
Techniques for Accessible HTML Tables

Stephen Ferg
U.S. Bureau of Labor Statistics
2 Massachusetts Avenue, NE

Washington, DC 20212
Major revision: 2002-08-23 — Minor revision: 2004-04-24

1

Table of Contents

 1 Introduction
 1.1 Abstract
 1.2 About the Author
 1.3 Acknowledgements
 1.4 Disclaimer

 2 Some Background on Section 508 and Accessibility
 2.1 Introduction

 3 Some Basic Table Concepts
 3.1 Some Definitions
 3.2 Examples of Regular Tables
 3.3 Examples of Irregular Tables

 4 HTML Table Features
 4.1 Rows, Columns, and Positions
 4.2 Cells and Cell Types
 4.3 Cell Coverage
 4.4 AXIS

 4.4.1 AXIS is about possible future technologies
 4.4.2 AXIS is about filtering
 4.4.3 AXIS is not about associating data and header cells
 4.4.4 What does AXIS have to do with accessibility?
 4.4.5 Is there any use for AXIS today?
 4.4.6 How To Use AXIS To Make a Data Cell Act Like a Header Cell

 4.5 A final note
 5 Visible Formatting

 5.1 Nested Headers
 5.2 Indented Headers using "&NBSP;"
 5.3 Indented Headers using Cell Control

 5.3.1 Indented tables that use ROWSPAN
 5.3.2 Indented tables that use COLSPAN
 5.3.3 Indented tables that don't use ROWSPAN or COLSPAN
 5.3.4 Indented tables that don't use " "
 5.3.5 Problems with this technique

 5.4 Indented Headers using CSS Margin Control

2

 6 Accessible Formatting
 6.1 The HEADERS Algorithm — using the HEADERS and ID Attributes
 6.2 The SCOPE Algorithm
 6.2.1 Colgroups
 6.2.2 Rowgroups
 6.2.3 An Important Limitation of Colgroups and Rowgroups
 6.2.4 Scope
 6.2.5 Confusion About the Scope Attribute
 6.2.6 SCOPE Example in the HTML language specification
 6.2.7 SCOPE Example on the Access Board Web Site
 6.3 The BASIC algorithm
 7 Conclusion and Recommendations
 8 Some Visual Formatting Issues
 8.1 Fonts
 8.2 Horizontal Cell Alignment
 8.3 Vertical Cell Alignment
 8.4 Dot Leaders
 8.5 Footnotes
 8.6 Rules

3

1 Introduction

1.1 Abstract

This paper discusses techniques for formatting complex tables of statistical data in HTML so that
they are accessible to visually impaired users and compliant with the provisions of Section 508.
The purpose of the paper is to assist HTML developers, and vendors of screen-reader products,
to understand what constitutes "coding to the standard" for accessible HTML tables.

1.2 About the Author

Stephen Ferg is a computer systems analyst in the Division of Data Dissemination Systems
(LABSTAT) at the United States Bureau of Labor Statistics (BLS).

1.3 Acknowledgements

This paper was written with support and input from Michael Levi, the LABSTAT Division
Chief. I may have written all of the words, but the most basic ideas and the research direction
came from Michael. Jo-Ann Yu, a Web specialist in LABSTAT, provided valuable information
about how to use CSS stylesheets to control HTML indentation.

1.4 Disclaimer

This paper reflects the author's personal opinions and interpretation of the W3C HTML language
specification. The opinions and interpretations expressed in this paper are not in any way
endorsed by LABSTAT, by BLS or by the W3C.

4

2 Some Background on Section 508 and
Accessibility

2.1 Introduction

On August 7, 1998, President Clinton signed into law the Rehabilitation Act

Amendments of 1998 which covers access to federally funded programs and

services. The law strengthens section 508 of the Rehabilitation Act and requires

access to electronic and information technology provided by the Federal

government. The Federal Access Board is responsible for developing accessibility

standards for such technology for incorporation into regulations that govern

Federal procurement practices.

Section 508 requires that individuals with disabilities, who are members of the
public seeking information or services from a Federal agency, have access to and
use of information and data that is comparable to that provided to the public who
are not individuals with disabilities, unless an undue burden would be imposed on
the agency.

-- text adapted from text on the Access Board web site

Federal agencies that publish data on the Web, do so using HTML, the markup language that
underlies all Web pages. HTML Web pages can be made accessible to blind and vision-impaired
users by means of "screen reader" technology. A screen reader is a piece of software that reads
— that is, speaks — a description of a computer screen. There are a number of screen reader
products on the market, including JAWS, Window Eyes, and IBM Home Page Reader.

In order for screen readers to read Web pages effectively, the Web pages must be marked up in
HTML using conventions that support interpretation by screen readers. Such conventions
require, for example, that pictures embedded in Web pages be accompanied by an ALT attribute
that contains text describing the picture. Although a blind user cannot see the picture, a screen
reader can at least read the ALT attribute's description of the picture. HTML pages that are
marked up in a way that enables them to be read by a screen reader are said to be "accessible"
because they are accessible to vision impaired users.

Section 508 requires Federal agencies to make all of their HTML pages accessible to vision-
impaired users. This presents a problem for Federal agencies that publish tables of statistical data
on the Web. HTML provides only very limited support for tables, so sophisticated table design in
HTML is difficult even when the only concern is graphic presentation to sighted users.
Developing HTML markup that also supports useful interpretation by screen readers is doubly
difficult.

http://www.access-board.gov/sec508/508standards.htm
http://www.access-board.gov/
http://www.access-board.gov/

5

In this situation, in order to comply with Section 508 Federal agencies need specific and detailed
descriptions of techniques for creating 508-compliant statistical data tables in HTML.
Unfortunately, the guidelines that are currently available are woefully inadequate. This paper is
an attempt to address that problem.

This paper discusses techniques for formatting statistical data tables in HTML so that they are
accessible to visually impaired users and compliant with the provisions of Section 508. The
purpose of the paper is to assist HTML developers, and vendors of screen-reader products, to
understand what constitutes "coding to the standard" for accessible HTML tables.

The techniques discussed in this paper are derived — directly or indirectly — from the five basic
requirements-statements for 508-compliant HTML.

1. Section 508 itself. The full text of Section 508 is available at the Web site of the Access
Board.

For material related to Web publications, look for paragraph "1194.22 Web-based
intranet and Internet information and applications", near the bottom of the document.
Subparagraphs (g) and (h) are specifically about HTML tables.

The Accessibility Board has added a note to this paragraph, which refers to...

2. World Wide Web Consortium Web Content Accessibility Guidelines (usually referred to
as "W3C WCAG").

The guidelines contain checkpoints, and the checkpoints refer to ...

3. An HTML techniques document published by the W3C WCAG as a supplement to the
Guidelines.

4. The Access Board has published the official requirements that must be followed by
Federal agencies when producing 508-compliant Web pages.

5. The most important reference is the W3C's language specification for HTML 4.01,
especially the section on tables. Most of this paper is devoted to close reading and
interpretation of this HTML language specification.

Summary of Section 508 requirements for HTML data tables.

Section 508

Provision
WCAG Checkpoint

WCAG

Techniques

Access

Board

Provisions

(g) Row and
column

5.1 For example, in HTML, use TD
to identify data cells and TH to

5.1.1
Providing

HTML
tables

http://www.access-board.gov/sec508/508standards.htm
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/
http://www.w3.org/TR/WCAG10-HTML-TECHS/
http://www.access-board.gov/sec508/guide/1194.22.htm
http://www.w3.org/TR/1999/REC-html401-19991224/
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/#gl-table-markup
http://www.w3.org/TR/WCAG10-HTML-TECHS/#table-summary-info
http://www.w3.org/TR/WCAG10-HTML-TECHS/#table-summary-info
http://www.access-board.gov/sec508/guide/1194.22.htm#(g)
http://www.access-board.gov/sec508/guide/1194.22.htm#(g)

6

headers shall
be identified
for data
tables.

identify headers. summary
information

5.1.2
Identifying
rows and
column
information

(h) Markup
shall be used
to associate
data cells and
header cells
for data
tables that
have two or
more logical
levels of row
or column
headers.

5.2 For data tables that have two or
more logical levels of row or
column headers, use markup to
associate data cells and header cells.
[Priority 1] For example, in HTML,
use THEAD, TFOOT, and TBODY
to group rows, COL and
COLGROUP to group columns, and
the "axis", "scope", and "headers"
attributes, to describe more complex
relationships among data.

5.1.1
Providing
summary
information

5.1.2
Identifying
rows and
column
information

HTML
tables

It is important to recognize that accessibility has two different aspects. Only one of these aspects
is of concern to Federal agencies in their role of Web content providers.

1. The way that HTML is coded. This aspect is the one that content providers (i.e. Federal
agencies) must be concerned with.

2. The way that screen readers read (that is, speak) HTML code. This aspect is the one that
vendors of screen reader products must be concerned with.

In order for an end-user to experience a Web page as accessible, both aspects must be addressed:
the HTML code must be coded to some standard for accessible code, and the screen-reader must
conform to some standard for screen-reader behavior when processing accessible HTML code.
Since our concern here is statistical data tables, we propose the following statements for these
two standards only as they apply to HTML data tables.

1. We define an accessible HTML data table as an HTML data table coded in such a way
that all of the table's data cells (i.e. non-empty TD cells) can be mapped to their
associated header cells using the algorithms specified in section 11 — and especially
section 11.4 (Table rendering by non-visual user agents) — of the HTML language
specification.

2. We define a conforming screen-reader (with respect to the handling of HTML data
tables) as a screen reader that, when processing an accessible HTML data table, is

http://www.w3.org/TR/WCAG10-HTML-TECHS/#identifying-table-rows-columns
http://www.w3.org/TR/WCAG10-HTML-TECHS/#identifying-table-rows-columns
http://www.w3.org/TR/WCAG10-HTML-TECHS/#identifying-table-rows-columns
http://www.w3.org/TR/WCAG10-HTML-TECHS/#identifying-table-rows-columns
http://www.w3.org/TR/WCAG10-HTML-TECHS/#identifying-table-rows-columns
http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/#gl-table-markup
http://www.w3.org/TR/WCAG10-HTML-TECHS/#table-summary-info
http://www.w3.org/TR/WCAG10-HTML-TECHS/#table-summary-info
http://www.w3.org/TR/WCAG10-HTML-TECHS/#table-summary-info
http://www.w3.org/TR/WCAG10-HTML-TECHS/#table-summary-info
http://www.w3.org/TR/WCAG10-HTML-TECHS/#identifying-table-rows-columns
http://www.w3.org/TR/WCAG10-HTML-TECHS/#identifying-table-rows-columns
http://www.w3.org/TR/WCAG10-HTML-TECHS/#identifying-table-rows-columns
http://www.w3.org/TR/WCAG10-HTML-TECHS/#identifying-table-rows-columns
http://www.w3.org/TR/WCAG10-HTML-TECHS/#identifying-table-rows-columns
http://www.access-board.gov/sec508/guide/1194.22.htm#(g)
http://www.access-board.gov/sec508/guide/1194.22.htm#(g)

7

capable (1) of mapping each of the data cells in the table to all of its (the cell's) associated
header information, using the algorithms specified in the HTML language specification,
and (2) of speaking that header information.

As we discuss accessible HTML tables, it is important to remember that HTML tables have two
different aspects: the visible format, which is available to sighted users, and the accessible
format, which is available to non-sighted users. In this paper we will examine three techniqes for
visible formatting, and three for accessible formatting.

8

3 Some Basic Table Concepts

3.1 Some Definitions

We define a table as a presentation format for a set of data items and their associated metadata
such that:

1. Each data item is stored in a data cell
2. The data cells are arranged in a two-dimensional grid called the table body
3. The table has a title that indicates the nature of the data being presented

We define a regular table as a table in which:

1. The metadata information for the data items is presented (1) above the table body in a
table header, and (2) to the left of the table body in a table stub.

2. The metadata in the stub and in the table header is organized into one or more nested
levels. Multi-level metadata is is organized into a strict hierarchy (that is, a nested or tree
structure; an acyclic directed graph). A metadata hierarchy may be rendered as a tree
structure (as table header information usually is) or as an indented outline (as stub
information usually is).

3. For any given data cell, all of the cell's metadata are positioned directly above the cell in
the table header (as column headers) or directly to the left of it in the stub (as row

headers).
4. The table may contain additional metadata information in the stub header cell.
5. The table optionally has a set of footnotes. Note that footnotes (like the title) are

considered to be part of the table; not information that is external to the table.
6. Any cell of the table may contain zero, one or more footnote references (typically, as

superscripted numbers) that refer to footnotes.

Table Title
Stub

Header

Table

Header

Stub

Footnotes

We define an irregular table as a table that is not a regular table.

9

3.2 Examples of Regular Tables

Here are some examples of regular tables.

Example #1: Nested Stubs

Ruritanian

Population

Survey

All

Genders

By Gender

Males Females

All Regions
North 3333 1111 2222

South 3333 1111 2222

Example #2: Indented Stubs (ROWSPAN)

Ruritanian

Population

Survey

All

Genders

By Gender

Males Females

All Regions 13332 5555 7777

North 3333 1111 2222

South 9999 4444 5555

Example #3: Indented Stubs (CSS)

Ruritanian

Population

Survey

All

Genders

By Gender

Males Females

All Regions 13332 5555 7777

North 3333 1111 2222

South 9999 4444 5555

10

3.3 Examples of Irregular Tables

Here are some examples of irregular tables.

1. In this table, the hierarchical structure of the column headers is not top-down. The
heading "Gender", which spans two sub-categories of "Male" and "Female", is below
"Male" and "Female" rather than above them.

Example #4: Ruritanian Population Survey

Population
All

Genders

Males Females

By Gender

All Regions 13332 5555 7777

By

Region

North 3333 1111 2222

South 9999 4444 5555

2.
3. In this table, a header cell occurs below a cell containing data. This irregular table could

easily be split into two regular tables.

Example #5: Ruritanian Population Survey

Population by Region Males Females

North 1111 2222

South 4444 5555

Population by Age Below Age 21 Age 21 and older

North 3333 3333

South 9999 3333

11

In this table, the data cells for North and South span two columns and fall under two
column headers.

Example #6: Ruritanian Population Survey

Ruritanian

Population

Survey

Males Females

All Regions 5555 7777

North 3333

South 9999

5. The following table, which is taken from the W3C HTML specification, is irregular
because there are data cells whose header cells are not directly above, or directly to the
left, of the data cell. For example, the header cell containing "San Jose" is neither
immediately to the left of, nor immediately above, the first data cell (containing "37.74").

This table could be made into a regular indented table by indenting the rows for the dates
and subtotals under the rows for the cities.

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.2

12

4 HTML Table Features

Now we turn our attention to an examination of the HTML language, and the features that it
offers for creating accessible data tables.

The following discussion is based on the W3C's specification for HTML 4.01, and specifically
on Section 11, the section on tables. Within the section on tables, the most important part is 11.4
Table rendering by non-visual user agents. And within that part, the most important subsections
are 11.4.1 Associating header information with data cells and 11.4.3 Algorithm to find heading
information.

Before we begin, we should note that, in HTML tables, there is a difference between a position
and a cell, and between the position structure and the cell structure of a table. The distinction is
important for understanding how HTML tables work.

4.1 Rows, Columns, and Positions

The position structure of an HTML table is a grid of vertical columns and horizontal rows. The
intersections of the rows and columns define positions in the table. Each position is identified by
a pair of coordinates, e.g. as "row 4, column 2".

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

Note that in the HTML language specification, references to row and column refer to rows and
columns of positions, not of cells.

4.2 Cells and Cell Types

Visually, a table is divided into cells. The way that the table is divided into cells constitutes its
cell structure.

The position structure of the table — the two-dimensional grid of positions — provides the
default cell structure. That is: in the simplest case, each cell covers one position and the cell
structure and the position structure of the table are the same.

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.1
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.3
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.3

13

Cells are defined by TD (table data) and TH (table header) tags.

The original purpose of the distinction between TH and TD tags seems to have been to mark a
difference in the type of information in the cells so that the different types of cells could be
rendered differently.

Table cells may contain two types of information: header

information and data. This distinction enables user agents to

render header and data cells distinctly, even in the absence of

style sheets. For example, visual user agents may present header

cell text with a bold font. Speech synthesizers may render header

information with a distinct voice inflection.

The HTML specification never defines the terms "header information" and "data". Perhaps we
can say that what distinguishes header information from data is that a header can "stand by itself"
as a piece of information (the name of a category) but that data cannot stand by itself in the same
way — it requires some metadata contained in one or more header cells. Consider the number
4.5, for instance. It is a piece of data, to be sure. But we have no idea what it means until we can
associate it with some metadata. Is it the unemployment rate for Chicago in June, 1999? The
amount of raw titanium ore refined in Uganda in 1988, measured in units of one hundred
thousand tons? Russia's average annual gross national product between 1999 and 2001, measured
in units of a quadrillion rubles? A percent change in the Consumer Price Index for last month?
Without any metadata, we can't tell.

The essential nature of a data cell, then, is that it cannot stand alone. It must be associated with
metadata in one or more header cells to be meaningful. It follows that an essential adjunct of the
distinction between data cells and header cells is some notion of a link (connection, association)
between a data cell and the header cells that make it meaningful. It is not enough for HTML to
provide a way to distinguish data cells from header cells — it must also provide a way to
associate a data cell with its header cells.

In a visual browser, this is generally not a problem. When the header cells are enclosed in TH
tags and rendered in bold, a sighted user can easily make the connection. He simply looks
upward from the data cell to find the bolded cells above it, and he looks left from the data cell to
find the bolded cells to its left. Those are the header cells associated with the data cell.

A non-sighted user, on the other hand cannot do this. So in order to support non-sighted users
using screen readers, HTML must provide some method that a screen reader can use. We will
discuss those features in the section on associating data cells with header cells. But first, let's
finish our discussion of data and header cells by making a couple of points.

1. The W3C intended TH cells to be used to contain header information, and TD cells to be
used to contain data. For cells that need to act as both data and header cells, TD should be
used. along with either the HEADERS or SCOPE algorithm (which we will describe
shortly), or AXIS. The HTML language specification gives this example of a table where
the row headers are marked up using the TD tag.

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.6
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.6
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.1

14

Note the use of the scope attribute with the "row" value.

[For example, in <TD scope="row">The Glory that was

Greece</TD>] Although the first cell in each row contains

data, not header information, the scope attribute makes the

data cell behave like a row header cell. This allows speech

synthesizers to provide the relevant course name upon

request or to state it immediately before each cell's

content.

2. Note that TH cells were intended to convey header information regardless of whether that
header information applies to columns or rows of data. So there are both column header
cells and row header cells. In the following table, all of the shaded cells (all of the cells in
the top row, and the leftmost column) are natural candidates to be marked as TH cells.

1,1 1,2 1,3 1,4

2,1 2,2 2,3 2,4

3,1 3,2 3,3 3,4

4,1 4,2 4,3 4,4

4.3 Cell Coverage

The position structure of the table — the two-dimensional grid of positions — provides the
default cell structure. In the simplest case, each cell covers one position.

It is possible, however, to impose a different cell structure on the position structure through the
use of the COLSPAN and ROWSPAN attributes of the TD and TH elements. These attributes
cause a cell to cover multiple positions. In the following example, Cell A has attributes of
COLSPAN = "2" ROWSPAN = "2" that cause it to cover four positions — (1,1), (1,2), (2,1) and
(2,2). Cell B covers positions (1,3) and (1,4). And Cell C covers positions (3,1) and (4,1).

15

Cell A

COLSPAN="2"

ROWSPAN="2"

Cell B

COLSPAN="2"

2,3 2,4

Cell C

ROWSPAN="2"

3,2 3,3 3,4

4,2 4,3 4,4

Note that even though a cell may cover multiple positions, each cell is anchored to one particular
position — the uppermost, leftmost position that it covers. Cell A is anchored to position (1,1).
Cell B is anchored to position (1,3). And cell C is anchored to position (3,1).

16

4.4 AXIS

A number of discussions of accessibility recommend using AXIS. The W3C's Web Content
Accessibility Guidelines Checkpoint 5.2, for example, specifies that

For data tables that have two or more logical levels of row or

column headers, use markup to associate data cells and header

cells. [Priority 1] For example, in HTML, use THEAD, TFOOT, and

TBODY to group rows, COL and COLGROUP to group columns, and the

"axis", "scope", and "headers" attributes, to describe more

complex relationships among data.

and Section 5.1.2 of the associated HTML Techniques document says:

Label table elements with the "scope", "headers", and "axis"

attributes so that future browsers and assistive technologies

will be able to select data from a table by filtering on

categories.

Note, however, that the Access Board's HTML recommendations contain no mention of axis.

4.4.1 AXIS is about possible future technologies

The first, and perhaps most important, thing to note about AXIS is that is absolutely irrelevant to

any browsers that exist today (2002 CE).

The AXIS attribute was devised when the W3C was in a futuristic mood. Section 5.1.2 looks
forward to some future time when browsers will incorporate query-language capabilities that can
be used to retrieve data from an HTML table, somewhat in the way that the SQL query language
can be used now to retrieve data from a table in a relational database.

That is why the WCAG's HTML techniques document suggests labeling elements with AXIS in
order to support "future browsers and assistive technologies" [italics mine]. The HTML
recommendation is quite clear that browsers with such query-language capabilities do not yet
exist, and makes it quite clear that it is making no recommendations about how such query
language capabilities might work if they were ever to be devised.

This specification does not ... make any recommendations about

... how users may query the user agent about this information.

4.4.2 AXIS is about filtering

The second thing to note about AXIS is that the purpose of AXIS is to support a filtering
capability in some hypothetical future browser query language.

http://www.w3.org/TR/1999/WAI-WEBCONTENT-19990505/#gl-table-markup
http://www.w3.org/TR/WCAG10-HTML-TECHS/#identifying-table-rows-columns
http://www.access-board.gov/sec508/guide/1194.22.htm#(g)
http://www.w3.org/TR/WCAG10-HTML-TECHS/#identifying-table-rows-columns

17

Filtering is a common function of query languages. Suppose you have a relational database with
a table named TRAVEL_EXPENSES. This table contains columns LOCATION, DATE, EXPENSE_TYPE,
and AMOUNT. If you wanted to see a list of all expenses, you might use the SQL query language to
formulate this query:

 SELECT LOCATION, DATE, EXPENSE_TYPE, AMOUNT FROM TRAVEL_EXPENSES

But if you wanted to see just the expenses incurred in Seattle, you'd formulate your query this
way:

 SELECT LOCATION, DATE, EXPENSE_TYPE, AMOUNT FROM TRAVEL_EXPENSES

 WHERE LOCATION = "Seattle"

As you can see, the SQL-language mechanism for supporting filtering is the WHERE clause.

Now imagine that we have some future browser that supports a query language with similar
filtering capabilities. Suppose that we have an HTML table containing travel expenses. In that
table, there is one data cell that contains the value $15, and it is associated with two header cells.
One is a column header and one is a row header. The two header cells are defined this way (not
in the same row, of course):

<TH> San Jose </TH> <TH> Meals </TH>

Another data cell contains the value $20, and it is associated with header cells that are defined
this way:

<TH> Seattle </TH> <TH> Meals </TH>

And suppose that we wish to do the same thing that we did with our SQL query — obtain a list
of all of the expenses that were incurred when the location was Seattle.

That was easy to do in the relational table, because the value "Seattle" occurred in a column
named LOCATION. But we can't do the same kind of filtering in the HTML table, because the
header cells aren't similarly named. There is, for instance, no way to specify that "Seattle" is a
LOCATION rather than an EXPENSE_TYPE like "Meals".

That is, there was no way... until AXIS became part of the HTML language.

The AXIS attribute is defined in section 11.4.2 of the HTML language specification. The section
title is "Categorizing Cells", but probably a better title would have been "Categorizing Header
Cells", because that is what AXIS does. AXIS provides a way of attaching a category name to a
header cell. The attribute used to attach a category name to a header cell is axis.

Once we have AXIS, we can mark up our header cells with category names, this way:

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.2

18

<TH AXIS="LOCATION"> San Jose </TH>

<TH AXIS="LOCATION"> Seattle </TH>

<TH AXIS="EXPENSE_TYPE"> Meals </TH>

Once that is done, we have all the information in the table that would be required to answer our
query... assuming, of course, that we had a query language in which to express our query.

4.4.3 AXIS is not about associating data and header cells

The third thing to note about AXIS is that it is not used to create associations between data cells
and header cells.

Remember that AXIS is basically a filtering technology. Its purpose is to process a list of
associations and filter out the unwanted ones. It works on a list, and the list must already exist in
order for it to have something to work on.

Section 11.4.2 of the HTML language specification does not specify how the list of associations
is to be created. The discussion of the "Travel Expense Report" example table in section 11.4.2
notes that the associations in the table must have been created via use of ID, HEADERS, and
SCOPE attributes. But that is simply because the "Travel Expense Report" table is irregular, and
the only practical way to mark up irregular tables is with ID and HEADERS attributes.

So we should note that the use of AXIS is not tied to the use of ID and HEADERS attributes.
There is nothing in section 11.4.2 that precludes the possibility — at least for regular tables —
that the list of associations is created by the algorithm described in section 11.4.1 operating on
TD and TH tags.

4.4.4 What does AXIS have to do with accessibility?

Good question. Accessibility and support for a query-language seem to be two quite distinct
issues. One can easily imagine future HTML query languages that are entirely visual — the way
that SQL is today — and have nothing to do with speech-based rendering. In such a situation,
speech rendering would have to be layered on top of the query language in the way that screen
readers are layered on top of other computer functions today.

Nevertheless, the two seemed to have been linked in the minds of the authors of section 11.4.2.
The section begins: "Users browsing a table with a speech-based agent..." and continues on from
there. It looks as if the authors believed that the primary purpose of such a query language would
be to assist vision-impaired users in extracting meaningful information from large tables.

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.2
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#header-data

19

4.4.5 Is there any use for AXIS today?

The short answer is: Not much. Since no browsers today provide the kind of querying facilities
that AXIS is designed to support, there is no real reason for using AXIS today. It is possible that
some screen-reader products speak the AXIS attribute if it is present, and that may be useful. But
it is not what AXIS was intended for, and there is nothing in the HTML specification that
requires a screen-reader to behave this way.

The longer answer is: It depends. The HTML Techniques document puts it quite clearly. It
recommends that we...

Label table elements with the "scope", "headers", and "axis"

attributes so that future browsers and assistive technologies

will be able to select data from a table by filtering on

categories.

If you believe that there is a real possibility that browser technology will be available in the
foreseeable future that will offer such querying and filtering capabilities, and you wish to plan
now to support it, then you should indeed start labeling your header cells with AXIS.

20

4.4.6 How To Use AXIS To Make a Data Cell Act Like a Header Cell

There is one possible use for AXIS today. That is to force a TD cell to be treated like a header
cell when a screen reader goes searching for the header cells associated with a data cell. This
probably falls into the category of "tricks", but it is a trick that the W3C has handed to us on a
platter. The last bullet in the description of the BASIC algorithm in section 11.4.3 of the W3C
specification for HTML 4.01 says

TD cells that set the axis attribute are also treated as header cells.

So there are three ways to enable TD cell to supply header information for other cells.

1. Give the cell an ID attribute which can be used in the HEADERS attribute of data cells.
2. Attach a SCOPE attribute to the cell.
3. Attach an AXIS attribute to the cell.

4.5 A final note

We've looked a a number of HTML features that can be useful in formatting tables. We now turn
to the topics of visible formatting (making a table that looks right to a sighted user) and
accessible formatting (making a table that a screen reader can effectively read to a non-sighted
user).

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.3

21

5 Visible Formatting

We now turn to the topic of formatting data tables for sighted users. The problem here is how to
use HTML to make a table that looks the way a statistical data table should look.

In most tables of statistical data, there is a fundamental asymmetry in the formatting of the stub
and the column headers. If both column and row headers were presented in the same way, as
tree-like structures, tables would look like Exhibit A.

The problem with formatting row headers this way is that if the row headers are deeply nested,
the table becomes unreasonably wide. For this reason, row headers are not typically presented
this way. Instead, they are usually formatted in an indented, outline-like structure (Exhibit B). As
in the "All Regions" category in Exhibit B, data cells are often associated with middle and upper
nodes of the category structure, as well as with leaf nodes.

Exhibit A

Ruritanian

Population

Survey

By Gender

Males Females

All Regions 7777 12221

By Region

North
East 1111 2222

West 1111 2222

South
East 4444 5555

West 1111 2222

Exhibit B

Ruritanian

Population

Survey

By Gender

Males Females

All Regions 5555 7777

North 1111 2222

East 4444 5555

West 4444 5555

South 4444 5555

East 4444 5555

West 4444 5555

It is the use of an indented format in table stubs that causes most of the problems when
attempting to visually format data tables in HTML. The current HTML standard (4.01) offers
satisfactory facilities for dealing with tree-like formatting, but it has no convenient means of
producing indented, outline-style stubs.

The author is currently participating on a Fedstats working group whose goal is to develop a
proposal for extensions to the HTML language that will address this problem. Such extensions,
however much they may be a part of our future, are not a part of our present. Federal agencies

22

need to produce accessible HTML data tables today, using the facilities available in the current
HTML language. For that reason, much of our attention in this paper will be focussed on the
problem of how to code tables with indented stubs using the features available in the current
HTML language definition.

23

5.1 Nested Headers

Example #1: Nested Stubs

Ruritanian

Population

Survey

All

Genders

By Gender

Males Females

All Regions
North 3333 1111 2222

South 3333 1111 2222

Here is the HTML.

<TABLE CELLPADDING="5" CELLSPACING="0"

BORDER="1" align="center">

 <CAPTION> Example #1: Nested

Stubs</CAPTION>

 <TR>

 <TH class="center" COLSPAN="2"

ROWSPAN="2"> Ruritanian

 Population
 Survey </TH>

 <TH class="center" ROWSPAN="2">

All
 Genders </TH>

 <TH class="center" COLSPAN="2"> By

Gender </TH>

 </TR>

 <TR>

 <TH class="center"> Males </TH>

 <TH class="center"> Females </TH>

 </TR>

 <TR>

 <TH ALIGN="left" ROWSPAN="2"> All

Regions </TH>

 <TH> North </TH>

 <TD ALIGN="right"> 3333 </TD>

 <TD ALIGN="right"> 1111 </TD>

 <TD ALIGN="right"> 2222 </TD>

 </TR>

 <TR>

 <TH> South </TH>

 <TD ALIGN="right"> 3333 </TD>

 <TD ALIGN="right"> 1111 </TD>

 <TD ALIGN="right"> 2222 </TD>

24

 </TR>

</TABLE>

25

5.2 Indented Headers using "&NBSP;"

We now turn our attention to techniques for coding tables with indented stubs. Before we go any
further, let's take a quick look at a technique that does not work, and see why it doesn't work.

It is possible to achieve an indentation effect by prefixing stub heading with one or more
iterations of the (non-breaking space) element. The problem with this technique (which
you may be able to see in the table below, depending on your browser settings) is that if the text
is too long for the width of the column, it will wrap around to a new line. But when it wraps
around, the indentation doesn't carry over to subsequent lines in the cell.

test table

Ruritanian

Population

Survey

All

Genders

By Gender

Males Females

All

Regions
13332 5555 7777

 North

Regions
3333 1111 2222

 South

Regions
9999 4444 5555

Here is the HTML.

<TABLE WIDTH="30%" BORDER="1"

CELLPADDING="5" CELLSPACING="0"

align="center">

 <CAPTION>test table</CAPTION>

 <TR>

 <TH WIDTH="20%" ROWSPAN="2">

Ruritanian
 Population

Survey</TH>

 <TH ROWSPAN="2"> All
 Genders

</TH>

 <TH COLSPAN="2"> By Gender </TH>

 </TR>

 <TR>

 <TH> Males </TH>

 <TH> Females </TH>

26

 </TR>

 <TR>

 <TH ALIGN="left"> All Regions

</TH>

 <TD ALIGN="right"> 13332 </TD>

 <TD ALIGN="right"> 5555 </TD>

 <TD ALIGN="right"> 7777 </TD>

 </TR>

 <TR>

 <TH ALIGN="left">

North Regions </TH>

 <TD ALIGN="right"> 3333 </TD>

 <TD ALIGN="right"> 1111 </TD>

 <TD ALIGN="right"> 2222 </TD>

 </TR>

 <TR>

 <TH ALIGN="left">

South Regions </TH>

 <TD ALIGN="right"> 9999 </TD>

 <TD ALIGN="right"> 4444 </TD>

 <TD ALIGN="right"> 5555 </TD>

 </TR>

</TABLE>

27

5.3 Indented Headers using Cell Control

Example #2: Indented Stubs (ROWSPAN)

Ruritanian Population Survey AllGenders
By Gender

Males Females

All Regions 13332 5555 7777

North 3333 1111 2222

South 9999 4444 5555

Here is the HTML.

<TABLE BORDER="1" CELLPADDING="5"

CELLSPACING="0" ALIGN="CENTER">

 <CAPTION> Example #2: Indented Stubs

(ROWSPAN)</CAPTION>

 <TR>

 <TH COLSPAN="10" ROWSPAN="2">

Ruritanian Population Survey </TH>

 <TH ROWSPAN="2" CLASS="center">

AllGenders </TH>

 <TH COLSPAN="2" CLASS="center"> By

Gender </TH>

 </TR>

 <TR>

 <TH> Males </TH>

 <TH> Females </TH>

 </TR>

 <TR>

 <TH ALIGN="left" COLSPAN="10"> All

Regions </TH>

 <TD ALIGN="right"> 13332 </TD>

 <TD ALIGN="right"> 5555 </TD>

 <TD ALIGN="right"> 7777 </TD>

 </TR>

 <TR>

 <TH ALIGN="left" ROWSPAN="2">

 </TH>

 <TH colspan="9" ALIGN="left">

North </TH>

 <TD ALIGN="right"> 3333 </TD>

28

 <TD ALIGN="right"> 1111 </TD>

 <TD ALIGN="right"> 2222 </TD>

 </TR>

 <TR>

 <TH colspan="9" ALIGN="left">

South </TH>

 <TD ALIGN="right"> 9999 </TD>

 <TD ALIGN="right"> 4444 </TD>

 <TD ALIGN="right"> 5555 </TD>

 </TR>

</TABLE>

In this technique, the labels running down the left side of the table (the "stub") are contained in a
section that is 10 columns wide. For row headers that span the entire stub, we code a single TH
cell with COLSPAN="10". For row headers that are indented, we code two TH cells. The first
TH cell is empty, and uses ROWSPAN to span the desired number of rows. The second TH cell
spans the remaining columns in the stub. So a row specification for a row in which the empty
indentation cell must span two rows would be coded like this.

 <TR> <TH ROWSPAN="2"> </TH>

 <TH COLSPAN="9"> North </TH> ...

29

There are a number of variations on this technique, which produce slightly different results. It is
possible to get the desired effect using ROWSPAN, or using COLSPAN, or using neither, in the
empty cells used to create the indentation. And the table is rendered differently depending on
whether the indentation cells contain or are completely empty.

5.3.1 Indented tables that use ROWSPAN

Indented Table R1

 COLUMN A COLUMN B

A 99.9 99.9

AA 99.9 99.9

AAA 99.9 99.9

AAA1 99.9 99.9

AAA2 99.9 99.9

5.3.2 Indented tables that use COLSPAN

Indented Table C1

 COLUMN A COLUMN B

A 99.9 99.9

 AA 99.9 99.9

 AAA 99.9 99.9

 AAA1 99.9 99.9

 AAA2 99.9 99.9

30

5.3.3 Indented tables that don't use ROWSPAN or COLSPAN

This is probably the easiest way to mechanically mark up tables.

Indented Table N1

 COLUMN A COLUMN B

A 99.9 99.9

 AA 99.9 99.9

 AAA 99.9 99.9

 AAA1 99.9 99.9

 AAA2 99.9 99.9

5.3.4 Indented tables that don't use " "

In all of these tables, you have the option of not using " " in the empty cells. If you leave
the cells completely empty, the browser probably will not draw borders around the empty cells.
The effect will be a table that looks like this.

Indented Table N2

 COLUMN A COLUMN B

A 99.9 99.9

 AA 99.9 99.9

 AAA 99.9 99.9

 AAA1 99.9 99.9

 AAA2 99.9 99.9

5.3.5 Problems with this technique

There are two difficulties with techniques that use cell control.

The first is that creating the HTML is quite difficult. Generating such tables programmatically is
possible, but creating such tables by hand is far too difficult for a human being.

The second is that the indentation created by the browser may not be uniform. As you can
probably see, in many cases the most deeply indented stub is indented by an increment that is
noticeably greater than that used for other levels. In theory this could be controlled by careful

31

specification of WIDTH attributes on each cell, but that brings us back to the first problem — the
difficulty of coding creating such HTML.

32

5.4 Indented Headers using CSS Margin Control

Another technique for producing indented stubs is to have all of the stub text reside in a single
left-hand column, and to indent the stub lines using the margin-left property of Cascading
Style Sheets (CSS). Styles are defined inside a STYLE element in the HEADER element of the
HTML file. Here is the code for the style-sheet that defines three properties — sub1, sub2, and
sub3 — for different level of indentation.

<style type = "text/css">

 .sub1 {margin-left: 1em;}

 .sub2 {margin-left: 2em;}

 .sub3 {margin-left: 3em;}

 td {font-family: monospace; text-

align: right}

 th {text-align: left}

</style>

There are a variety of units that you can use to define the amount of indentation that you want,
including pixels, millimeters, and "ems". An "em" is the width of a capital "M" in whatever font
is currently in use. Since the size of an em will adjust to be appropriate for the context, we've
chosen to specifiy our indentation in units of ems.

As you can see, we've also provided styles for TD and TH cells that will govern the horizontal
alignment — header text will be left justified and data will be right justified.

The way to use a style is to make it the value of a CLASS attribute. You can do this with almost
any HTML element, but when there is no appropriate tag handy, you can use the DIV element.
DIV is a multi-purpose tag. In itself, it doesn't do anything — it simply delimits a section of text.
Its only purpose, really, is to be a non-entity upon which you can hang stylesheet specification.
Here is an example in which the DIV tag refers to one of the classes — sub1 -- that we have just
defined in the stylesheet.

 <div class="sub1"> Some text... </div>

Note that style names are case sensitive, so we have invoked the "sub1" class this way —
CLASS="sub1" — and not as CLASS="SUB1".

Note also that once a cell is governed by a style, the style can't be over-ridden by HTML
specificatons such as ALIGN="CENTER". A style can only be over-ridden by another style,
invoked by a CLASS attribute. Left alignment is fine for our stub headers, but we want our
column headers to be centered. To do that, we must create and use a class for center alignment.
And just so we have a full repertoire of alignment options at our disposal, we also create a "left"
and a "right" style.

http://www.w3.org/TR/REC-CSS2/box.html#margin-properties
http://www.w3.org/TR/REC-CSS2/
http://www.w3.org/TR/REC-CSS2/

33

 .center {text-align: center}

 .right {text-align: right}

 .left {text-align: left}

34

Here is an example of a table that uses the CSS styles to control stub indentation. I've made the
table unnaturally wide (by specifying WIDTH="60%") so the center alignment of the column
header cells can be seen.

Example 2: Metal Prices

 1998 1999 2000

Copper 123 123 123

Unrefined 123 123 123

Refined 123 123 123

Iron 123 123 123

Unrefined 123 123 123

Refined 123 123 123

Tin 123 123 123

Unrefined 123 123 123

Refined 123 123 123

Here is the HTML code.

<table cellspacing="0" cellpadding="5" border="1" align="center"

width="60%">

<caption> Example 2: Metal Prices </caption>

<tr>

<th> </th>

<th class="center"> 1998 </th>

<th class="center"> 1999 </th>

<th class="center"> 2000 </th>

</tr>

<tr>

<th > Copper </th>

<td > 123 </td>

<td > 123 </td>

<td > 123 </td>

</tr>

<tr>

35

<th > <div class="sub1"> Unrefined </div></th>

<td > 123 </td>

<td > 123 </td>

<td > 123 </td>

</tr>

<tr>

<th <div class="sub1"> Refined </div> > </th>

<td > 123 </td>

<td > 123 </td>

<td > 123 </td>

</tr>

... and so on for Iron and Tin ...

</table>

36

6 Accessible Formatting

Now that we have examined techniques for formatting data tables for sighted users, we turn to
the topic of accessible formatting, that is, formatting tables for non-sighted or vision-impaired
users. The problem here is how to use HTML to make a table that a screen reader can effectively
read to a vision-impaired user.

More precisely — as we noted earlier — the problem is how to code HTML that conforms to
standards for accessible HTML, so that a screen reader that conformed to those standards can
effectively read it.

The basic concept underlying accessible HTML tables is that of a list of header cells associated
with a data cell.

The way a screen reader makes a data cell accessible is by (1) constructing a list of the header
cells associated with the data cell, and then (2) reading the list along with the contents of the data
cell. The list is built by the screen reader on the basis of associations between the data cell and
header cells. The main problem of creating accessible HTML tables, then, is the problem of
writing the HTML in such a way that these associations exist, so that a screen reader can build
the list from them.

The most complete presentation of the notion of the list, and the process of finding the header
cells associated with a data cell, is in section 11.4.3 of the HTML specification.

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.3

37

6.1 The HEADERS Algorithm — using the HEADERS and ID
Attributes

Virtually every HTML element, including the TD and TH tags, can have an ID attribute. The ID
attribute is meant to provide a way to uniquely identify some HTML element on a page. Values
of the ID attribute are case-sensitive, must begin with a letter (i.e. an alphabetic character), and
may not contain spaces. As the HTML specification says:

ID ... tokens must begin with a letter ([A-Za-z]) and may be

followed by any number of letters, digits ([0-9]), hyphens ("-"),

underscores ("_"), colons (":"), and periods (".").

In this example, we assign the ID "R1" to a header cell.

<TH ID="R1"> ... </TH>

TD and TH tags can be given a HEADERS attribute. A HEADERS attribute may contain a
blank-separated list of IDs. The HEADERS attribute associates the data cell with the cells
identified by those IDs.

<TD HEADERS="R38 R36 R34 H2 H5"> ... </TH>

The HEADERS and ID attributes give the HTML author the maximu possible control over the
associations between data cells and header cells, but their use has some drawbacks and
limitations.

1. For large tables, the use of HEADERS can significantly increase the size of the HTML
code of the table. This can slow download times. How much of a problem this is, depends
on the size of the table.

2. The process of adding HEADERS attributes to the data cells can be labor-intensive and
error-prone. For large and/or complex tables, adding HEADERS attributes by hand is not
feasible — the process must be automated in some way, or it can't reasonably be
attempted at all.

3. Some assistive browsers — browsers that read Web pages to vision-impaired users —
have a very nice feature for reading HTML tables. As the user moves the cursor left or
right from a cell in the table, the browser reads the column headers that have changed
with the move but does not read the row headers (which have not changed). And
similarly for moving up and down from row to row. But if such a browser reads a table
that is marked up only with IDs and HEADERS, it may have no way to provide this kind
of service, because the IDs listed in a HEADERS attribute are not divided into column
headers and row headers; the HEADERS attribute contains just an undifferentiated list of
IDs. A smart enough browser might still be able to provide such a service, but certainly

http://www.w3.org/TR/1999/REC-html401-19991224/types.html#type-name

38

there is nothing in the HTML specification that requires it to provide such a service or
specifies how it might be done.

However, despite these limitations, there are two reasons why you might choose to use
HEADERS and IDs

First, they are your only option for irregular tables.

The conclusion that you should draw from this, though, is not that you need to use HEADERS
and IDs in your irregular tables — it is that you need to restructure your tables so that they are no
longer irregular.

In most cases, if an irregular table really does make sense, then it isn't very difficult to restructure
it into a regular tables. Some irregular tables are really the concatenation of two logically
separate tables. In such cases, the irregular table can easily be split apart into separate, regular,
tables. InIn some cases, minor reformatting can turn an irregular table into a regular one.
Consider, for example, the widely cited example of the Travel Expense Report in the HTML
language specification.

It can easily be reformatted as an indented table.

Travel Expense Report

 Meals Hotels Transport subtotals

San Jose

25-Aug-97 37.74 112.00 45.00

26-Aug-97 27.28 112.00 45.00

subtotals 65.02 224.00 90.00 379.02

Seattle

 27-Aug-97 96.25 109.00 36.00

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.2

39

28-Aug-97 35.00 109.00 36.00

subtotals 131.25 218.00 72.00 421.25

Totals 196.27 442.00 162.00 800.27

The second reason for using HEADERS and IDs is that the current generation of screen readers
seems to be able to handle HEADERS and IDs correctly. If your concern is not only to "code to
the standard" when writing HTML, but also to work with screen readers that are not yet able to
"read to the standard", then using HEADERS and IDs may be your only choice. But it will be a
lot of work, and when the day comes that screen readers get smarter, and they can effectively
read much simpler markup, you may regret the effort that you expended to mark up your tables
with HEADERS and IDs.

40

6.2 The SCOPE Algorithm

The HTML language specification describes the SCOPE attribute as a sort of labor-saving
device. In situations where it is possible to use it — in regularly formatted tables -- SCOPE is
functionally equivalent to the HEADERS algorithm, but shorter and easier to use.

Authors may choose to use [the SCOPE] attribute instead of

headers according to which is more convenient; the two attributes

fulfill the same function. The headers attribute is generally

needed when headers are placed in irregular positions with

respect to the data they apply to.

The SCOPE attribute relies on HTML's ability to define groups of columns and rows — the only
valid values for the SCOPE attribute are row, col, rowgroup, and colgroup. So we must study
colgroups and rowgroups in order to understand how SCOPE works.

Reading the HTML specification for colgroups and rowgroups, it is helpful to remember that
when the HTML specification was first developed, high-speed Internet connections were not as
widely available as they are today. Connections could be slow, and rendering a large data table
could be painfully slow — as it still is today, via a modem connection. If a browser always had
to have received all of the data in a table before it could start rendering the table on the screen,
then the World Wide Web would truly deserve its nickname as the World Wide Wait. So
download speed and incremental rendering were genuine issues.

6.2.1 Colgroups

See Colgroups

Here is a picture of a table with colgroups. The heavy lines show how the columns of the table
have been grouped into two colgroups, with each colgroup containing two columns.

Colgroups provide a number of convenience features. The HTML specification says, for
example, that authors may highlight a colgroup or rowgroup structure using style sheets or
HTML attributes, and the specification provides a sample table illustrating such a use of

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#non-visual-rendering
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.4

41

colgroups. An attribute setting of RULES="GROUPS" on the TABLE element would cause
rules (that is, lines) to be displayed between colgroups and rowgroups rather than between cells.
And so on.

These convenience features are not the reason, however, for the existence of colgroups. The
original motivation for the inclusion of colgroups in the HTML specification was the desire to
support incremental rendering of data. As the introduction to the section on tables in the HTML
4.01 specification says:

The HTML table model has been designed so that, with author

assistance, user agents may render tables incrementally (i.e., as

table rows arrive) rather than having to wait for all the data

before beginning to render.

In order for a user agent to format a table in one pass, authors

must tell the user agent: The number of columns in the table...

[and the] widths of these columns... using a combination of

COLGROUP and COL elements. If any of the columns are specified in

relative or percentage terms..., authors must also specify the

width of the table itself.

Normally, when a browser renders a table, it makes two passes over the table. In the first pass, it
examines the entire table, discovering the largest number of cells per row in the table and how
big the contents of the cells are. From this information, it calculates the widths that it will use to
display the columns in the table. Then, in a second pass, it actually displays the table. But if the
COL and COLGROUP elements supply the browser up front with all of the column width
information, that removes the need for the browser to make the first pass. It can immediately
start rendering the table. And it can do this incrementally, displaying each row as soon as it gets
it.

We won't go into the details of how COL and COLGROUP specifications are coded in HTML
— that material is available in the section on column groups in the HTML language
specification, and we give an example of it later in this paper, in the discussion of the SCOPE
example on the Access Board's Web site. But we will note that COL and COLGROUP tags must
be placed in a specific location inside the TABLE element — after the CAPTION element (if
present) and before the THEAD, TFOOT, and TBODY elements.

6.2.2 Rowgroups

See Rowgroups

Colgroups are defined using the COLGROUP tag. Perhaps surprisingly, however, HTML
contains no corresponding ROWGROUP tag. HTML has the concept of a rowgroup, and
"rowgroup" is a valid value of the SCOPE attribute of TH and TD tags, but it contains no
ROWGROUP tag, as such.

The reason that HTML has no ROWGROUP tag is that it recognizes three different kinds of
rowgroups, and has specific tags for each of those kinds: THEAD, TFOOT, and TBODY. The

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.3.1
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.1
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.4
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.1
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.3
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.3
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.6

42

reason for this three-fold division is that rowgroups were designed to support a display in which
the header and footer of a table are held steady, and the user can scroll through the rows in the
body of the table. Here's what the HTML specification says:

Table rows may be grouped into a table head, table foot, and one

or more table body sections, using the THEAD, TFOOT and TBODY

elements, respectively. This division enables user agents to

support scrolling of table bodies independently of the table head

and foot.

Here's a simple illustration. Suppose we had marked up our example table with THEAD,
TFOOT, and TBODY tags. In the following graphic, we have colored the header row marked
with the THEAD tag, and the footer row marked with the TFOOT tag. The rows in the middle
have been marked with the TBODY tag. This capability would allow a browser to hold the
colored rows steady, while the user scrolled through the middle rows, perhaps with a slider bar
like the one in the illustration.

It was envisioned that this feature might also support the printing of tables.

When long tables are printed, the table head and foot information

may be repeated on each page that contains table data.

We won't go into the details of how THEAD, TFOOT, and TBODY specifications are coded in
HTML — that material is available in the section on row groups in the HTML language
specification. But we will note that you can not code these elements in the order that you'd
expect — namely: THEAD, TBODY, TFOOT. If you code TFOOT, it must be coded before
TBODY, in this order — THEAD, TFOOT, TBODY. This makes perfectly good sense when
you remember the W3C's interest in supporting the incremental rendering of tables. As the
HTML language specification says

TFOOT must appear before TBODY within a TABLE definition so that

user agents can render the foot before receiving all of the

(potentially numerous) rows of data.

6.2.3 An Important Limitation of Colgroups and Rowgroups

It is important to understand the motivations behind HTML's colgroup and rowgroup features,
because these motivations explain the characteristics and limitations of colgroups and

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.1
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.3

43

rowgroups. And they do have an important limitation. They cannot be nested to more than two

levels. They support only two levels: colgroup and col, or rowgroup and row.

6.2.4 Scope

Once the W3C had colgroups and rowgroups available, they could be extended to do other work
as well as the work for which they were originally intended. And so the SCOPE attribute was
born.

The SCOPE attribute is an attribute that you can attach to header cells that are marked with TD
and TH tags. It allows a header cell to be associated not just with a row or a column, but with a
rowgroup or a colgroup. So the four allowable values of SCOPE are: col, colgroup, row,
rowgroup.

In some ways, SCOPE is HEADERS turned inside out. That is, if you want to associate some
data cell D with some header cell H, you can either code a HEADERS attribute on data cell D, or
a SCOPE attribute on header cell H. The SCOPE attribute is a way for a cell to broadcast its
"headerness" — its ability to function like a header cell — to other cells.

The SCOPE attribute has significant limitations.

1. The hierarchy provided by rowgroups and colgroups is limited to two levels. This
limitation is a result of the original purpose and design of rowgroups and colgroups. This
means that if you have a table with three or more levels of column headings, you cannot
use colgroups to associate data cells with column header cells, and similarly for rows in
which you have three or more levels of row headers.

2. In order to use colgroups and rowgroups for any serious table markup, it is necessary to
mark up the table with COLGROUP and TBODY tags. This adds an extra layer of
complexity to the table markup.

6.2.5 Confusion About the Scope Attribute

It is important to note that a colgroup is not defined by a colspan attribute.

It is a common mistake to code something like the following:

<TH COLSPAN="2" SCOPE= "colgroup"> Some heading text </TH>

In this code, the author has defined a cell that spans two positions, and had added the SCOPE
specification of "colgroup" in order to make the scope of the header cover both of the spanned
columns. But this is a mistake. The COLSPAN attribute has no bearing on the effect of the

SCOPE attribute.

SCOPE seems to be widely misunderstood. The W3C's Web site containing the HTML language
specification gives an example of its use that — although correct — is very misleading. And the
Web site of the Access Board (which has the status of a legally binding definition of the

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.6

44

practices to which Federal agencies must conform in order to be 508-compliant) contains an
example of the use of the SCOPE attribute that is simply wrong.

6.2.6 SCOPE Example in the HTML language specification

Misunderstanding of the use of SCOPE is practically guaranteed by an example in section 11.4.1
of the HTML definition document. That example shows the following table:

The HTML code accompanying the example does not define a COLGROUP anywhere, and the
HTML for the first cell is this.

<TR> <TH colspan="5" scope="colgroup"> Community Courses — Bath Autumn 1997

</TH> </TR>

This markup appears to be using the SCOPE="colgroup" specification without any colgroups
being defined on the table — this makes it easy to jump to the conclusion that a colgroup is
being defined by the colspan="5" specification.

What the example does not point out is that — in the absence of explicit COLGROUP tags -- all
tables contain a single implicit colgroup. That is the only reason this example works — the
colgroup referred to in the SCOPE attribute is the single implicit colgroup that all HTML tables
have by default.

6.2.7 SCOPE Example on the Access Board Web Site

An outright mistake in the use of SCOPE can be found on the Web site for the Access Board,
which contains the following explanation.

How can HTML tables be made readable with assistive

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.1
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.4
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.2.4
http://www.access-board.gov/sec508/guide/1194.22.htm#(g)

45

technology? ...

Using the Scope Attribute The first row of each table should

include column headings. Typically, these column headings are

inserted in <TH> tags, although <TD> tags can also be used.

These tags at the top of each column should include the

following attribute:

scope="col"

By doing this simple step, the text in that cell becomes

associated with every cell in that column.

At first, it looks like the Access Board has merely failed to imagine tables that contain more than
one row of headers. But farther down on the Web page, we find the following example, which is
clearly incorrect. (I have tweaked a few attributes on of the TABLE tag, to make the layout of
the table a bit easier to see.)

<table BORDER="1" cellspacing="0"

cellpadding="5">

 <tr>

 <th> </th>

 <th colspan="2" scope="col" > Winter </th>

 <th colspan="2" scope="col" > Summer </th>

 </tr>

 <tr>

 <th> </th>

 <th scope="col"> Morning </th>

 <th scope="col"> Afternoon </th>

 <th scope="col"> Morning </th>

 <th scope="col"> Afternoon </th>

 </tr>

 <tr>

 <td scope="row"> Wilma </td>

 <td> 9-11 </td>

 <td> 12-6 </td>

 <td> 7-11 </td>

 <td> 12-3 </td>

 </tr>

 <tr>

46

 <td scope="row"> Fred </td>

 <td> 10-11 </td>

 <td> 12-6 </td>

 <td> 9-11 </td>

 <td> 12-5 </td>

 </tr>

 </table>

This table is rendered this way:

 Winter Summer

 Morning Afternoon Morning Afternoon

Wilma 9-11 12-6 7-11 12-3

Fred 10-11 12-6 9-11 12-5

47

This coding is incorrect.

By specifying SCOPE="col" on cells (Winter, Summer) that span two columns, the Access
Board example clearly shows a failure to understand the use of SCOPE. To be correct, SCOPE
must be "colgroup" on the cells that span two columns, and in this table there must be three
COLGROUP elements — one for the stub header column, and two for the major headings. The
colgroups for the major headings must specify SPAN="2". Here is what the correct code would
look like. We have underlined changes to the code and marked them red. The specification
SPAN="1" on the first COLGROUP is optional, but we have coded it here to make it explicit.

<table BORDER="1" cellspacing="0">

<COLGROUP SPAN="1">

<COLGROUP SPAN="2">

 <COLGROUP SPAN="2">

<tr>

 <th> </th>

 <th colspan="2"

scope="colgroup">Winter </th>

 <th colspan="2" scope="colgroup"

>Summer </th>

 </tr>

 ... etc. ...

</table>

48

6.3 The BASIC algorithm

The BASIC algorithm is described in section 11.4.3 of the W3C specification for HTML 4.01. I
reproduce it here, with the steps numbered for easy reference.

11.4.3 Algorithm to find heading

information

In the absence of header information from either

the scope or headers attribute, user agents may

construct header information according to the

following algorithm. The goal of the algorithm is

to find an ordered list of headers. (In the

following description of the algorithm the table

directionality is assumed to be left-to-right.)

1. First, search left from the cell's position
to find row header cells. Then search

upwards to find column header cells. The

search in a given direction stops when the

edge of the table is reached or when a data

cell is found after a header cell.

2. Row headers are inserted into the list in
the order they appear in the table. For

left-to-right tables, headers are inserted

from left to right.

3. Column headers are inserted after row
headers, in the order they appear in the

table, from top to bottom.

4. If a header cell has the headers attribute
set, then the headers referenced by this

attribute are inserted into the list and

the search stops for the current direction.

5. TD cells that set the axis attribute are
also treated as header cells.

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#h-11.4.3
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#adef-scope
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#adef-headers
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#table-directionality
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#table-directionality
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#adef-headers
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#edef-TD
http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#adef-axis

49

Let's see how this works in practice. Consider the following table.

Example Table 1

Ruritanian

Population

Survey

By Gender

Males Females

By Region
North 2111 2222

South 4444 5555

The HTML for this table is:

<TABLE BORDER="1" CELLSPACING="0" CELLPADDING="5">

<CAPTION>Example Table 1</CAPTION>

<TR>

<TH ROWSPAN="2" COLSPAN="2"> Ruritanian
 Population

Survey </TH>

<TH ROWSPAN="2"> All
 Genders </TH>

</TR>

<TR>

<TH> Males </TH>

<TH> Females </TH>

</TR>

<TR>

<TH ROWSPAN="2"> By Region </TH>

<TH> North </TH>

<TD ALIGN="right"> 2111 </TD>

<TD ALIGN="right"> 2222 </TD>

</TR>

<TR>

<TH> South </TH>

<TD ALIGN="right"> 4444 </TD>

<TD ALIGN="right"> 5555 </TD>

</TR>

</TABLE>

According to the BASIC algorithm, what is the procedure used to construct the ordered list of
headers associated with the cell with value 5555 in this table? And what is the resulting list?

50

Note that:

 The column header cell "By Gender" has an anchor position of (1,4), but because of the
attribute colspan="2" , it also covers position (1,5).

 The row header cell "By Region" has an anchor position of (4,1), but because of the
attribute rowspan="2", it also covers position (5,1).

 Both the "By Gender" and "By Region" cells cover a position that has the same row or
column coordinate as the data cell, whose anchor position is (5,5).

The search starts from the anchor position of the data cell, and is carried out in the way that a
sighted reader would carry it out. That is, if a row header cell covers a row that is the same as the
data cell's row, then that header cell will be discovered during the search. And similarly, if a
column header cell covers a column that is the same as the data cell's column, then that header
cell will be discovered during the search.

Here is the search procedure.

1. We create an empty list.
2. Our starting point for the search is the anchor position of the data cell — (5,5).
3. We start searching left from the starting point, along row 5. We find header cells "South"

at position (5,2) and "By Region" covering position (5,1). The search is terminated at the
left edge of the table.

4. We add these headers to the list in the left-to-right order in which they appear in the table
— that is, by the order of the columns in the cells' anchor positions: "By Region" and
"South".

5. We start searching upward from the starting point, along column 5. We find header cells
"Females" at position (2,5) and "By Gender" covering position (1,5). The search is
terminated at the top edge of the table.

6. We add these headers to the list in the top-down order in which they appear in the table
— that is, by the order of the rows in the cells' anchor positions: "By Gender" and
"Females".

This search produces the following results list.

By Region

South

By Gender

Females

From this, we can see that the BASIC algorithm works very nicely even if the table contains
multi-level column or row headers. Why the WCAG recommend the use of additional markup
for such tables is a mystery.

51

Now lets look at a table that uses our third formatting technique: indented stubs using cascading
stylesheets.NOTE: This table is probably the most important example in this paper.

Ruritanian Ore Production

 1998 1999 2000

Copper Ore 123 123 123

Unrefined 123 123 123

Less than 40% copper 123 123 123

40% or more copper 123 123 123

The HTML for this table is:

<TABLE CELLSPACING="0" CELLPADDING="5" BORDER="1"

ALIGN="CENTER">

<CAPTION>Ruritanian Ore Production</CAPTION>

<TR>

 <TH> </TH>

 <TH>1998</TH>

 <TH>1999</TH>

 <TH>2000</TH>

</TR>

<TR>

 <TH ID="R1">Copper Ore</TH>

 <TD>123</TD>

 <TD>123</TD>

 <TD>123</TD>

</TR>

<TR>

 <TH ID="R2" HEADERS="R1"><div

class="sub1">Unrefined</div></TH>

 <TD>123</TD>

 <TD>123</TD>

 <TD>123</TD>

</TR>

<TR>

 <TH ID="R3" HEADERS="R1 R2"><div class="sub2">Less than 40%

copper</div></TH>

 <TD>123</TD>

 <TD>123</TD>

 <TD>123</TD>

</TR>

<TR>

52

 <TH ID="R4" HEADERS="R1 R2"><div class="sub2">40% or more

copper</div></TH>

 <TD>123</TD>

 <TD>123</TD>

 <TD>999</TD>

</TR>

</TABLE>

According to the BASIC algorithm, what is the procedure used to construct the ordered list of
headers associated with the cell with value 999 in this table? And what is the resulting list?

The search starts from the anchor position of the data cell, and is carried out in the way that a
sighted reader would carry it out. That is, if a row header cell covers a row that is the same as the
data cell's row, then that header cell will be discovered during the search. And similarly, if a
column header cell covers a column that is the same as the data cell's column, then that header
cell will be discovered during the search.

Here is the search procedure.

1. We create an empty list.
2. Our starting point for the search is the data cell.
3. We search left until we find the header cell "40% or more copper". The search is

terminated at the left edge of the table.
4. We add this header to the list.
5. Since this header cell has a HEADERS attribute, we follow the IDs in the HEADERS

attribute to cells R1 and R2, add their cell contents to the list, prior to "40% or more
copper", and the search for row headers is terminated.

6. We search upward until we find the find column header cell "2000", and insert it into the
list. The search is terminated at the top edge of the table.

This search produces the following results list.

Copper Ore

Unrefined

40% or more copper

2000

The magic bullet here is step 4 of the BASIC algorithm.

.If a header cell has the headers attribute set, then the headers
referenced by this attribute are inserted into the list and the

search stops for the current direction.

This seems to be the simplest and most straightforward technique of all.

53

Perhaps it is worth pointing out one possible pitfall for the unwary. In the BASIC algorithm,
when the search finds a header cell with a HEADERS attribute, after that cell is processed the

search stops. So if we had a table that had two columns of header cells, and the inner header
cells had a HEADERS attribute, this way:

<TR>

 <TH>Outer Header</TH>

 <TH HEADERS="R1 R2">Inner Header<TH>

 ... and some data cells here ...

<TR>

then the BASIC algorithm, when searching for headers, would never find the outer header.

54

7 Conclusion and Recommendations

Given the variety of techniques for visible and accessible formatting, which one should you
choose? Here are some evaluation criteria for accessible HTML tables, with the most important
first.

1. First, the HTML code must conform to a standard for accessible HTML code. The
acceptability of the code is not judged by the success with which it can be read by any
particular screen reader product, or version of screen reader product. Acceptability is
judged by measurement against a standard for accessible HTML coding practices.

2. The code must produce an acceptable visual presentation as well as an accessible
presentation. We cannot adopt a set of coding practices that produces tables that are
acceptable to the vision-impaired members of our user communities, but unacceptable to
the sighted members.

3. It must be feasible for human beings (using whatever support technology is available) to
create HTML tables. Athough many statistical tables are generated from databases by
software programs, many are not. It must be possible for statistical analysts to create
hand-crafted tables for special purposes.

4. The markup must be supported by the current generation of screen-reader technology.
5. In order to minimize download time, compact markup is preferred to verbose markup.

One of the most important considerations is the visual appearance of statistical tables. The three
visual formatting techniques that we have discussed — nested stub headers, indented stub
headers using cell control, and indented stub headers using CSS control -- all produce slightly
different results. If one of those visible formats is required, or acceptable, or unacceptable for
your organization, then that will have a decisive effect on your decision.

In most organizations, nested stub headers are simply unacceptable. So, for most organizations,
that option can be eliminated immediately.

Most statistical organizations publish a mix of tabular data. Some table are generated
automatically from database data, while other tables are hand-crafted by statisticians and used in
analytic reports. If your organization publishes such a mix of tables, then you will need a format
that is simple enough to be hand-coded by a human being. The formats that use cell control tend
to be complicated. Using ROWSPAN is very difficult. COLSPAN is less difficult, and just using
empty cells (without ROWSPAN or COLSPAN) is less complicated, although still cumbersome.

In comparison, using CSS to control the stub margins is extremely simple.

Of the three accessibility techniques that we have examined — the HEADERS algorithm, the
SCOPE algorithm, and the BASIC algorithm — neither the HEADERS nor the SCOPE
algorithm seems very attractive. Marking up a table with HEADERS and ID attributes is time-

55

consuming and difficult. Using the SCOPE algorithm is easier (although not so easy that it can't
be mis-understood, as we've seen), but it is impractical because it is limited to two levels of
nesting. Clearly, the BASIC algorithm is the most attractive choice of the three. Marking up the
stub header cells with HEADERS and ID attributes is cumbersome, but the process is relatively
straightforward and for small analytic tables it is feasible for a human being. Adding such
markup with software is not difficult. The code is relatively compact.

Our conclusion, therefore, is that — for most organizations, for regular tables — the best option
is to use CSS control to create indented stubs, and to use the BASIC algorithm to make the tables
accessible. While not as simple and easy as one might wish, it is — considering the alternatives
— clearly the most attractive option available. (Click HERE to go to the example in this paper.
Another example is available in the HTML Tables Cookbook.)

For irregular tables, the best option is to reformat the tables into regular tables. If that is
impossible, and the table must remain irregular, then in most cases the best visible formatting
technique will be to use CSS margin control, and the only possible accessible formatting
technique will be the HEADERS algorithm.

html_tables_cookbook.html

56

8 Some Visual Formatting Issues

8.1 Fonts

Generally speaking, data cells should appear in a monospaced format such as Courier, so that
columns line up nicely. On the other hand, header cells generall should appear in a proportional
font, both for the sake of a nice appearance and because text in a proportional font will take up
less space. Using a proportional font for your stub headers, is especially important, because long
or deeply nested headers will tend to make your tables spread out horizontally, and you need to
counteract that tendency as much as possible.

The easiest way to control fonts in a table is by using a CSS stylesheet to attach font
specifications to TH and TD cells. Here is an example:

td {font-family: Courier monospace}

th {font-family: "Times New Roman" serif proportional}

8.2 Horizontal Cell Alignment

Vertical alignment is specified on the ALIGN attribute of TD and TH cells, or may be controlled
via CSS stylesheet settings.

Generally speaking, data cells should be right-justified, so that data columns line up nicely.
Column header cells should be centered. And stub headers should be left-justified.

The easiest way to control cell alignment is with a CSS stylesheet that attaches alignment
specifications to the TH and TD cells. In the following example, we have attached alignment
specifications to the styles that we defined when we discussed fonts.

td {text-align: right; font-family: Courier monospace}

th {text-align: left ; font-family: "Times New Roman" serif proportional}

.center {text-align: center}

In this example, not that we have also defined a style for centered alignment.

The problem with attaching an alignment specification to TH cells is that, no matter what
alignment you choose, it will be wrong for some of the header cells. If you choose to align
header cells to the left, that will be good for stub header cells but bad for column header cells. If
you choose to alight header cells to the center, then that will be good for column header cells but
bad for stub header cells.

http://www.w3.org/TR/1999/REC-html401-19991224/sgml/dtd.html#cellhalign

57

On the grounds that stub header cells are likely to be more numerous than column header cells,
we have given TH cells a "left" alignment. This means, that for column header cells, we will
need to over-ride this specification by an explicit CLASS attribute on the column header cells,
this way.

 <TH class="center" ... > Header Cell Text </TH>

The HTML specification includes an alignment option of "char" (character) that would allow you
to specify a decimal delimiter character as the alignment character. Using this option, English-
speaking Web masters should be able to align their decimal numbers on a period, French-
speaking Web masters should be able to align their decimal numbers on a comma, and so on.
However, this feature does not currently seem to be widely supported in visual browsers, so it
should be avoided. If your data table contains decimal numbers, and you want to insure vertical
alignment of you numbers on the decimal point, all numbers should be padded to the right of the
decimal point to the length of the longest decimal. To avoid presenting a number with more
precision than it actually has, the pad character should be " " (non-breaking space) rather
than "0" (zero).

8.3 Vertical Cell Alignment

Vertical alignment is specified on the VALIGN attribute of TD and TH cells, or may be
controlled via CSS stylesheet settings.The default cell alignment is "middle", which is virtually
always wrong.

Generally speaking, the vertical alignment for header cells (both column and stub headers)
should be "top". Depending on the type of contents of the data cell, the appropriate vertical
alignment may be either "top" or "baseline". When data cells contain only a single number, the
vertical alignment should be "baseline", so that numbers line up horizontally with the last line of
the stub header. On the other hand, when the data cell may contain a multi-word note or
sentence, the vertical alignment should be "top".

The baseline is an imaginary line on which letters rest. Some letters with "descenders" may have
parts that extend below the baseline, such as the tail of "g" and "y". You can see where the
baseline falls by looking at a word such as "My". The bottom of the "M" rests on the baseline,
and you can see the tail of the "y" dips below the baseline. If you mix fonts of different sizes on
the same line (or in the same row of a table) and they are aligned according to the bottoms of
their descenders, it looks very messy. It looks much better if their baselines are aligned. This is
what VALIGN="BASELINE" does. It sets the row so that all the cells share the same baseline.
(See the iDocs Guide to HTML for a graphic that illustrates this situation.)

8.4 Dot Leaders

In printed tables, stub headers are often followed by a series of periods ("dot leaders") that help
the user track across the page.

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#adef-valign
http://www.htmlcodetutorial.com/tables/_TR_VALIGN.html

58

 East............ 109.2

 Southwest....... 99.3

 All Regions..... 101.5

There is no way to do this in HTML. Don't even think about it. In any event, in an HTML table,
most cells will be enclosed in lines, so the dot leaders are not necessary.

8.5 Footnotes

Notes, or footnotes, are often a part of of statistical data tables. Logically, the notes to a table are
just as much a part of the table as, say, the table's caption Unfortunately, the HTML specification
for tables makes no provision for notes, so we must cobble together note handling from other
HTML features.

The general topic of "notes" actually covers two related topics: note references (the little symbols
or numbers that appear in the table and refer you to a note) and the note proper (the text that the
footnote reference refers to).

Footnote references need to be marked in some way so that it is possible to distinguish them
from the normal cell contents. The most common practice is for note references to be
superscripted numbers. If a cell has more than one reference, the references are separated by
commas. You do this in HTML by enclosing the references list in <SUP> (superscript) tags.

 <TH>^{6, 7} Header Cell Text</TH>

In header cells (where the cell alignment is "left" or "center"), footnote references are usually
positioned after (that is, be to the right of) the cell contents. In data cells (where the cell
alignment is "right"), footnote references are usually positioned before (that is, to the left of) the
cell contents. Since the monospace font of data cells may make it hard to distinguish the footnote
reference from the contents of the cell, it may be desirable to set off the footnote references by
enclosing them in parentheses or brackets, or by putting one or two " " elements between
them and the cell contents.

The footnotes are usually positioned at the bottom of the table.

The real question with regard to footnotes is: How should footnote references behave? You
should make them links that jump to the corresponding footnote.

 ... ^{3} ...

 ...

 ... 3.

 Text of footnote 3 for table 2...

59

If a user clicks on the link and jumps too the footnote text, he can easily return to his original
position in the table by clicking on his browser's BACK button (or doing the hotkey equivalent).

Footnotes can be formatted in any way that you prefer. Here is a technique that seems to produce
a good appearance for footnotes.

The footnotes are placed in a borderless table, immediately following the data table. The footnote
table is specified to be the same width as the data table, so the width of the footnotes matches
that of the data table (in the following example, both tables WIDTH setting is "50%".) The
footnote table has two columns, one for the footnote number and one for the footnote text. The
cells containing the footnote numbers are horizontally aligned to the right and vertically aligned
to the top. The cells containing the footnote text are horizontally aligned to the left. Here is an
example.

Table With Footnotes 1999
1

Copper Ore
2

3
 999.99

1. This is a long footnote, in

order to show how the text

will wrap around in the data

cell of this invisible

table. Note that the

footnote numbers in the

first column of this

invisible table are

specified with VALIGN="TOP"

so that they line up with

the top of the footnote text

rather than being vertically

centered against it.

2. Text of footnote 2 for table

2.

3. Text of footnote 3 for table

2.

Here is the underlying HTML.

<TABLE BORDER="1" CELLSPACING="0" ALIGN="center"

CELLPADDING="5" WIDTH="50%">

 <TR>

 <TH> Table With Footnotes</TH>

 <TH class="center"> 1999

 ^{ 1 }

60

 </TH>

 </TR>

 <TR>

 <TH VALIGN="baseline"> Copper Ore

 ^{ 2 }

 </TH>

 <TD> <SUP> 3

999.99</SUP></TD>

 </TR>

</TABLE>

<TABLE BORDER="0" CELLSPACING="0" CELLPADDING="5"

ALIGN="center" WIDTH="50%">

 <TR>

 <TD CLASS="right" VALIGN="top">1.</TD>

 <TD CLASS="left">This is a long footnote, in order to show

how the

 text will wrap around in the data cell of this invisible

table.

 Note that the footnote numbers in the first column of

this

 invisible table are specified with VALIGN="TOP" so that

they

 line up with the top of the footnote text rather than

 being vertically centered against it.</TD>

 </TR>

 <TR>

 <TD CLASS="right" VALIGN="top">2.</TD>

 <TD CLASS="left">Text of footnote 2 for table 2. </TD>

 </TR>

 <TR>

 <TD CLASS="right" VALIGN="top">3.</TD>

 <TD CLASS="left">Text of footnote 3 for table 2.</TD>

 </TR>

</TABLE>

61

8.6 Rules

The RULES attribute on the TABLE element gives us some more options for formatting a table
visually. In this table, we'll specify just RULES="ROWS".

rules="rows"
Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

In this table, we'll specify RULES="COLS". If we specify CELLPADDING="0", then the
figures in the cells will bump right up against the vertical rules separating the columns — very
ugly. Here is where CSS styles can help us. We will specify that TD cells should have a left and
right margin of at least 1 em: {margin-left: 1em; margin-right: 1 em}.

rules="cols"
Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Now lets add in some column headers.

rules="cols 2 "

HEADER A
Header B Header C

Header B1 Header B2 Header C1 Header C2
Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Not very attractive. Let's try specifying RULES="GROUPS". To get a horizontal rule separating
the header cells from the body cells of the table, we need to make the headers into a group. We
can do this using the THEAD tag.

http://www.w3.org/TR/1999/REC-html401-19991224/struct/tables.html#adef-rules

62

rules="groups 1"

HEADER A
Header B Header C

Header B1 Header B2 Header C1 Header C2
Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

That is about as good as we're going to be able to do with RULES.

63

We'd like to be able to draw borders around all of the cells in the table head, but only vertical
rules between the column group, but unfortunately we can't. The problem with the RULES
attribute is that you can't provide separate RULES specifications for THEAD and TBODY.

It is possible to kludge something together by playing around with inserting <HR> tags at
various places. The best-looking result that I've been able to obtain was by inserting <HR>
before the text in the cells for headers B1, B2, C1, and C2. The result looks like this.

rules="groups 2"

HEADER A

Header B Header C

Header B1

Header B2

Header C1

Header C2

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

When the BASIC algorithm goes looking for column headers, the column header list for the
rightmost column would be:

 Header C

 <HR>Header C2

which might be acceptable when read by a screen reader.

We can get separators between the columns (rather than the groups) if we specify
RULES="COLS" and put in <HR> tags before the text in the cells for headers B1, B2, C1, and
C2, and before the text in each of the cells in the first row of data cells. Here is the result.

rules="cols 3 "

HEADER A

Header B Header C

Header B1

Header B2

Header C1

Header C2

Category X

999.99

999.99

999.99

999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

Category X 999.99 999.99 999.99 999.99

