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Considering two discrepant estimates of employment or unemployment for each of several geographical 
areas, this paper finds two models of their conditional variations across areas both at a point in time and 
through time.  One of these models is shown to predict the nation’s employment or unemployment better 
than the other model.  It improves one of the two estimates and corrects for nonresponse and measurement-
error biases and sampling and non-sampling errors in the other estimate for each area.  The improved 
estimate is equal to the corrected estimate. 
 
1. Introduction 

In this paper, we consider a situation where we 
have at least two different estimates of 
employment or unemployment made from 
different data sets for each of several small 
geographical areas.  The sources of two of these 
data sets are the Current Population Survey 
(CPS) and the American Community Survey 
(ACS). The problem with CPS data is that for 
many sub-state areas, they are either unavailable 
or too sparse.  For such areas, Local Area 
Unemployment Statistics (LAUS) estimates 
produced by the LAUS Program within the 
Bureau of Labor Statistics (BLS) will be used in 
place of the CPS estimates.  

Section 2 derives the first two moments of two 
conditional distributions from a joint distribution 
of the CPS and ACS estimators across states at a 
point in time.  The mean of one of these two 
distributions is shown to predict the nation’s 
employment or unemployment better than that of 
the other distribution.  An empirical example is 
given in Section 3.  Section 4 concludes.  

2. A Method of Simultaneously Improving 
One and Correcting Another of Two 
Estimates  

Let Y be the finite population value of a 
population characteristic for a geographical area 
at a period.  Such a value may not be equal to the 
value of the population characteristic obtained 
through a census (100% sample) because (i) 
while conducting the census, some of the units in 

                                                 
  *Any opinions expressed in this paper are those 
of the authors and do not constitute policy of the 
Bureau of Labor Statistics.  Thanks are due to 
J.N.K. Rao, Tamara Zimmerman and Edwin 
Robison for helpful comments. 

the population may not be measured (omissions) 
or may be measured more than once 
(duplication) and (ii) measurement, response, 
editing, coding, and tabulating errors may enter 
into the census data.   For these reasons, we treat 
Y as an unknown “true value” and try to learn 
about it from the available data that are not 
perfect. This concept of a “true value” is not 
different from Cochran’s (1977, p. 377) idea of a 
“correct value.”    The population characteristics 
that are of interest in this paper are employment 
and unemployment.  The geographical areas that 
are of interest in this paper are states.  

Let itY  denote the “true value” of Y for state i 
at time t.                                                            (1)  
Let the number of states in the nation be n. Then 

1

n
t iti

Y Y
=

= ∑  is the “true value” of national 

employment or unemployment.  The estimators 
of itY  based on data for time t only from the 
sample units within area i are called the direct 
survey estimators.  Let ˆ ACS

itY  and ˆCPS
itY  denote 

the direct ACS and CPS estimators of itY , 
respectively.1  The ACS is not designed to make 
monthly estimates, so we can only get ACS 
estimates of the annual averages of itY .  Let t 
index years.    
 
2.1 Choosing Between the Means of Two 
Conditional Distributions Derived from a 
Joint Distribution of Two Estimators  

                                                 
1 The ACS is not fully implemented yet. Only 
smaller-scale versions of the ACS were 
conducted in 2000, 2001, and 2002.  In this 
paper, these smaller-scale ACS data for 2000 are 
used to evaluate ˆ ACS

itY .      



 

We write ˆ     CPS CPS
it it itY Y ε= +  and 

ˆ     ACS ACS
it it itY Y ε= + , where CPS

itε  and ACS
itε  

denote the errors of ˆCPS
itY  and ˆ ACS

itY , 
respectively.  Here inferential disasters can be 
avoided by making assumptions about CPS

itε  and 
ACS
itε  that are attentive to the CPS- and ACS-

design features, respectively.  It is true that ˆCPS
itY  

and ˆ ACS
itY  are unbiased in probability sampling.  

It is also true that adjustments have been made in 
these estimators for nonresponse and, in 
addition, measures have been taken to control the 
presence of various sources of nonsampling 
errors in the CPS and ACS.  However, the 
approximations involved in these adjustments 
and measures (see Cochran (1977, Chapter 13)) 
may not have permitted the complete elimination 
of all the biases nonresponse and measurement 
errors have produced in the estimates that are 
computed from the CPS and ACS data.  Because 
of the difficulty of ensuring that no such 
approximations are present, we define CPS

itε  and 
ACS
itε  broadly to include both sampling and non-

sampling errors and assume that these errors may 
not have zero means.  The amounts of biases that 
are still remaining in ˆCPS

itY  and ˆ ACS
itY  after these 

estimators have been adjusted for bias are given 
by CPS

itEε  and ACS
itEε , respectively, which may 

not be zero.   
The estimator, ˆCPSY , is the BLS standard for 

measuring Y at the national level but not at the 
sub-national level, where the CPS sample size 
may be too small to yield direct survey estimates 
with meaningful accuracy.  This standard 
suggests that a necessary condition for an 
estimate ity  of itY  to be accurate is that 

1

n
iti

y
=∑  

is equal to the CPS estimate of tY .    
The common component itY  of ˆCPS

itY  and 
ˆ ACS
itY  shows that there is a relationship between 
ˆCPS
itY  and ˆ ACS

itY .  One form of this relationship is 
obtained by replacing the left-hand side of the 
identity            

it itY  = Y                                              (2) 

by CPS CPS
it itŶ  - ε  and its right-hand side by 

ACS ACS
it itŶ  - ε .  Doing so gives   

CPS CPS ACS ACS
it 0it 1it it

ˆ ˆY  =  + Yα α                   (3) 

where CPS CPS
0it it = α ε  and ACS ACS ACS

1it it it
ˆ = 1 - ( / Y )α ε .  

If ˆCPS
itY  is based on a very small sample, then 

it is not a very precise estimator.  To improve its 
precision, its relationship with ˆ ACS

itY  in (3) may 
be used.  This relationship can “borrow strength” 
cross-sectionally, over time, or both, more 
effectively than the relationship, ˆCPS

itY  = itY  + 
CPS
itε with itY  replaced by a function of some 

auxiliary variables and random error, when 
relevant variables are omitted from the latter 
relationship, when the included auxiliary 
variables are measured with error, or when the 
function’s true functional form is misspecified.  
Ignoring the effects of these misspecifications 
leads to incorrect inferences, as Freedman and 
Navidi (1986) and Swamy, et al. (2003a, b) 
show.  

A big virtue of model (3) is that by eliminating 
itY  from (2) it avoids all the misspecification 

problems associated with the regressions of itY  
on auxiliary variables. For example, consider the 
usual assumption that the auxiliary variables, 
which are used as some of the determinants of 

itY  are independent of ‘the’ excluded 
determinants themselves.  This assumption 
shown to be either meaningless or false by Pratt 
and Schlaifer (1984, 1988) is avoided in (3).  
What (3) cannot avoid, however, is the errors-in-
the-variables problem: both its regressand CPS

itŶ  

and its regressor ACS
itŶ  are subject to error.  

Here, it should be pointed out that to estimate 
(3), the econometric method of instrumental 
variables cannot be used because these variables 
do not exist in the usual situations, where (i) 
relevant explanatory variables are omitted, (ii) 
the included explanatory variables are measured 
with error, and (iii) the unknown functional 
forms of relevant relationships are misspecified, 
as shown by Chang, et al. (2000).   

The roles of CPS
itŶ   and ACS

itŶ   in (3) can be 
interchanged by replacing the left- and right-
hand sides of (2) by ˆ  -  ACS ACS

it itY ε  and 
ˆ  -  CPS CPS
it itY ε , respectively.  Doing so gives  

0 1
ˆ ˆ    ACS ACS CPS CPS
it it it itY Yα α= +                (4) 

where 0
ACS
itα = ACS

itε  and 1
CPS
itα  = 1 - ˆ( / )CPS CPS

it itYε .  
We now show that (3) is preferable to (4).  In 

these models, the regressors are not independent 
of their respective coefficients. To account for 
the correlation between 1

ACS
itα  and ˆ ACS

itY  in (3), 

we assume that given ACS
itŶ  = ACS

ity ,   



 

0 00 01 0
1      CPS CPS CPS CPS

it itACS
ity

α π π ζ
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

          (5) 

1 10 11 1
1      ACS ACS ACS ACS

it itACS
ity

α π π ζ
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

         (6) 

where the vectors, 0 1( ,  )CPS ACS
it itζ ζ ′ , are 

independent of ˆ ACS
itY  and are independently 

distributed with mean vector zero and constant 
covariance matrix 2

1 1σ ∆  as i varies for fixed t.2 
Assumption (5) says that the mean function, 

E( 0
CPS
itα | ˆ   ACS ACS

it itY y= ) = 00
CPSπ  + 01 (1/ )CPS ACS

ityπ , 
with one constant and one variable term, is a 
proxy for the bias, E CPS

itε , and 0
CPS
itζ , 

representing the fluctuating component of CPS
itε , 

is independent of ACS
itŶ .  It is analogous to one 

of Cochran’s (1977, pp. 377-379) assumptions.   
The mean function is a good proxy for E CPS

itε  = 
0 because CPS ACS

01 it(1 / y )π  takes only tiny values 
and zero is a convenient value for CPS

00π , as we 
show in Section 3 below.  Good proxies for 
E CPS

itε  ≠  0 can be obtained by adding additional 
regressors to (5).  Quite possibly, some of these 
regressors are the proportions of the population 
in state i falling in black and Hispanic racial 
groups with different unemployment rates.  
Thus, using various proxies for E CPS

itε  including 
the one for E CPS

itε  = 0 in (5), we can investigate 
the statistical consequences of various departures 
from the assumption that E CPS

itε  = 0.  
Assumption (6) says that the correlation between 

1
ACS
itα  and ˆ ACS

itY  is due to the function, 10
ACSπ  + 

11 (1/ )ACS ACS
ityπ , but once this function is 

subtracted from 1
ACS
itα , the remainder 1

ACS
itζ  is 

independent of ˆ ACS
itY .  Given that 1

ACS
itα  is a 

function of 1/ ˆ ACS
itY  and is correlated with ˆ ACS

itY , 
assumption (6) is reasonable. This assumption 
may justify assumption (5) because (i) 0

CPS
itα  and 

1
ACS
itα , being the coefficients of the same 

equation, may be affected by the same set of 
variables and (ii) if 1

ACS
itα  is affected by 1/ ˆ ACS

itY , 

                                                 
2 The time subscript t is fixed at a value because 
currently, the ACS data are available only for the 
years 2000-2002.    

then 0
CPS
itα  may also be affected by the same 

variable.   
To account for the correlation between 1

CPS
itα  

and ˆCPS
itY  in (4), we assume that given ˆCPS

itY  = 
CPS
ity ,  

0 00 01 0
1      ACS ACS ACS ACS

it itCPS
ity

α π π ζ
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

         (7) 

1 10 11 1
1      CPS CPS CPS CPS

it itCPS
ity

α π π ζ
⎛ ⎞

= + +⎜ ⎟
⎝ ⎠

          (8) 

where the vectors, 0 1( ,  )ACS CPS
it itζ ζ ′ , are 

independent of ˆCPS
itY  and are independently 

distributed with mean vector zero and constant 
covariance matrix 2

2 2σ ∆  as i varies for fixed t.  
Inserting (5) and (6) into (3) gives   

00 01 10 11
1ˆ       CPS CPS CPS ACS ACS ACS

it itACS
it

Y y
y

π π π π
⎛ ⎞

= + + +⎜ ⎟
⎝ ⎠

               0 1   CPS ACS ACS
it it ityζ ζ+ +                          (9) 

where only the sum of 00
CPSπ  and 11

ACSπ  is 
identifiable.  Equation (9) is a nonlinear 
regression model with heteroscedastic 
disturbances.  Under (5) and (6), it implies that 
the conditional distribution of ˆCPS

itY  given 
ˆ   ACS ACS
it itY y= , has mean equal to the right-hand 

side of (9) with the last two terms suppressed 
and variance equal to 0var( )CPS

itζ  + 
2

1var( )( )ACS ACS
it ityζ  +  0 12cov( ,  )CPS ACS ACS

it it ityζ ζ , 
where the variances and covariance are given by 
the elements of 2

1 1σ ∆ .  
It follows from (3) that   

 0  CPS CPS
it itε α=                                    (10)

 1
ˆ  (1 -  )ACS ACS ACS

it it itYε α=                   (11) 

0 1
ˆ ˆ   -    CPS CPS ACS ACS

it it it it itY Y Yα α= =    (12) 
Equation (12) gives the true value, itY , by 

eliminating the differences between ˆCPS
itY  and 

ˆ ACS
itY .  Summing it over i gives  

( )0 1
1 1

ˆ ˆ -    
n n

CPS CPS ACS ACS
it it it it

i i

Y Yα α
= =

=∑ ∑ (13) 

The left- and right-hand sides of this equation 
give two estimators of tY  that are equal to each 
other with probability (w.p.) 1.  If, in addition, 

01
 0n CPS

iti
α

=
=∑  w.p. 1, then these two 

estimators are equal to the CPS estimator, 

1
ˆn CPS
iti

Y
=∑ .  It is desirable to obtain such 



 

estimators if |
1

ˆn CPS
iti

Y
=∑  - tY | < |

1
ˆn ACS
iti

Y
=∑  - tY | 

w.p. 1.  The BLS belief in this condition is very 
high.  Thus, under the condition, 

01
  0n CPS

iti
α

=
=∑  w.p. 1, the estimators on both 

sides of the second equality sign in (12) satisfy 
both the BLS standard and the implied necessary 
condition (stated at the end of the second 
paragraph of Section 2.1) for them to be precise.    
The condition, 01

  0n CPS
iti

α
=

=∑  w.p. 1, is nearly 

satisfied if the sums of 00
CPSπ + 01 (1/ )CPS ACS

ityπ  and 

0
CPS
itζ  over i are near zero w.p. 1.                       
If we consider the equation set, {(4), (7), (8)}, 

then (13) changes to  

( )0 1
1 1

ˆ ˆ -    
n n

ACS ACS CPS CPS
it it it it

i i

Y Yα α
= =

=∑ ∑ (14) 

which is equal to the BLS preferred estimator 

1
ˆn CPS
iti

Y
=∑  if 1   1CPS

itα =  w.p. 1 for all i and t.  
This condition is very strong and is unlikely to 
be satisfied in practice. Therefore, we can 
conclude that equation (4) usually gives an 
estimate of tY  that is different from its BLS 
preferred (CPS) estimate.  Since it is easier to 
satisfy the condition, 01

  0n CPS
iti

α
=

=∑  w.p. 1, 

than to satisfy the condition, 1   1CPS
itα =  w.p. 1 

for all i and t, we can easily obtain an estimate of 
tY  equal to its CPS estimate by using the set, 

{(3), (5), (6)}, which is equivalent to (9), instead 
of the set, {(4), (7), (8)}.  This is the reason why 
we prefer (9) to the latter set.   

Under (7) and (8), (4) gives the conditional 
distribution of ˆ ACS

itY  given ˆ   CPS CPS
it itY y= , whose 

mean is equal to   

ACS
00 01

1ˆ ˆ( |   )  ACS CPS CPS ACS
it it it CPS

it

E Y Y y
y

π π
⎛ ⎞

= = + ⎜ ⎟
⎝ ⎠

        

                                10 11  CPS CPS CPS
ityπ π+ +   (15) 

and whose variance is equal to 0var( ) ACS
itζ +  

2
1var( )( )CPS CPS
it ityζ  0 1+ 2cov( ,  )ACS CPS CPS

it it ityζ ζ , 
where the variances and covariance are given by 
the elements of 2

2 2σ ∆ .                
Given the data, ( ,  )CPS ACS

it ity y  for i = 1, 2, ..., n  
and fixed t, an Iteratively Re-Scaled Generalized 
Least Squares (IRSGLS) method is used to 
obtain good approximations to the minimum 
variance linear unbiased estimators of the 
coefficients, 01

CPSπ , 10
ACSπ , 00 11( )CPS ACSπ π+ , and the 

best linear unbiased predictors of the errors, 

0
CPS
itζ  and 1 ACS

itζ , of equation (9).3  These 
approximations are denoted by 01ˆCPSπ , 10ˆ ACSπ , 

00 11( )CPS ACSπ π+ , 0
ˆCPS

itζ , and 1̂
ACS
itζ , respectively. 

The corresponding estimate of 2
1 1σ ∆  is denoted 

by 2
1 1

ˆσ̂ ∆ . Arbitrary prior values of the unknown 
parameters have little or no influence on these 
estimates.  Without (5) and (6) these IRSGLS 
estimators are inconsistent because a necessary 
condition for their consistency and asymptotic 
normality is that 0

CPS
itζ  and 1

ACS
itζ  are independent 

of ˆ ACS
itY  and other variables included on the 

right-hand side of (5) and (6).  Sufficient 
conditions for their consistency and asymptotic 
normality have been worked out in the 
econometrics literature.    

2.2 Bias- and Error-Corrected Version of the 
CPS Estimator 

Equations (5), (10), and (12) can be used to 
show that given ˆ   ACS ACS

it itY y=  and 00   0CPSπ = ,  
2

2
01 0

1ˆ(  -  ) var( )CPS CPS CPS
it it itACS

it

E Y Y
y

π ζ
⎛ ⎞

= +⎜ ⎟
⎝ ⎠

 (16) 

where the first term on the right-hand side is the 
square of the bias, CPS

itEε .  Adding additional 
regressors on the right-hand side of (5) may push 
the magnitude of this bias above that of 

01
1CPS
ACS
ity

π and decrease the magnitude of the 

fluctuating component of CPS
itε , below that of 

0
CPS
itζ .  An estimate of CPS

itEε is  

 01
1ˆ  

CPS CPS
ACS
it

Bias
y

π=                     (17) 

The standard error of (17) is given by the square 
root of  

 
2

01
1ˆvar( )CPS
ACS
ity

π
⎛ ⎞
⎜ ⎟
⎝ ⎠

                          (18)  

From equations (5) and (12) we have  

0 01
1ˆ ˆ ˆˆ ˆ   -     -  BECCPS CPS CPS CPS CPS

it it it it ACS
it

Y Y Y
y

α π
⎛ ⎞

= = ⎜ ⎟
⎝ ⎠

                  0
ˆ- CPS

itζ ,                                         (19) 
if 00  0CPSπ = .  This is what we call bias- and 
error-corrected (BEC) version of the CPS 

                                                 
3 Chang, et al. (2000) developed software for the 
IRSGLS method.  



 

estimator, ˆCPS
itY .  It is close to ˆCPS

itY  if 0ˆ CPS
itα  is 

close to 0 w.p. 1.  Estimator (19) can be more 
precise than ˆCPS

itY .  

2.3 Improved ACS Estimator 
An estimator of itY  that gives a good 

approximation to (12) is   
 1

ˆ ˆ   IACS ACS ACS
it it itY yα= =   

10 11 1
1 ˆˆ ˆ     ACS ACS ACS ACS

it itACS
it

y
y

π π ζ
⎡ ⎤⎛ ⎞

+ +⎢ ⎥⎜ ⎟
⎢ ⎥⎝ ⎠⎣ ⎦

        (20) 

where ˆ IACS
itY  denotes the improved ACS (IACS) 

estimator and 11ˆ ACSπ  is the IRSGLS estimator of 

11
ACSπ  when 00

CPSπ  is restricted to be zero.  The 

standard error of (20), denoted by se( ˆ IACS
itY ), is 

given by the square root of the conditional 
variance of ˆ IACS

itY  given ˆ   ACS ACS
it itY y= , which is 

2
10ˆvar( )( )ACS ACS

ityπ + 11ˆvar( )ACSπ + 1̂var( )ACS
itζ ×

2( )ACS
ity + 10 11ˆ ˆ2cov( ,  )ACS ACS ACS

ityπ π + 
2

10 1̂ˆ2cov( ,  )( )ACS ACS ACS
it ityπ ζ

11 1̂ˆ 2cov( ,  )ACS ACS ACS
it ityπ ζ+                                (21)                                                                                                                                  

 
2.4 Comparison of CPS, ACS, Improved ACS, 
and Bias- and Error-Corrected CPS 
Estimators   

From (11) it follows that the amount of bias in  
ˆ ACS
itY  is ACS

itEε  =  1
ˆ(1 -  )ACS ACS

it itE Yα .  An idea of 
the magnitudes of ACS

itε  and ACS
itEε  can be 

obtained by examining the estimate, ˆ ACS
itε  = 

1ˆ(1 -  )ACS ACS
it ityα , of (11) and the estimate of 

1
ˆ(1 -  )ACS ACS

it itE Yα  equal to ACS
ity - 10ˆ ACS ACS

ityπ -

11ˆ ACSπ  when 00
CPSπ  = 0.   

The second equality in (12) is preserved under 
the IRSGLS estimation of (9).  Consequently, 
(19) and (20) have the same conditional 
distribution given ˆ   ACS ACS

it itY y=  and yield the 
same estimate of itY  when they are evaluated at 
the IRSGLS estimates of π ’s and ζ ’s in (9).  

They both are close to ˆCPS
itY  if 0ˆ CPS

itα  is close to 0 
w.p. 1.  Thus, (20) resolves the difficult problem 
of choosing between the two discrepant 
estimates of itY  given by the CPS and the ACS.    

The previous studies found that for the year 
2000, the amount of bias in ˆ ACS

itY  exceeds that in 

ˆCPS
itY  for a majority of states. Consequently, 
ˆ ACS
itY  without the improvements considered in 

Section 2.3 is not preferable to ˆCPS
itY .  Now we 

need to compare (20) with ˆCPS
itY . The conditional 

distributions of (20) and ˆCPS
itY  given 

ˆ   ACS ACS
it itY y=  across i for fixed t are called the 

conditional cross-sectional distributions.    
Suppose that IACS

itF , IACS
itµ , and IACS

itω  (= (21)) 
denote the conditional cross-sectional 
distribution function of (20), its mean and 
variance, respectively.  Let itF , itµ , and itω  
denote the conditional cross-sectional 
distribution function of ˆCPS

itY ,  its mean and 
variance, respectively.  Under (5), itµ   = 

00
CPSπ +  01 (1/ )CPS ACS

ityπ  +  itY  and itω  = 
var( 0

CPS
itζ ) if itY  is fixed. Unlike itω , the CPS 

design variance of ˆCPS
itY  does not take into 

account the variation in ˆCPS
itY  across i and hence 

is not equal to itω .   

We say that (20) is better than ˆCPS
itY  if         

( )  ( )IACS IACS IACS IACS
it it it it it itF y F yµ µ+ − − + ≥  

( )  ( )it it it it it itF y F yµ µ+ − − +                          (22) 
for each ity . A necessary condition for (22) to 
hold is that IACS

it itω ω≤ (see Rao (1973, p. 96)).  
It is satisfied for fixed itY  if (21) ≤  var( 0

CPS
itζ ).  

The difficulty here is that the population values 
of IACS

itω  and itω  are always unknown and the 
condition, IACS

it itω ω≤ , may not be false when 
the sample estimates of IACS

itω  and itω  violate it.  
Furthermore, to verify the condition, 

IACS
it itω ω≤ , if we use the same data that we 

have used to estimate the unknown quantities of 
(9), then we will be judging the validity of our 
estimated model (9) by the data from which we 
have derived it (see Friedman and Schwartz 
(1991, pp. 46-48))! This is not the right thing to 
do.  Therefore, the practical verification of the 
condition, 01

 0n CPS
iti

α
=

=∑ , given below (13) 
gives more useful information about the relative 
accuracies of the estimates given by (20) and 
ˆCPS
itY  than that of the inequality, IACS

it itω ω≤ .  
A necessary condition for (20) to 

stochastically dominate ˆCPS
itY  is that IACS

itω  + 



 

2(  -  )IACS
it itYµ  ≤  itω  + 2(  -  )it itYµ  (see Rao 

(1973, p. 315, (5a.1.2)) and Lehmann and 
Casella (1998, p. 400, Problem 4.14)).  It is 
possible that 2(  -  )IACS

it itYµ  ≤  2(  -  )it itYµ  
because (20) is equal to (19), which is corrected 
for bias.  

Changing the set of regressors in (5) and (6) 
changes the values of IACS

itµ , itµ , IACS
itω , and 

itω .  One way of limiting the effects of 
misspecifications in (5) and (6) is to restrict 
attention to those regressors, which when 
included in (5) and (6), yield close 
approximations to design consistent estimates. 
This can be accomplished by using in (5) and (6) 
those regressors that make (20) lie between ˆCPS

itY  

- 2se( ˆCPS
itY ) and ˆCPS

itY  + 2se( ˆCPS
itY ), since the 

estimator, 
1

ˆn CPS
iti

Y
=∑ , is design consistent.          

3. Example 
Let itY  denote the annual average 

unemployment for t = 2000 and let i index the 50 
states and the District of Columbia.  Following 
the IRSGLS method and using the CPS and ACS 
estimates, ( ,  )CPS ACS

it ity y , of 51 itY ’s given in 
columns (B) and (D) of Table 1, we obtain the 
following estimates for model (9):   

CPS ACS
it itACS

it

1y  = -0.064101 + 0.76659 y
y(0.12511) (0.03034)

⎛ ⎞
⎜ ⎟
⎝ ⎠

  

             0 1
ˆ ˆ2151.8

(4199.8)
CPS ACS ACS
it it ityζ ζ− + +             (23) 

where the figures appearing in parentheses below 
the coefficient estimates are asymptotic (large 
sample) standard errors and 00

CPSπ  = 0. The 
realized value of the design coefficients of 
variation (CV) of CPS estimates are given in 
column (C) of Table 1.  

The estimate of the coefficient on (1/ )ACS
ity  in 

equation (23), although has the right sign, is 
insignificant.  This shows that the estimate of the 
bias, CPS

itEε , of the CPS estimate, CPS
ity , based 

on (17) is insignificant.  The estimated values of 
CPS
itEε  lie between -5.8E-06 and -6.5E-08 and 

those of ACS
itEε  lie between 4714.6 and 

232926.6; for the formula used to estimate 
ACS
itEε , see Section 2.4.  Thus, under (5) and (6), 

the estimated absolute biases of ˆ ACS
itY  are much 

larger than those of CPS
itŶ , which are close to 

zero.      
In (23), 37760−  ≤  0

ˆCPS
itζ  ≤  34198  and 

-0.15115  ≤  1̂
ACS
itζ  ≤  0.16419 .  When (5) and 

(6) are evaluated at the estimates in (23), we 
obtain 37760−  ≤  0ˆ CPS

itα ≤  34198  and 0.55068  
≤  ACS

1itα̂  ≤  0.90853 .  All the estimates of ACS
1itα  

have the right sign.  Inserting the estimates of 
0
CPS
itα  and 1

ACS
itα  into (10) and (11) gives 37760−  

≤  ˆCPS
itε  ≤  34198  and 4933.534  ≤  ˆ ACS

itε  ≤  
139309.2 .  The estimate of the error, 

0ˆ ˆCPS CPS
it itε α= , of the CPS estimate, CPS

ity , is 
different from that of CPS

itEε  because the 
IRSGLS estimate of 0

CPS
itζ  is large.  Also, 

ˆACS
itε >  ˆ CPS

itε  for 45 states.  For Hawaii and 

North Carolina,  ˆACS
itε  is more than 170 and 269 

times ˆCPS
itε , respectively.  Also, for some states, 

such as DE, KS, MT, RI, VT, and WY, CPS
itε̂  

appears to be large in absolute value even though 
the CPS and ACS estimates are very close to 
each other.  However, such large values do not 
arise when the Blacks/Population and 
Hispanics/Population ratios for state i are 
included in (5) and (6) as additional regressors 
(see column (I) of Table 1). 

The formulas (20) and (21) were used to 
obtain the estimates, IACS1, in column (E) and 
their standard errors in column (F) of Table 1, 
respectively.  For each state, the IACS1 estimate 
is equal to the bias- and error-corrected CPS 
estimate, as shown in Section 2.4, but is smaller 
than the ACS estimate, ACS

ity .  The latter result is 
obtained because the ACS data classified far 
more people as unemployed than the CPS data 
did for 2000.   

All these results arise as a direct consequence 
of (5) and (6).  Including in (5) and (6) the 
Blacks/Population and Hispanics/Population 
ratios for state i as additional regressors 
generally brings the estimates based on  

0
ˆ ˆ -  CPS CPS
it itY α  much closer to CPS

ity  by reducing 
substantially the fluctuating component of 0ˆ CPS

itα  

without substantially increasing the bias of ˆCPS
itY  

(see columns (E), (G), and (I) of Table 1). 
The estimate of - 51 CPS

0iti=1
α̂∑  given at the 

bottom of column (E) of Table 1 is -5 showing 



 

that the sum, ( )51 CPS CPS
it 0iti=1

ˆy  - α∑ , of the state 
BECCPS estimates based on (19) is equal to the 
sum, 51 CPS

iti=1
y∑ , of the state CPS estimates.   

This means that under (5) and (6), both the 
IACS1 and the BECCPS estimates of itY ’s 
cohere with the national CPS estimate (of 

51
iti=1

Y∑ ), which is regarded as the BLS 
standard.  This coherency property, however, 
does not exactly hold if the ratios of blacks and 
Hispanics to the total population in state i are 
included in (5) and (6) as additional regressors 
(see columns (G) and (I) of Table 1).   

The CV of IACS1 estimates in column (F) of 
Table 1 are very high for many states.  However, 
they get reduced for all states except DC if the 
proportion of state i’s population who were black 
is included in (5) and (6) as a third regressor (see 
column (H) of Table 1).  The range of the CV of 
IACS1 or IACS2 estimates is reduced when the 
proportion of state i’s population who were 
Hispanic is included in (5) and (6) as a fourth 
regressor (see column (J) of Table 1).  For each 
state, the CV in columns (F), (H), and (J) are 
larger than the CV in column (C).  This result 
should not be regarded as a demonstration that 
the CPS estimates are more accurate than the 
IACS3 estimates because the CV of the CPS 
estimates ignore the variability of CPS

itŶ  across i 
and those of IACS3 take into account the 
variability of the cross-sectional estimates of 
coefficients and error terms in (23). The IACS3 
estimates can be more accurate than the other 
estimates presented in Table 1 because for all 
states except one, they reside between the lower 
and upper 95% confidence limits of the 
corresponding CPS estimate.      

4. Conclusions 
Even with estimators that are unbiased in 

probability sampling, nonresponse and 
measurement errors may produce biases in the 
estimates that we are able to compute from the 
data.  Therefore, it is important that appropriate 
adjustments for bias are made in the estimators 
and, in addition, measures are taken to control 

the presence of various sources of nonsampling 
errors in the surveys.  If these adjustments and 
measures are inaccurate, then the estimates that 
we are able to compute from the data may still be 
biased and may contain nonsampling errors 
besides sampling errors.  This paper develops 
good methods of removing these biases and 
errors.  The method can be used to remove the 
differences between any pair of discrepant 
national and sub-national employment or 
unemployment estimates.  The method’s 
practical behavior is demonstrated on a real 
dataset.     
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Table 1: Direct and Improved Estimates of Unemployment for the 50 States and the D.C. During 2000  
StAbbr          CPS       se(CPS)%       ACS         IACS1    se(IACS1)%    IACS2   se(IACS2)%      IACS3  se(IACS3)%  
                                        CPS                                              IACS1                          IACS2                          IACS3    
(A)      (B)    (C)     (D)     (E)    (F)     (G)    (H)     (I)    (J)  
AL      96978   8.10  134383  103061  19.08   97635  11.67   96229  13.09 
AK      21373   6.76   24674   16059  31.48   17295  18.77   21871  11.29 
AZ      98085   7.98  150382  114869  19.15  111060   9.77  107889  13.70 



 

AR      55278   8.13   80232   61855  19.26   59559  10.79   56548  12.58 
CA     835331   3.10  988710  849401  17.23  839316   8.59  843676  12.17 
CO      65042   9.46   94290   73814  18.82   72539   9.47   71309  12.22 
CT      40064  12.27   74750   63682  17.51   57199   9.96   46463  14.23 
DE      16428   8.68   16947   10274  43.73   10604  32.75   15578  14.05 
DC      17653   7.26   22875   15065  32.57   13070  41.56   16549  25.15 
FL     280793   4.50  396620  269741  21.64  279558  10.19  286078  12.49 
GA     155576   7.56  193889  158667  17.89  148949  11.23  153768  12.08 
HI      25267   8.99   35702   25205  24.39   26479  13.30   28458  11.76 
ID      31969   7.31   37291   25082  25.22   27459  12.95   33259  10.53 
IL     280926   4.65  347670  291055  17.56  280375   8.92  282583  10.86 
IN      99817   9.05  123002   86517  20.82   95087   9.26   99634  10.85 
IA      41326  10.21   63321   48732  19.69   48883  10.02   44555  12.78 
KS      51761   8.83   48841   29737  25.92   35227  11.84   48875   8.96 
KY      81043   8.35  109211   81980  19.55   83431   9.43   81721  11.83 
LA     110592   7.26  146198  109751  19.49  106226  12.90  108616  13.47 
ME      23772   9.54   27220   17853  29.59   19466  16.62   23679  11.09 
MD     106682   8.67  139970  104481  19.60  102609  11.97  105612  12.68 
MA      87701   7.45  113099   82078  20.21   87170   9.33   89387  11.18 
MI     182848   5.55  263720  169488  22.82  185245  10.21  184208  12.58 
MN      90958   8.89   95724   56761  24.84   74155   9.41   88462   9.69 
MS      74423   7.25   99271   73591  19.84   69673  15.14   72102  14.72 
MO     101860   8.85  136955  103334  19.39  103627   9.49  102270  11.76 
MT      23648   7.48   23631   14845  33.47   16473  19.18   22366  10.60 
NE      28120   9.43   29627   19141  28.80   20975  16.09   27625  10.30 
NV      42457   7.86   60214   44682  20.55   45513  10.52   48483  11.93 
NH      19183  10.77   21918   14043  34.40   15263  20.59   19473  11.58 
NJ     159974   5.46  220139  155354  20.76  161976   9.75  163761  11.91 
NM      42331   7.52   63475   48445  19.85   48945  10.03   54963  14.42 
NY     418855   3.55  507074  431383  17.33  420638   8.71  420826  10.77 
NC     149668   6.48  198593  149485  19.45  148484  10.35  149459  11.97 
ND      10520   9.61   14495    8826  49.42    9501  32.46   12475  14.60 
OH     232986   5.15  279842  248530  16.52  230668   8.62  231245  10.70 
OK      50532   9.51   96741   87892  16.20   73528   9.56   56527  15.05 
OR      88361   7.66  112952   81358  20.36   87991   9.35   90663  11.24 
PA     251237   4.79  316102  258742  17.95  250625   8.96  250817  11.14 
RI      22249   8.71   23709   15114  32.91   16394  19.81   22670  10.93 
SC      75102   8.90   98133   71562  20.18   70365  13.12   73496  13.08 
SD       9447  10.48   13000    7689  55.87    8308  37.14   11480  15.36 
TN     110409   8.46  164329  118360  20.31  118070  10.26  111752  12.98 
TX     440736   4.14  572323  442125  19.10  440248   9.29  450006  13.15 
UT      37152   8.80   66133   54103  18.44   51719   9.81   43610  13.79 
VT       9695  10.49   10980    6046  69.85    6641  46.65   10523  16.05 
VA      79094  10.49  150989  116853  18.90  101365  11.43   83787  16.07 
WA     159026   7.78  161811  133407  17.74  139153   8.39  156877   9.25 
WV      44562   7.12   51111   34347  23.28   38074  11.10   43615  10.55 
WI     105419   8.67  123719   83455  21.71   96977   9.13  104644  10.47 
WY      10360   8.39   11909    6742  63.10    7384  41.85   11857  14.99 
Total 5694669        7357896 5694664        5677173        5782378        
                     1663227      -5         -17496          87709        
Note: se = standard error.  The IACS1-3 are the improved ACS estimates obtained from equation (3).  The 
IACS1 were obtained by subjecting the coefficients of (3) to equations (5) and (6), respectively.  The IACS2 
were obtained by subjecting the coefficients of (3) to (5) and (6) with Blacks/Population as an additional 
regressor, respectively.  The IACS3 were obtained by subjecting the coefficients of (3) to (5) and (6) with 
Blacks/Population and Hispanics/Population as additional regressors, respectively. The figures appearing below 
the totals are the differences between the totals and the CPS total.   


