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1.  Introduction 
Some of the most closely-watched U.S. 

economic statistics are monthly industry employment 
from the Bureau of Labor Statistics (BLS) survey of 
business establishments.  This article uses the method 
developed by Pfeffermann (1994) to obtain a 
variance measure for monthly seasonally adjusted 
change, typically the focus of interest for 
employment and other key economic indicators.  The 
method applies to seasonal adjustment with X-11 and 
its extensions (Ladiray & Quenneville, 2000), used at 
BLS for most of its series.  This application is geared 
to an index-style estimator, and appears to be 
applicable in common index number settings.  
Consideration of sampling error is an important part 
of the proposed method. 

Due to the large sample size of the survey and 
the high correlation between establishment 
employment in adjacent months, our results show 
that the variance measure can identify very small 
changes as significant.  Indeed, application of the 
measure finds significant employment declines for 
Manufacturing Durable Goods (MFGD) in 9 of 12 
months during 2003. 
 The next section presents our  methodology.  
Section 3 presents results for MFGD and four other 
major industries, and the final section provides a 
summary. 
 
2.  Description of proposed method 
 
2.1  Pfeffermann’s method 
 Let Ntyt ,...,, 1= , denote the survey estimates 
of a time series, assumed to have an additive 
decomposition of the form 
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where Y L S It t t t= + +( )  is the population value,   

tL  the trend level, tS  the seasonal effect, It  the 
irregular component, and εt t ty Y= −( )  the sampling 
error.  The seasonally adjusted estimator is 
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The form of the sampling error autocovariances is 
typically a function of the survey design. 
 The basic measure of interest is the variance of 
the error in estimating a seasonally adjusted value, 
for which Pfeffermann (1994) develops the following 
approximation: 
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where the subscript c  signifies the joint distribution 
of the combined error terms { }te  and the weights tkw~  

define the linear approximation to $St .  When X-11 is 
applied with ARIMA extrapolation, the weights are 
also a function of the ARIMA model parameters. 
 The use of (2) requires estimation of the vectors 
λ  and V  of autocovariances of the sampling error 
and the combined error.  Let tR  be the X-11 residual, 
that is, X-11’s estimate of the irregular component, 
and write its linear approximation as 
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where ttt SLM += .  The first term on the right hand 
side is ordinarily close to zero for all t , assuming 
that the X-11 estimators of tM  are unbiased (cf. 
Pfeffermann (1994) and Pfeffermann & Scott, 1997).  
With this assumption, the approximation 
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 holds throughout the span of the 
series.  Notice, however, that the X-11 residual series 
is nonstationary because of the use of asymmetric, 
time-dependent weights near the ends of the series.  
Taking autocovariances in (3), we obtain an 
expression for ),( mtttm RRCovU +=  in terms of the 

kV ’s.  Estimating tmU  by mtt RR +  and averaging over 
t  leads to a linear system for estimating V  of the 
form 

)ˆˆ(ˆˆ νλ +== DVDU . 

When sampling error autocovariance estimates λ̂  are 
available externally, we solve the system  
                      νλ ˆˆˆ DDU =−                             (4)  
for ν̂ .  See Pfeffermann & Scott (1997) for more 
details.  The true irregular component usually follows 



 

a low-order MA(q) model (and is possibly white 
noise), implying that (4) is a low-order system. 
 
2.2  Variance measures for employment 
 Industry employment statistics come from BLS’s 
Current Employment Statistics (CES) program, a 
monthly survey of over 300,000 establishments.  As 
described in Morisi (2003), in recent years this large 
survey has become a probability survey with industry 
coding switched to the North American Industrial 
Classification System (NAICS).  With these changes 
in place, variance and covariance estimates for the 
unadjusted series are computed monthly using the 
balanced repeated replication (BRR) method.  The 
survey has the further advantage of having an annual 
population figure from an external source, the 
Unemployment Insurance program.  Quarterly 
business tax forms collected in this program include 
monthly employment data which are assembled first 
at the state and then the national level.  With a 10-
month lag, these benchmark population values 
become available and are incorporated into 
estimation.  An employment estimate ty  comes from 
a “link-relative” estimator, 

tt rrrYy L210 ⋅⋅= .                     (5) 

0Y  is the latest available benchmark, subsequent 
subscripts denote number of months away from the 
benchmark, and  
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is the ratio of weighted employment in months j  and 

1−j , with ijy  representing the employment of 

establishment i  in month j  and jM  the set of units 
reporting in both months. 
 
Remarks. 
1.  As already suggested, this estimator capitalizes on 
the high correlation between an establishment’s 
employment in adjacent months. 
2.  The estimator is in fact a separate ratio estimator.  
For an industry aggregate of subindustries h  
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An analysis of variance for these separate ratios over 
a three-year period shows strong effects of month and 
a limited effect of subindustry.  In this case, separate 
and combined ratio estimators are fairly close, a 
justification for treating the estimator more simply as 
a combined ratio estimator. 

3.  Current month estimates are 10 to 21 months 
away from the most recent benchmark.  For example, 
for Dec 2003, the last available benchmark is Mar 
2002, 21 months away; a month later, Jan 2003 data 
are derived using the Mar 2003 benchmark, 10 
months away. 
4.  Each month the estimator in (5) is multiplied by 
another ratio, so we can expect the variance of 
employment level to increase, an instance of 
nonstationary sampling error. 
 
 Traditionally, all CES national employment series 
have been seasonally adjusted multiplicatively.  This 
leads us to consider monthly change on the log scale. 
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This simple form looks promising for deriving a 
sampling error model.  We may write 
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to express monthly change in terms of a signal part 
and a sampling error part.  If we can find an ARIMA 
model for the logarithm of the series with at least one 
regular difference, then we will have an ARIMA 
model for use in applying X-11 with extrapolation to 

).log()( tyB−1   In the next section, we examine 
properties of the sampling error, and adopt a simple 
but reasonable model for use in computing our 
variance measure.  Summarizing, our variance for 
seasonally adjusted change comes from applying the 
basic method to the series )log( tr . 
 Can we derive a variance measure for 
employment levels, given its nonstationary sampling 
error?  From the basic form of the estimator, 
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we can write decompositions for the two components 
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We are assuming white noise (WN) processes for 
each irregular component and for the sampling error 
component of each )log( jr .  Then, the combined 

error je  for )log( jy  has variances and 
autocovariances 
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Inserting these formulas into a covariance equation 
and averaging across time, in place of (4) we obtain 
the linear system 

νλ 21 DDU =− . 

Using estimates Û  and λ̂ , we can solve for 
)()( ˆˆˆ rY ηην += . 

Following Pfeffermann (1994), we use properties of 
the lognormal distribution to obtain a variance 
measure on the original scale.  We may write this as 
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the variance of percentage error in estimating the 
seasonally adjusted employment level. 
 
Remarks. 
1.  The above formulation assumes that the 
nonstationary contribution to error comes from the 
sampling error only, but an alternative model that 
permits )( tiVar  to grow linearly in time like the 
sampling error can also be accommodated. 
2.  At the end of the series, it will be appropriate to 
compute variance measures for the last 10 to 21 
points, depending on the time of the last benchmark.  
March benchmark employment figures have no 
sampling error, so the method doesn’t apply. 

 
3.  Results 
 Using data for 1994-2003, we analyze 
employment change for five NAICS supersectors:  
Construction, Manufacturing Durable Goods, 
Manufacturing Nondurable Goods, Wholesale Trade, 
and Mining.  The timing for beginning data collection 
under NAICS varies according to industry, with the 
earliest switch coming in 2000 for Wholesale Trade.  
Early portions of the series are reconstructions.  All 
results are for the change measure; we haven’t yet 
tested the measure related to employment level. 
 
3.1  Manufacturing, Durable Goods 
 Figure 1 contains the observed series for 
Manufacturing, Durable Goods (MFGD).  A leveling 
off in the late 90’s is followed by a steep decline 
during the 2001 recession.  After accounting for three 
additive outliers (AO’s) and a calendar effect of 
varying intervals between reference weeks, we find 
that a (111) (011) ARIMA model fits log(MFGD).  
To apply the method developed in Sec. 2, we modify 
the series for these regression effects, compute log 
ratios, and apply X-11 seasonal adjustment with 
ARIMA extrapolation.  Figure 2 shows the observed 
and seasonally adjusted log ratio series.  Employment  

Fig. 1.  Manufacturing, Durable Goods, 1994-2003
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Fig. 2.  MFGD Log Ratio Observed (dashed) & 
 Seasonally Adjusted (solid) Series, 1995-2003
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Fig. 3.  Plot of MFGD Abs Log Ratios 
 vs. Sampling Error Standard Deviations
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Fig. 4.  MFGD Lag 1 Autocorrelations, 5/01-12/03
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Fig. 5.  MFGD Standard Deviations for Error in Seasonal Adjustment, 12 runs
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Table 1.  Mean Estimates from νλ DDU =−  for MFGD 

 
 U  λ  ν  
   q=0 q=1 q=2 q=3 

Lag       
0 80.5 76.0 82.0 117.7 100.5 97.1 
1 -12.4 0 0 52.8 37.2 34.1 
2 -35.5 0 0 0 -16.0 -18.4 
3 -7.1 0 0 0 0 -2.1 

 
 
declines correspond to negative log ratios, which are 
lowest during the official recession period, 3/01-
11/01.  We see that the log ratios are highly seasonal, 
as we could expect from the ARIMA model. 
 As mentioned in Sec. 2.2, sampling error standard 
deviations and autocorrelations are computed each 
month using the BRR method.  Figure 3 is a 
scatterplot of absolute log ratios and the sampling 
error standard deviations from Apr 2001 to Dec 2003.  
The largest two standard deviations occur for large 
log ratios, but, otherwise, there is very little pattern.  
This leads us to assume a constant variance for the 
sampling error.  Figure 4 shows estimated lag 1 
sampling error autocorrelations for May 2001 – Dec 
2003.  The preponderance are negative, but there is 
considerable variability, with values ranging from  
-0.52 to +.34 (cf. Table 5).  Lag 12 autocorrelations 
are mostly positive, but again highly variable, 
ranging from -.32 to +.41.  Means are -.09 and +.10, 
respectively.  Autocorrelations for other lags are also 
variable, with means close to 0 (-.03 for lag 2).  We 
adopt a white noise model, given the modest 
magnitudes and large variability in autocorrelations.  

In further testing, we plan to try an MA model with 
nonzero coefficients for lag 1 and/or lag 12. 
 To test our variance measures, we make 
“concurrent” runs for 2003 to mimic a production 
setting.  Based on seasonal adjustment specifications 
derived from the 1994-2002 span, we carry out 12 
runs on 9-year spans ending in successive months of 
2003, and apply the method to the results of each run.  
As described in Section 2, based on estimates kÛ  

computed from the X-11 irregulars and )(̂ rλ  of the 
sampling error variance (assumed constant), 
autocovariances kν  are estimated for different 
MA(q) models for the irregular component, q=0 to 3.  
Table 1 shows mean estimates from the 12 runs for 
the error autocovariances.  We select q=2.  There is 
good agreement between the estimates for q=2 and 
q=3.  Subsequent autocovariances kU  are predicted 
well with q=2.  (See Pfeffermann, 1994, for use of 
this diagnostic for determining the order of the MA 
model for the irregular component.) 



 

Table 2.  Confidence Limits for MFGD Log Ratio, 12 Runs 
 

Month 1 2 3 4 5 6 7 8 9 10 11 12 
             

upper limit -29 -42 -31 -52 -25 -25 -49 -3 -7 6 23 13 
lower limit -61 -74 -64 -85 -58 -58 -82 -37 -41 -27 -10 -20 

change? Y Y Y Y Y Y Y Y Y N N N 

 
Table 3.  Month-month % Change in Seasonally Adjusted MFGD 

 
Jan    Feb     Mar    Apr   May    Jun     Jul     Aug    Sep    Oct   Nov    Dec 
-0.51  -0.60  -0.47  -0.65  -0.38  -0.37  -0.58  -0.17  -0.18  -0.10  0.04  -0.07 

 
 For all 12 runs, Figure 5 shows the SDA measure, 
the standard deviation for the error in estimating the 
seasonally adjusted log ratio.  To facilitate analysis, 
each graph is plotted with respect to its position in 
the time span, 1 to 108, rather than date.  (Recall each 
run is for a 9-year span).  So, for the first run, time 
point 108 corresponds to Jan 03; for the last run, it 
corresponds to Dec 03.  Overall, the shapes are 
similar to shapes in previous studies:  symmetric for 
additive adjustments with constant sampling error 
variances, relatively flat in the middle, a major dip 
during the end years, with an increase toward the 
very end.  In the middle years, there is a 2% range in 
values across the runs, due to variability in estimating 
the kU ’s.  In the end years, estimates vary by 2½-
3%, with extra variability coming from changing 
estimates of the model parameters used for 
extrapolation. 
 The horizontal line is the constant sampling error 
standard deviation, which represents the standard 
deviation of the unadjusted estimate.  Our SDA 
measure is on average 1½% lower in the middle of 
the series and about 5½% lower during the end years. 
At the very end of the series, it actually exceeds the 
standard deviation of the unadjusted series by ½%.  
This contrasts with earlier studies where the variance 
for error in estimating the seasonally adjusted series 
with ARIMA extrapolation usually has been lower 
throughout.  This is due to the presence of a large 
time series irregular.  Going back to Table 1, we find 
that the variance of the MA(2) model for the irregular 
is 100.5, about one-third higher than the sampling 
error variance. 
 Next we apply our SDA estimates to test for 
significant change, which is of interest to analysts.  
For each span we form a 95% confidence interval for 
the true change at the last time point, namely 

SDAaa NN ⋅±− − 21)ˆˆ(  
Table 2 shows the confidence limits from the 12 runs.  
(Here, Nâ  represents the seasonally adjusted log ratio 

at the last time point N , and the log ratios have been 
multiplied by 104).  There are significant declines for 
the first 9 months, but change is not significant 
during the last 3.  Table 3 gives an extract from a 
single run on employment levels ending in Dec 03.  It 
shows month-to-month per cent change during 2003.  
These values range from over ½% to about 1/6% 
during the first 9 months, deemed significant by our 
measure.  Thus, the measure is very sensitive, since 
1/6% represents about 20,000 out of 9 million. 
 
3.2  Results across series 
 X-11 seasonal adjustment has been carried out for 
log employment for all five industries.  Table 4 
contains the selected models, along with regression 
effects.  All the models are relatively simple except 
for Wholesale Trade; the Ljung-Box goodness-of-fit 
statistic at lag 24 indicates adequate fits.  Summary 
X-11 Q statistics are all below 0.3, providing 
evidence that seasonality is present and that the 
seasonal adjustments are of good quality.  All the 
models contain a regular difference, so we do have 
ARIMA models for the log ratios as well. 
 Figure 6 contains scatterplots of absolute log 
ratios vs. sampling error standard deviations for the 
other four series, MFGN, CONS, MING, and 
WTRD.  Except for MFGN, each has 1 or 2 large log 
ratios for which the standard deviations are relatively 
large.  Otherwise, three of the four series have little, 
if any, discernible pattern.  Construction shows a 
limited positive relationship.  In this article, we 
assume constant sampling error standard deviations 
for all five series. 
 Table 5 contains summary statistics for )log( tr  
sampling error autocorrelations for all five series.  
These estimates are computed monthly using BRR 
from data Mar 01–Dec 03.  Average lag 1 
autocorrelations are negative in all cases, with the 
MING series value of -.15 the only value exceeding 
.10 in magnitude.  In all cases, the variability is 
considerable, ranging from -.61 to +.37 for MING.   



 

Table 4.  Seasonal Adjustment Results 
 Series  ARIMA 

Model 
Calendar 

effect 
AO LS or 

ramp 
Ljung-Box 

Q (p) 
X-11 

Q 
Manufacturing,         
 Durable Goods 
Manufacturing,  

MFGD  111,011 Y 3 0 18.2(.64) .22 

 Nondurable Goods MFGN  111,011 N 2 0 23.1(.34) .27 
Construction CONS  011,010 Y 6 2 22.8(.47) .20 
Mining MING  111,011 N 1 3 18.6(.61) .17 
Wholesale Trade WTRD  014,011 Y 1 1 25.7(.14) .18 

Note:  AO=Additive Outlier, LS=Level Shift, X-11 Q=alternative Q2 summary measure from X-12-ARIMA 
 

Figure 6.  Absolute Log Ratios vs. Sampling Error Standard Deviations 
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Table 5.  Summary Statistics for Sampling Error 
Autocorrelations from 3/01 – 12/03 Data 

 
Industry Lag Mean Min Max 

     
MFGD 1 -.09 -.52 .34 

 2 -.03 -.39 .47 
 12 .10 -.32 .41 

MFGN 1 -.08 -.51 .36 
 2 -.04 -.44 .31 
 12 .16 -.28 .53 

CONS 1 -.07 -.28 .32 
 2 -.07 -.41 .33 
 12 .04 -.14 .22 

MING 1 -.15 -.61 .37 
 2 -.02 -.33 .42 
 12 -.00 .43 .41 

WTRD 1 -.06 -.38 .39 
 2 -.04 -.46 .32 
 12 .06 -.24 .55 

 
Mean lag 2 autocorrelations are also negative, but 
very close to 0.  The largest mean magnitude is .07 
for Construction, where values range from -.41 to 
.33.  Lag 12 values are mostly positive, but again 
with much variability.  MFGN’s mean is .16, the only 
mean exceeding .10; its values range from -.28 to .53.  
Given that the autocorrelations are not very strong, 
we will not include any autocorrelations in our 
sampling error models.  Rather, we adopt simple 
white noise models.  This will facilitate application of 
the methodology for a variance measure for level.  In 
further work, we plan to test these series with MA 
sampling error models having nonzero coefficients at 
lag 1 or 12. 
 Turning to our main results, we compare the SDA 
measure to the standard deviation of the unadjusted 
series.  Table 6 shows average % reduction with SDA 
across the 12 concurrent runs in the center of the 
series and at the endpoints.  Also shown is the 



 

maximum % reduction, which always occurs during 
the dip in the end years.  As for MFGD, a large time 
series irregular is estimated for CONS.  The % 
reduction of the SDA is only 1.0% in the center, 
similar to the 1.5% value for MFGD.  However, 
unlike MFGD, CONS has a reduction at the 
endpoints, with magnitude 8.5%.  In fact, all the 
series except MFGD have greater reductions at the 
ends than in the center.  In an earlier simulation 
experiment of seasonal adjustment with ARIMA 
extrapolation, SDA exhibited this property. 
 MFGN has the largest reductions overall, 11.4% 
in the center and 24.1% at the endpoints.  While the 
ARIMA model is the same as for MFGD, either no 
irregular component or a very small one is identified 
in the 12 runs.  This occurs when (4) has no valid 
solution for q=0 to 3.  Again, no irregular is found for 
MING or WTRD.  Figure 7 shows the SDA measure 
and the unadjusted standard deviation for MING.  
Note the similar % reduction values in the center for 
the three series with little or no irregular.  The 
reduction is purely the smoothing effect of the X-11 
filter. 
 
Table 6.  Summary Statistics across 12 Runs for  

% Reduction from the Standard Deviation for the 
Unadjusted Series Achieved with the SDA Measure 

 
Industry  Center   Ends  Max 

     
MFGD   1.5% -0.4%  5.9% 
MFGN  11.4 24.1 32.8 
CONS   1.0  8.5 11.1 
MING  11.4 13.6 16.8 
WTRD  11.3 16.6 27.6 

 
3.3  Estimating the X-11 irregular autocovariances 
 One of the two major steps in the method is 
solving the linear system νλ ˆˆˆ DDU =− .  An 

issue arises in the computation of Û , the 
autocovariances of the X-11 irregular.  In principle, 
one would wish to avoid using extreme irregulars, 
which could unduly affect the estimates.  On the 
other hand, X-11’s default identification of extreme 
irregulars eliminates too many values, which tends to 
cause severe underestimation of Û .  For these series, 
X-11’s identification has been suppressed, but a 
separate test for outliers identifies two additive 
outliers for MFGD, which have been removed in 
computing the results reported above.  Additional 
work is needed on the identification of extremes or 
other techniques for stabilizing estimation of Û .  
One alternative is to use a frequency domain 
approach proposed by Chen (2004).  In addition, the 

estimation of a large time series irregular for MFGD 
and CONS and little or no irregular for the other 
series suggests further study of the sampling error 
variances. 
 
4.  Summary 
 Given an index number type of estimator for 
industry employment, a straightforward application 
of the Pfeffermann method provides a variance 
measure for seasonally adjusted month-to-month 
change.  This variance estimate is quite sensitive in 
assessing significance of change for large industries 
such as Manufacturing, Durable Goods.  A variance 
measure for employment levels has also been 
proposed.  These measures may be applicable in 
many index series settings. 
 Future work includes 
   (1)  testing the proposed method for employment 
levels, 
   (2)  testing both change and level measures by 
simulation experiments, 
and 
   (3)  testing other sampling error models and 
different methods for estimating X-11 irregular 
autocovariances for the five  industries studied here. 
 BLS is considering implementing these variance 
measures for both industry employment and labor 
force statistics.  We are presently streamlining 
computer programs and and planning to supply BLS 
analysts with these measures on a trial basis. 
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Fig. 7.  MING Standard Deviations for Error in Seasonal Adjustment, 12 runs

Time

0 20 40 60 80 100

36
38

40
42

44

 


