models
shows that under squared-error loss, the conditional expectation of Yg,T g+f , given
its lagged values implied by an ARIMA model, has no finite unconditional variance
and hence is an unconditionally inadmissible predictor of yg,T g+f . Any predictor of
yg,T g+f with a finite mean square error dominates this predictor. The unconditional
expectations of formulas (10)–(12), (14) and (15) are not finite in this case. The
conditional expectations of variables following ARIMA models cannot be optimal
in the sense of conditions (16) and (17). However, the conditional expectation of
δdδDs Yg,T g+f , given its lagged values implied by an ARIMA(p, d, q)(P,D,Q)
model of Yg,T g+f , possesses a finite unconditional variance and is the minimum
average mean square error predictor of δdδDs yg,T g+f . The minimum average mean
square error predictor of yg,T g+f may not exist when the minimum average mean
square error predictor of δdδDs yg,T g+f exists. This problem presents itself not only
when δdδDs yg,T g+f is assumed to follow an ARMA model but also when δdYg,T g+f
is assumed to follow a co-integrating or an error-correction model described in
Greene (2000, pp. 793–796). Similar problems arise in the estimation of regression
coefficients. Brown (1990) rigorously proved that a conditionally admissible esti-
mator of regression coefficients could be unconditionally inadmissible. We know
that inadmissible predictors are bad, but do not know which one of the conditional-
and unconditional-inadmissibility properties is worse.

All this is not to say that the conditional expectations implied by ARIMA mod-
els do not give good approximations to unconditionally admissible predictors of
the values of their respective dependent variables in some periods. We cannot, how-
ever, know a priori when such good approximations will occur. What can be said
is that the conditional expectation of δdδDs Yg,T g+f implied by an ARIMA(p, d, q)
model of Yg,T g+f with a multiplicative seasonal factor ARIMA(P,D,Q) mini-

mizes the average mean square error E(δdδDs ŷg,T g+f − δdδDs Yg,T g+f )
2 and formula

(13) is appropriate if the loss attached to the forecast error δdδDs ŷg,T g+f −
δdδDs yg,T g+f is (relative) squared error. This formula gives a better measure of
the accuracy of forecasts from ARIMA(p, d, q)(P,D,Q) models than formulas
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(10)–(12), (14) and (15). Because the values of formula (13) are not comparable
to those of formulas (10)–(12), (14) and (15), it is inappropriate to reject model
(9) in favor of any ARIMA, co-integrating, or error-correction model of a dif-
ference of Ygt whenever the value of formula (13) implied by the latter model
is smaller than the values of formulas (10)–(12), (14) and (15) implied by the
former model.4 Furthermore, ARIMA models may not have the ability to track
turning points in the employment data. For example, Montgomery et al.’s (1998,
p. 487) ARIMA(1, 1, 0) model fitted to U.S. quarterly unemployment rate data,
being a linear model, lacks the ability to reproduce the countercyclical movements
of the unemployment rate. Their seasonal ARIMA(1, 1, 0)(4, 0, 4) model fitted
to the same data does allow for complex roots in the autoregressive polynomial,
which allow for turning points in the forecasts. The model is still not a good one
because it under-predicts the unemployment rate during the rapid increase of 1982
and exhibits forecasts that fluctuate a great deal more during stable periods of
unemployment (see Montgomery et al., 1998, p. 487).

It follows from Rao (1973, p. 96, (2b.2.7)) that if F1 and F2 are the distribution
functions of the predictors ŷg,T g+f and ỹg,T g+f of yg,T g+f with means µ1, µ2 and
finite variances σ 2

1 , σ 2
2 , respectively, then the inequality

F1(yg,T g+f + µ1)− F 1(−yg,T g+f + µ1) ≥
F2(yg,T g+f + µ2)− F 2(−yg,T g+f + µ2)

(23)

for each yg,T g+f implies that σ 2
1 ≤ σ 2

2 . However, the converse of this statement is
not true. That is, a necessary condition for the inequality in (23) to be satisfied is
that the variance of the predictor ŷg,T g+f is a minimum. This explains why condi-
tion (17) is necessary but not sufficient for condition (16) to be true. Unfortunately,
even the necessary condition σ 2

1 ≤ σ 2
2 cannot be verified unless the population

values of σ 2
1 and σ 2

2 are known.5

The best linear unbiased predictor (BLUP) of yg,T g+f can be found by solving
the minimization problem in (19) subject to (i) the linearity restriction that the pre-
dictor ŷg,T g+f = f (Y g1, Yg2, . . . , Y gT g ) is a linear homogeneous function, and (ii)
the ‘unbiasedness’ restriction that E(ŷg,T g+f − Yg,T g+f ) = 0. This ‘unbiasedness’
restriction ensures that the distributions of ŷg,T g+f and Yg,T g+f are located at the
same value so that their variances are comparable.

There is a difficulty with the BLUP, however. The means µ1 and µ2 are equal
to EYg,T g+f if the predictors considered in (23) are unbiased. Thus, if ŷg,T g+f is
the BLUP of yg,T g+f , then a necessary condition for the probability of |ŷg,T g+f −
EYg,T g+f | ≤ yg,T g+f to be a maximum is satisfied for all possible realizations
yg,T g+f . This result does us little good if we cannot find the BLUPs of yg,T g+f
that have the same mean value as Yg,T g+f , whose ‘true’ distribution is unknown. If
we ignore omitted-regressors and measurement-error bias when it is present, then
we should be lucky not to have our attempts to find the BLUPs fail. Therefore,
Equation (9) does the right thing: it does not ignore such a bias. Yokum, Wildt and
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Swamy (1998) use simulation experiments to show that Equation (9) has better
predictive properties than its fixed coefficients versions. Conditions (16)–(23) were
previously used in Swamy and Schinasi (1989).

The forecasts generated from a specified conditional expectation are not co-
herent if this conditional expectation is based on contradictory assumptions. An
example of a pair of assumptions that contradict each other is: (i) differencing
of Yg,T g+f induces stationarity and (ii) the coefficients of the models of Yg,T g+f
change over time. Taking the first differences of variables on both sides of Equation
(6) shows this contradiction. Even an inconsistent model based on contradictory
assumptions may sometimes predict the values of its dependent variable very ac-
curately. Therefore, the good predictive performance of a model in some periods
might mislead us into thinking that the model is logically valid when in fact it is
not. How can we guard ourselves against such a possibility? A good Bayesian,
de Finetti, gives an answer. We can never know the ‘true’ functional form of the
conditional expectation in (20) even if such a form exists. We can make assump-
tions about it. To satisfy a necessary condition under which a specified functional
form of (20) is true, de Finetti (1974) sets up minimal coherence criteria that fore-
casts should satisfy based on data currently available. By these criteria, different
forecasts are equally valid now if they all satisfy the requirements for coherence,
given currently available knowledge. A forecast from an estimated conditional ex-
pectation can best represent a measure of the confidence with which one expects
that conditional expectation to predict an event in the future, based on currently
available data and not on data yet to be observed, provided that the forecast satisfies
the requirements for coherence (Schervish, 1985).

Economists have long recognized that no two business cycles that had occurred
in the past closely resemble each other in shape. If business cycles that have
occurred in different periods have different shapes, then they represent a time-
varying environment. In this environment, the coefficients of Equation (6) may
not be constant. Equation (6) with changing coefficients represents a time-varying
environment. We only consider coherent variations in these coefficients, i.e., vari-
ations that are consistent with the real-world interpretations of the coefficients. We
do not assume unit-root nonstationarity in a time-varying environment to avoid
contradictions. With contradictions, we cannot obtain coherent forecasts. In time-
varying environments, the variance of ŷg,T g+f may change over time and the sum
of (relative) squared-error or absolute-error loss in (10)–(15) may be inappropriate.
An appropriate formula for assessing the predictive accuracy of Equation (9) in
these environments may be

∣∣∣∣ ŷg,Tg+f − yg,Tg+f
yg,Tg+f

∣∣∣∣ (24)

with no summation over the given values of f . By comparing the values of this
formula for different models in each month of a forecasting period we may be
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able to isolate those models that frequently perform well in prediction. Performing
frequently well in prediction is a characteristic of good models.

It may not be correct to take the average of (24) over the three months in each
quarter of a forecast period because quarterly aggregates of Equation (9) no longer
have the same model structure as Equation (9). This leads to model inconsistencies
that complicate the modeling process and require further study.

All the discussion given in this section is irrelevant if our objective is to measure
the accuracy of the predictions of y∗

g,T g+f , the ‘true’ value of yg,T g+f , generated
from Equation (9). Formulas (10)–(15) cannot be evaluated if the unobserved
y∗
g,T g+f is used in place of yg,T g+f used in these formulas. What can be said is

that Equation (9) is better equipped to give good forecasts of y∗
g,T g+f than any

other equation that ignores omitted-variables and measurement-error bias.

4. Consistent Method of Forecasting

In this section, we discuss an iterative method for evaluating the minimum variance
linear unbiased estimators and the BLUPs of the parameters and the error terms of
Equation (9), respectively. A matrix formulation of (7) is

γgt = γ̄ + Azgt + µg + Lεgt , (25)

where γgt is the (p+1)-vector having the i-th coefficient of Equation (6) as its i-th
element, γ̄ is the (p + 1)-vector having γ̄i as its i-th element, A is the (p + 1) ×
(K − 1) matrix having αih as its (i, h) element, zgt is the (K − 1)-vector having
zhgt as its h-th element, L is the (p + 1) ×m known matrix having li" as its (i, ")
element, µg and εgt are as in Assumption 1.

Inserting (25) into ygt = x′
gtγgt , which is a matrix formulation of Equation (6),

gives the following matrix formulation of Equation (9):

ygt = x′
gt γ̄ + (z′

gt ⊗ x′
gt )vec(A)+ x′

gtµg + x′
gtLεgt , (26)

where xgt = (1, yg,t−1, . . . , yg,t−p)
′ is a (p+ 1)-vector, a prime denotes transposi-

tion, ⊗ denotes a Kronecker product, and vec(A) is a column stack of A, giving a
(p + 1)(K − 1)-vector. A body of Tg time-series observations on ygt , xgt , and zgt
for small area g is represented as

yg = Xgγ̄ + Xzgvec(A)+Xgµg +Dxg(ITg ⊗ L)εg , (27)

where yg = (yg1, yg2, . . . , ygT g )
′ is a Tg-vector of observations on the regressand

of Equation (6),Xg = (xg1, xg2, . . . , xgT g )
′ is a Tg×(p+1)matrix of observations

on the regressors of Equation (6), Xzg = (zg1 ⊗ xg1, zg2 ⊗ xg2, . . . , zgT g ⊗ xgT g )
′

is a Tg × (p + 1)(K − 1) matrix of observations on the concomitants and their
interactions with the regressors of Equation (6), Dxg = diag(x′

g1, x
′
g2, . . . , x

′
gT g
)

is a Tg × Tg(p + 1) block-diagonal matrix having the rows of Xg as its di-
agonal blocks and zeroes elsewhere, ITg is an identity matrix of order Tg , and
εg = (ε′

g1, ε
′
g2, . . . ,ε

′
gT g
)′ is a Tgm-vector of errors.
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Under Assumptions 1 and 2, the conditional expectation of yg, given the xgt and
zgt , is Xgγ̄ +Xzgvec(A) and its conditional variance is

;gg = Xg)X
′
g +Dxg(ITg ⊗ L)σ 2

g<ggε(ITg ⊗ L′)D′
xg , (28)

where σ 2
g<ggε is the Tgm×Tgm covariance matrix of εg, the t-th diagonal block of

<ggε is equal to them×mmatrixE(εgtε′
gt )/σ

2
g = =g/σ

2
g = ϕg(=g/σ

2
g )ϕ

′
g+)g, and

the (t, s) off-diagonal block of <ggε is equal to the m×m matrix E(εgtε′
gs)/σ

2
g =

ϕt−sg (=g/σ
2
g ) if t > s and is equal to the m × m matrix E(εgtε

′
gs)/σ

2
g =

(=g/σ
2
g )(ϕ

′
g)
s−t if s > t .

The G equations in (27) may be written together as

y = X∗(γ̄ ′, (vec(A))′)′ +DXµ+DxLε, (29)

where y = (y1, y2, . . . , yG)
′ is a (

∑G
g=1 Tg)-vector, X∗ = (X′∗1, X

′∗2, . . . , X
′∗G)′

is a
∑G

g=1 Tg ×K(p + 1) matrix with X∗g = (Xg,Xzg), (γ̄ ′, (vec(A))′)′ is a

K(p + 1)-vector of coefficients, DX = diag(X1, X2, . . . , XG) is a
∑G

g=1 Tg ×
G(p+ 1) block-diagonal matrix having the Xg’s (g = 1, 2, . . . ,G) as its diagonal
blocks and zeroes elsewhere, µ = (µ′

1, µ
′
2, . . . ,µ

′
G)

′ is aG(p+1)-vector of small-
area effects, DxL = diag(Dx1(IT1 ⊗ L),Dx2(I T2

⊗ L), . . . ,DxG(ITG ⊗ L)) is
a
∑G

g=1 Tg ×∑G
g=1mTg block-diagonal matrix having the Dxg(ITg ⊗ L) (g =

1, 2, . . . ,G) as its diagonal blocks and zeroes elsewhere, and ε = (ε′
1, ε

′
2, . . . ,ε

′
G)

′

is a (
∑G

g=1mT g)− vector.
The minimum variance linear unbiased estimator of (γ̄ ′, (vec(A))′)′ in Equation

(29) is

( ˆ̄γ ′(vec(Â))′)′ = (X′∗;−1X∗)−1X′∗;−1y, (30)

where; = diag(;11,;22, . . . ,;GG) is a
∑G

g=1 Tg ×∑G
g=1 Tg block-diagonal ma-

trix having the ;gg’s (g = 1, 2, . . . ,G) in (28) as its diagonal blocks and zeroes
elsewhere. The covariance matrix of estimator (30) is (X′∗;−1X∗)−1.

The means of µ and ε in Equation (29) are zero and their covariance ma-
trices are (IG ⊗ )) and <ε = diag(σ 2

1<11ε, σ
2
2<22ε, . . . ,σ

2
G<GGε), which is a∑G

g=1 Tg ×∑G
g=1 Tg block-diagonal matrix having the σ 2

g<ggε’s (g = 1, 2, . . . ,G)
in Equation (28) as its diagonal blocks and zeroes elsewhere, respectively. Let
M = [I −X∗(X′∗;−1X∗)−1X′∗;−1].

Then the BLUP of µ is

µ̂ = (IG ⊗))D′
XM

′[M(DX(IG ⊗))D′
X +DxL<εD

′
xL)M

′]−My
= (IG ⊗))D′

X(DX(IG ⊗))D′
X +DxL<εD

′
xL)

−1My,
(31)

where the symbol [·]− denotes a generalized inverse of the matrix in square brack-
ets, and its covariance matrix is (IG ⊗))D′

X;
−1MDX(IG ⊗)). The BLUP of ε

is

ε̂ = <εD
′
xLM

′[M(DX(IG ⊗))D′
X +DxL<εD

′
xL)M

′]−My
= <εD

′
xL(DX(IG ⊗))D′

X +DxL<εD
′
xL)

−1My,
(32)
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and its covariance matrix is <εD′
xL;

−1MDxL<ε. The derivation of formulas
(31) and (32) follows that of Swamy and Mehta (1975) and Chang, Hallahan and
Swamy (1992). We can use the estimator in (30) and the predictors in (31) and (32)
to obtain the predictor

γ̂gt = ˆ̄γ + Âzgt + µ̂g + Lε̂gt , (33)

for all g and t .
Estimator (30) and predictors (31) and (32) involve the unknown parameters,

), ϕg,)g, and σ 2
g , g = 1, 2,. . . ,G. A method of estimating the parameters ϕg,)g,

and σ 2
g for all g is given in Chang, Swamy, Hallahan and Tavlas (2000). To estimate

) consider the generalized least squares estimator of (γ̄ + µg) in Equation (27).
This estimator can be written as

bg = J ′(X′∗g<−1
ggyX∗g)−1X′∗g<−1

ggyyg, (34)

where J ′ = [I 0] is a (p+1)×K(p+1) matrix having the columns of an identity
matrix of order (p + 1) as its first (p + 1) columns and zeroes elsewhere and
<ggy = Dxg(I Tg ⊗ L)σ 2

g<ggε(I Tg ⊗ L′)D′
xg. Let

Sb =
G∑
g=1

bgb
′
g − 1

G

G∑
g=1

bg

G∑
g=1

b′
g. (35)

Then an unbiased estimator of ) is

)̃ = Sb

G− 1
− 1

G

G∑
g=1

σ 2
g J

′(X′∗g<−1
ggyX∗g)−1J . (36)

The covariance matrix ) is a nonnegative definite matrix; hence estimator (36)
taking on negative definite values with positive probability is an inadmissible
estimator of ) against any loss function for which the risk function exists. A
nonnegative definite estimator of ) is

)̂ =
p1∑
j=1

λjqjq
′
j , (37)

where the λj ’s (j = 1, 2, . . . , p1 ≤ (p+ 1)) are the nonnegative eigenvalues of )̃
and the qj ’s are the corresponding eigenvectors. Rao (1973, p. 63, 1f.2.11) proved
that if estimator (37) is a matrix of rank r (≤ p1), then it provides the closest fit to
)̃ among all matrices of rank r (see also Chang et al., 2000, p. 127).

Formulas (30)–(37) can be evaluated for given ), ϕg,)g, and σ 2
g , g =

1, 2, . . . ,G. The estimators of ), ϕg,)g, and σ 2
g , g = 1, 2, . . . ,G, can be

evaluated for given γ̄ and vec(A). Starting with some initial values for ϕg,)g,

and σ 2
g , g = 1, 2, . . . ,G, we estimate all the unknown parameters of model
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(9) using an iterative re-weighted generalized least squares (IRWGLS) method.
In this method, the estimated covariance matrix of the composite error term of
Equation (9) changes from iteration to iteration. Hence, the term ‘re-weighted’
appears in IRWGLS. This iteration is continued until convergence. We use Paige’s
(Kourouklis and Paige, 1981) numerically stable algorithm to evaluate formulas
(30)–(37). Suppose that the coefficients and the error terms of Equation (29) are
estimated using all observations through t = Tg. Then the f -step-ahead forecast
of yg,T g+f implied by these estimates is

ŷg,T g+f = x̂′
g,T g+f (

ˆ̄γ + µ̂g)+ (ẑ′
g,T g+f ⊗ x̂′

g,T g+f )vec(Â) +
+ x̂′

g,T g+f Lϕ̂
f
g ε̂g,T g ,

(38)

which is obtained from Equation (26) by setting (i) t = Tg + f , (ii) γ̄ , vec(A),ϕg ,
µg , and εg,T g equal to their respective sample estimates, and (iii) yg,T g+f−j with
f > j in xg,T g+f and zg,T g+f equal to its forecast. This forecast is obtained from
Equation (38) by setting t = Tg + f − j > Tg. Only the one-step-ahead forecasts
of yg,T g+f with f = 1 do not depend on the forecasts of yg,T g+f−j with f > j .
Note that µ̂g and ε̂g,T g are the g-th (p + 1)-sub-vector of (31) and the gTg-th m-
sub-vector of (32), respectively. Equation (38) with x̂g,T g+f and ẑg,T g+f reflects the
actual forecasting environment within which practitioners must operate. Because
of the necessity to use the forecasts of yg,T g+f−j with f > j in this situation it is
difficult to find appropriate concomitants that satisfy Assumptions 1 and 2, as we
show in the next section.

We need to find the variance of ŷg,T g+f in (38). An approximation to this
variance is provided by

[(1, ẑ′
g,T g+f )⊗ x̂′

g,T g+f ](X′∗;̂−1X∗)−1[(1, ẑ′
g,T g+f )⊗ x̂′

g,T g+f ]′ +
+ x̂′

g,T g+f Lϕ̂
f
g Cov(ε̂g,T g )ϕ̂

f ′
g L

′x̂g,T g+f ,
(39)

where the sample estimates of ),ϕg,)g, and σ 2
g for all g are used in place of their

true values used in (30),

Cov(ε̂g,T g ) =
(σ̂ 2
g <̂ggε)m×Tgm(ITg ⊗ L′)D′

xg(;̂
−1M̂)Tg×TgDxg(ITg ⊗ L)(σ̂ 2

g <̂ggε)
′
Tgm×m

is a sample estimate of the covariance matrix of ε̂g,T g , (σ̂ 2
g <̂ggε)m×Tgm is a sample

estimate of the last m rows of σ 2
g<ggε, and (;̂−1M̂)Tg×Tg is a sample estimate of

the g-th diagonal block of ;−1M.

5. An Empirical Example

In this section, we explain how to generate 1- to 12-month-ahead forecasts of
certain out-of-sample values of the dependent variable of Equation (9) using the
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following values: (i) The values 3, 5, and 6 for p, (ii) the value I for L, (iii) the
zero values for the off-diagonal elements of ϕg, (iv) the zero value for ), (v) the
zero values or the nonzero IRWGLS estimates for the diagonal elements of ϕg, (vi)
the corresponding IRWGLS estimates of γ̄ , A,)g, σ

2
g ,µg, and εg,T g+f , and (vii)

several sets of concomitants are used in Equation (38) to obtain the 1- to 12-month-
ahead forecasts of employment relatives for the forecast period, 1996.04–2001.12,
and for 13 small domains.

The nonlinearities of (2) as well as the omitted-variable and measurement-error
biases contained in the coefficients of (6) depend on p. Hence, the concomitants
that explain the variation in the coefficients of Equation (6) cannot be independent
of p. This shows that we need to specify p before we pick the concomitants to
be included in Equation (7). Our initial set of experiments show that Equation (9)
with p = 5 and no zs performs better in prediction than the same equation with
p = 3 or 6. It performs better in prediction with variable coefficients than with
fixed coefficients. The assumption of nonzero serial correlation in (8) improves
the forecasting performance of Equation (6). Quite possibly, this result would not
obtain if Equation (6) included an adequate number of appropriate concomitants.

For p = 5, the concomitants we used include z1gt = log(yg,t−2/yg,t−3), z2gt =
(1/5) log(yg,t−1/yg,t−6), z3gt = (1/5) log(yg,t−7/yg,t−12), z4gt = (yg,t−2−yg,t−3)/

yg,t−3, z5gt = (yg,t−1−yg,t−6)/5yg,t−6, z6gt = (yg,t−7−yg,t−12)/5yg,t−12, z7gt =
(yg,t−1−yg,t−6)/5(yg,t−1 + yg,t−6)2−1, z8gt = (yg,t−7−yg,t−12)/5(yg,t−7 +
yg,t−12)2−1, z9gt = (yg,t−2−yg,t−6)/4(yg,t−2+yg,t−6)2−1, z10gt = (yg,t−3−yg,t−6)/

3(yg,t−3 + yg,t−6)2−1, and twelve monthly dummies, each of which takes a value
of 1 in a specific month and zeroes in other months.

The source of our data is the ES-202 program, which provides monthly data for
all small domains in the U.S. for the period January 1990–March 2001. To make
use of RMSEs (formula (10)) and Theil’s U statistic (formula (12)), we assume
that these data do not contain measurement errors. We are not too happy about
this assumption because it can be false. Unfortunately, without the assumption,
formulas (10)–(14) are not computable. We divide the employment total for each
month by its March 1999 value to obtain the dependent variable of Equation (9).
The monthly series on this dependent variable for each of several small domains
is plotted for January 1990–March 2001. These plots show the following: (i) The
employment totals for each of these small domains fluctuate around a nonlinear
trend. (ii) Several of these series display pronounced seasonal patterns. (iii) Both
the seasonal pattern and the shape of the nonlinear trend are different for different
small domains and change over time. (iv) Changes in employment totals in some
months are much bigger than changes in other months; these big changes do not
occur in the same month for all these series. (v) Mostly, employment totals decrease
at a faster rate than they increase. (vi) During the period January 1990–March 2001,
all the small domains we examined recurrently experienced periods of increase and
decrease in their employment totals, although the length and depth of those cycles
were irregular.
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In view of Oakes’ theorem, we do not expect any one set of the estimates of the
coefficients and the error terms of a version of Equation (9) to produce accurate
forecasts of yg,T g+f for all f if Tg is fixed. Consequently, the forecasts from Equa-
tion (9) are generated using the rolling forecast method. First, the parameters and
the error terms of several versions of Equation (9) are estimated using all observa-
tions through a given forecasting origin (Tg); next, 1- to 12-month-ahead forecasts
of yg,T g+f , f = 1, 2, . . . , 12, are generated for this origin. This procedure is then
repeated for all the chosen forecasting origins. To reduce our computational burden,
we have chosen only the last month of each quarter in the period, January 1996–
December 2000, as a forecasting origin. The ending month of an estimation period
is advanced one quarter to obtain the next estimation period. With this method,
we have 20 estimation periods, the first of which is January 1992–March 1996.
For this period, the forecasting origin is March 1996. That is, the ending month of
each estimation period is a forecasting origin. In this forecast method, we use the
forecasts in place of the actual values of regressors used on the right-hand sides of
Equations (6) and (7) for the forecast periods. For example, yg,T g+f−j with f > j

belongs to a forecast period and its forecast is used in place of its actual value used
on the right-hand sides of Equations (6) and (7) for t = Tg + f . This has led to
some disconcerting results, as we show below.

With 13 small domains and 20 estimations for each domain, we have 260 cases.
For each of these domains, the 20 estimations gave us 20 sets of 1- to 12-month-
ahead forecasts. But we did not have the actual values that were necessary to
compute the RMSEs and Theil’s U statistic for all these forecasts. Since our data
series ended at March 2001, we could only compute Theil’s U statistic for the
10- to 12-month-ahead forecasts and the RMSEs for the 1- to 12-month-ahead
forecasts obtained in the first 17 estimations for each domain. These computations
gave us 221 values of Theil’s U statistic and the same number of the values of
RMSEs. For the period January 2001–March 2001, we could compute Theil’s U
statistic for 7- to 9-, 4- to 6-, and 1- to 3-month-ahead forecasts obtained in the
18th, 19th and 20th estimations, respectively. The results of these computations
are summarized in Tables I and II. We also computed the RMSEs for 1- to 9-,
1- to 6-, and 1- to 3-month-ahead forecasts obtained in the 18th, 19th, and 20th
estimations, respectively.

Our empirical work shows the following:

1. When p = 5, the use of z1gt = log(yg,t−2/yg,t−3) or z4gt = (yg,t−2−yg,t−3)/

yg,t−3 as a concomitant led to a high degree of multicollinearity, which slowed
down considerably convergence of the IRWGLS method. The same problem
arose when p = 5 and z9gt = (yg,t−2−yg,t−6)/4(yg,t−2 + yg,t−6)2−1 and
z10gt = (yg,t−3−yg,t−6)/3(yg,t−3 + yg,t−6)2−1 were included in Equation (9)
as its concomitants. This high degree of multicollinearity was reduced when
we used z2gt = (1/5) log(yg,t−1/yg,t−6), z3gt = (1/5) log(yg,t−7/yg,t−12),
z5gt = (yg,t−1−yg,t−6)/5yg,t−6, z6gt = (yg,t−7−yg,t−12)/5yg,t−12, z7gt =
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Table I. Accuracy measures of forecasts constructed from Equation (9) with p = 5, no
concomitants, and unknown values of yg,T g+f−j with f > j .

SD a Theil’s U statistic of forecasts RMSE of

FP: b January 1997– FP: January 2001–March 2001 forecasts

March 2001 10- to 7- to 9- 4- to 6- 1- to 3- FP: April 1996–

10- to 12-month- 12- month- month- month- March 2001

ahead month- ahead ahead ahead 1- to 12-month-

Min c Max c ahead ahead

Min d Max d

1 0.011 0.154 0.090 0.077 0.065 0.023 0.040 0.126

2 0.005 0.165 0.090 0.082 0.064 0.026 0.024 0.135

3 0.013 0.125 0.062 0.015 0.011 0.017 0.012 0.086

4 0.008 0.119 0.045 0.061 0.075 0.048 0.014 0.103

5 0.004 0.143 0.012 0.029 0.039 0.022 0.015 0.119

6 0.007 0.057 0.020 0.008 0.017 0.041 0.024 0.060

7 0.012 0.080 0.028 0.013 0.014 0.054 0.026 0.064

8 0.013 0.210 0.046 0.068 0.023 0.021 0.021 0.140

9 0.004 0.080 0.022 0.014 0.013 0.013 0.012 0.066

10 0.016 0.348 0.016 0.028 0.087 0.014 0.030 0.340

11 0.014 0.314 0.089 0.070 0.052 0.022 0.009 0.278

12 0.007 0.053 0.015 0.029 0.017 0.045 0.019 0.048

13 0.008 0.072 0.033 0.028 0.006 0.017 0.012 0.054

a SD = Small Domain; b FP = Forecast Period; c Min (or Max) = The minimum (or maximum) of
17 values, one for each quarter in January 1997–March 2001; d Min (or Max) = The minimum (or
maximum) of 17 values, one for each 4 consecutive quarters in April 1996–March 2001.

(yg,t−1−yg,t−6)/5(yg,t−1 + yg,t−6)2−1, or z8gt = (yg,t−7−yg,t−12)/5(yg,t−7 +
yg,t−12)2−1 as a concomitant. Another difficulty is that the variable ẑ1gt =
log(ŷg,t−2/ŷg,t−3) is not defined when ŷg,t−2 or ŷg,t−3 is negative, which is the
wrong sign. With a high degree of multicollinearity, a negative value for the
dependent variable of Equation (38) is not a rarity. A similar problem arose,
though less frequently, with Equation (38) when z2gt = (1/5) log(yg,t−1/

yg,t−6) or z3gt = (1/5) log(yg,t−7/yg,t−12) appeared as its concomitant. There
is no claim that any one set of these concomitants leads to accurate forecasts
in all out-of-sample periods.

2. Equation (9) with monthly dummies as its concomitants generated forecasts
that fluctuated a great deal more than the actual series.

3. The forecasting performance of Equation (9) deteriorates, especially for the
multi-step-ahead forecasts, if an inappropriate concomitant is included in it.
(Recall that we consider a concomitant as appropriate if it can satisfy Assump-
tion 2 and explain at least partially the ‘true’ variation in the coefficients of
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Table II. Accuracy measures of forecasts constructed from Equation (9) with p = 5,
z7gt = 2(yg,t−1 − yg,t−6)/5(yg,t−1 + yg,t−6) and z8gt = 2(yg,t−7 − yg,t−12)/5(yg,t−7 +
yg,t−12) as its concomitants, and with unknown values of yg,Tg+f−j with f > j .

SD a Theil’s U statistic of forecasts RMSE of

FP: b January 1997– FP: January 2001–March 2001 forecasts

March 2001 10- to 7- to 9- 4- to 6- 1- to 3- FP: April 1996–

10- to 12-month- 12- month- month- month- March 2001

ahead month- ahead ahead ahead 1- to 12-month-

Min c Max c ahead ahead

Min d Max d

1 0.013 0.152 0.130 0.127 0.118 0.047 0.040 0.123

2 0.018 0.098 0.018 0.041 0.026 0.014 0.034 0.114

3 0.007 0.128 0.061 0.018 0.005 0.015 0.012 0.085

4 0.015 0.146 0.034 0.040 0.048 0.024 0.023 0.089

5 0.005 0.116 0.020 0.024 0.008 0.026 0.015 0.173

6 0.007 327.37 0.022 0.011 0.004 0.011 0.010 172.77

7 0.011 56464. 0.011 0.034 0.021 0.034 0.021 26531.

8 0.008 0.248 0.071 0.060 0.028 0.034 0.022 0.162

9 0.005 0.063 0.033 0.012 0.031 0.048 0.011 0.062

10 0.013 0.388 0.026 0.054 0.089 0.012 0.025 0.385

11 0.015 0.69132E+11 0.017 0.019 0.032 0.004 0.009 0.34494E+11

12 0.005 0.053 0.005 0.008 0.010 0.017 0.015 0.041

13 0.014 0.103 0.025 0.032 0.023 0.024 0.018 0.094

a SD = Small Domain; b FP = Forecast Period; c Min (or Max) = The minimum (or maximum) of
17 values, one for each quarter in January 1997–March 2001; d Min (or Max) = The minimum (or
maximum) of 17 values, one for each 4 consecutive quarters in April 1996–March 2001.

Equation (6).) Even if a variable included in Equation (9) is an appropriate
concomitant in this sense, using a very inaccurate value for it for a forecast
period leads to a very inaccurate forecast. The values of z implied by the
forecasts of yg,T g+f−j with f > j can be very inaccurate. It is difficult to
find the exact values of appropriate concomitants for a future period if these
values are unknown. Equation (9) without the z yields forecasts that are not
affected by either appropriate or inappropriate concomitants. The accuracy of
10- to 12-month-ahead forecasts from Equation (9) with p = 5, no zs, and with
the actual values of yg,T g+f−j with f > j equal to their respective forecasts,
as measured by Theil’s U statistic, lies between 0.004 and 0.348 for all the
221 cases (Table I). It has increased in 115 of these cases and decreased in the
remaining 106 cases when the two variables z7gt = (yg,t−1−yg,t−6)/5(yg,t−1+
yg,t−6)2−1 and z8gt = (yg,t−7−yg,t−12)/5(yg,t−7 + yg,t−12)2−1 are included as
concomitants in Equation (9) with p = 5. (Remember that in these cases, we
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only used the forecasts of yg,T g+f−j with f > j in place of their actual values
used in Equation (6), z7gt , and z8gt for t = Tg + f .) That is, in 52% of the
221 cases we considered, Equation (9) with p = 5 using the concomitants z7gt

and z8gt resulted in an improvement in the predictive ability over Equation (9)
with p = 5 and no zs when the values of yg,T g+f−j with f > j appearing
in Equation (6), z7gt , and z8gt for t = Tg + f were unknown. While many
of the 115 increases in forecast accuracy from using the concomitants z7gt

and z8gt are high, only 7 of the 106 decreases in forecast accuracy from using
those concomitants are disconcerting. We discuss each of these 7 cases in detail
below.

4. Of the 17 values of Theil’s U statistic that lie between 0.007 and 327.37 for
SD 6 in Table II, 14 are small lying between 0.007 and 0.091 and only three
are big being equal to 3.441, 154.66, and 327.37, respectively. These three
big values are observed for the forecast periods, January 1997–March 1997,
January 2001–March 2000, and October 1998–December 1998, respectively.
They get reduced to 0.038, 0.011, and 0.019, respectively, if Equation (9) with
p = 5, no zs, and with the actual values of yg,T g+f−j with f > j equal to their
forecasts is used to forecast its dependent variable for these forecast periods.
The values of z7gt and z8gt , which the forecasts of yg,T g+f−j with f > j imply
for the forecast periods, January 1997–March 1997, October 1998–December
1998, and January 2000–March 2000, are inappropriate.

5. For SD 7 in Table II, only one value of Theil’s U statistic for the forecast
period January 1997–March 1997 is as high as 56464 and its 16 values for other
forecast periods lie between 0.011 and 0.118. This high value can be reduced
to 0.023 by not using z8gt as a concomitant. The value of z8gt implied by the
forecasts of yg,T g+f−j with f > j for the forecast period January 1997–March
1997 is inappropriate.

6. The three high values, 0.54437E+08, 0.69132E+11, and 0.9174, are ob-
served for Theil’s U statistic in the consecutive forecast periods, October
1998–December 1998, January 1999–March 1999, and April 1999–June 1999,
respectively, for SD 11 in Table II. They can be reduced to 0.314, 0.111, and
0.107, respectively, if Equation (9) with p = 5, no zs, and with the actual
values of yg,T g+f−j with f > j equal to their forecasts is used to predict
its dependent variable for these forecast periods. The values of z7gt and z8gt

implied by the forecasts of yg,T g+f−j with f > j for the forecast periods, Oc-
tober 1998–December 1998, January 1999–March 1999, and April 1999–June
1999, are inappropriate.

7. In several cases we examined, the accuracy of the forecasts from Equation
(9) with p = 5 and with the two concomitants, z7gt and z8gt , or without the
zs does not monotonically decrease as the forecasting horizon is increased
(columns 4–7 of Tables I and II). That is, these forecasts can have the desirable
property in that the accuracy of 10- to 12-month-ahead forecasts is higher than
that of 1- to 9-month-ahead forecasts (lines 4, 5, and 12 of Table I and lines 7
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and 12 of Table II). Only the forecasts from nonlinear models can have this
property. Equation (9) is a nonlinear model. It can be seen that the errors
in the forecasts from a straight line increase in magnitude as the forecasting
horizon is increased when the true curve moves away from the straight line in
the forecast period. Montgomery et al.’s (1998, p. 484) study of the forecasts
from an ARIMA model fitted to quarterly U.S. unemployment rate data shows
that there is on average a twenty-fold increase in the MSE of f -step-ahead
forecasts as f increases from 1 to 5.
In summary, Equation (9) for t = Tg + f with p = 5, no zs, and with the
actual values of yg,T g+f−j with f > j equal to their forecasts yields 10- to
12-month-ahead forecasts of its dependent variable that do not imply a value
of Theil’s U statistic greater than 0.348 in any of the 221 cases we exam-
ined. The accuracy of these forecasts is increased in 52% of the cases when
the equation is expanded to include the values of the concomitants, z7gt =
(yg,t−1−yg,t−6)/5(yg,t−1 + yg,t−6)2−1 and z8gt = (yg,t−7−yg,t−12)/5(yg,t−7 +
yg,t−12)2−1, implied by the actual values of yg,T g+f−j with f ≤ j and the
forecasts of yg,T g+f−j with f > j . In 7 of the 221 cases, the errors contained
in the 10- to 12-month-ahead forecasts of the dependent variable of the ex-
panded equation are huge for certain forecast periods. These cases arise not
because the expanded equation is not a good nonlinear model but because the
forecasts of z7g,T g+f−j , z8g,T g+f−j , and yg,T g+f−j with f > j used are the
inappropriate values of z7g,T g+f−j , z8g,T g+f−j , and yg,T g+f−j with f > j ,
respectively. It remains to be determined whether Equation (9) with p = 5 and
the concomitants, z7gt and z8gt , is the best nonlinear model.

6. Conclusions

The biasing effects of measurement errors, omitted regressors, and of misspecifi-
cations of ‘true’ functional forms are a pervasive problem in econometrics.

The coefficient on a regressor in an equation can only be free of any bias when
no relevant regressor is omitted from the equation, when included regressors of
the equation are not measured with error, and when the true functional form of the
equation is known. This paper explains how the bias-free coefficients on included
regressors might be estimated. A method of assessing the predictive accuracy of
specified equations is also provided. We have illustrated our methods with an ap-
plication to the important practical problem of forecasting employment for small
domains with nonstationary autoregressive models.

It is true that the forecasts generated from any one model cannot always domi-
nate those from its competitors. A nonlinear autoregressive model that is different
from ARIMA models has been developed in this paper to obtain the forecasts of as
yet unobserved values of small-area employment. The dependent variable of this
nonlinear model has both finite conditional and unconditional variances, while it
does not possess a finite unconditional variance, though its conditional variance
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may be finite, if it follows an ARIMA model instead of the nonlinear model. If
the optimality of the predictors of the values of a variable is defined in terms of the
smallest of the average unconditional mean square errors of the predictors, then the
conditional expectation of the variable implied by an ARIMA model has no finite
unconditional variance and hence is unconditionally inadmissible. In time-varying
environments, variables do not become stationary after being differenced certain
number of times and hence unit-root nonstationarities of ARIMA models might be
hard to justify. Our nonlinear autoregressive model is appropriate to time-varying
environments. It captures the nonlinearities and nonstationarities inherent in many
small-area employment series.
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Notes

1 The rationale for using ARIMA models in a time-varying environment of the type represented by
Equation (1) is ordinarily very weak because in this environment, differencing does not induce
stationarity and hence unit-root nonstationarities of ARIMA models are inappropriate.

2 With an abuse of notation, we use the same symbol to denote both a random variable and its
values at many places in this paper.

3 The object of filtering is to update our knowledge of a system each time a new observation is
brought in. The joint density p(y1, . . . , yT ) of a set of T variables, Y1, . . . , Y T , if it exists, can
be written as the product of marginal and conditional densities, p(y1)p(y2|y1)p(y3|y2, y1) · · ·
p(yT |yT−1, . . . , y1). Applications of the Kalman filter to this joint distribution require as-
sumptions about p(y1). Suppose that Yt follows a random walk for all t . Then both the joint
distribution with density p(y1, . . . , yT ) and the distribution with density equal to the prod-
uct, p(y1)p(y2|y1)p(y3|y2, y1) · · ·p(yT |yT−1, . . . , y1), have no finite moments, even though
the conditional distributions with densities p(y2|y1), p(y3|y2, y1), · · · , p(yT |yT−1, . . . , y1),
respectively, can have finite moments. This result is contradicted if it is assumed that the uncon-
ditional distribution of Y1 has finite moments. We have seen several Kalman-filter applications
that assume that Yt follows a random walk for all t and the unconditional distribution of Y1 has
finite moments. We have also not seen a single application of the Kalman-filter algorithm that
does not ignore the correlations between the regressors of Equation (6) and its coefficients and
between γ0gt and the other coefficients of Equation (6).

4 This point was made previously in Friedman and Schwartz (1991, p. 46).
5 For example, when Hendry and Ericsson followed the rule that a model variance-dominates

another if the estimated residual variance of the former is smaller than that of the latter, Friedman
and Schwartz (1991, p. 46) pointed out that “they judge the validity of their hypotheses by the
data from which they derive them!”
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