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1. Introduction: Variance Estimation
and Interviewer Assignment for
the U.S. Consumer Expenditure
Interview Survey

For some general background on the Consumer Ex-
penditure (CE) Interview Survey and variance es-
timation therein, see Bureau of Labor Statistics
(1997) and Eltinge, Cho and Lahiri (2005). In the
current paper, four points are of special interest.

First, the CE Interview Survey is viewed primarily
to produce estimates of mean expenditure per con-
sumer unit (CU) within specified expenditure cate-
gories, and ratios of these means are used in calcu-
lation of the U.S. Consumer Price Index (CPI).

Second, the CE Survey uses a stratified multistage
probability sample of households which represents
the total U.S. civilian noninstitutional population.
To select a representative sample of the population,
the CE Survey divides the nation into many areas
and then selects some of these areas, and the selected
area is called a “Primary Sampling Unit” (PSU).
The PSUs are groups of counties, or independent
cities. There are self-representing PSUs and non
self-representing PSUs. The self-representing PSUs
are from metropolitan areas.There are 105 PSUs in
our CE interview data. The CE Interview Survey
collapsed 105 PSUs to form 80 variance PSUs and
then assigned two variance PSUs to each variance
stratum. The set of sample PSU’s used for the Sur-
vey consists of 101 areas; from which 87 urban areas
were selected by BLS for the CPI program (BLS
Handbook, 1997, p.163). Within each selected PSU,
a given sample CU, roughly equivalent to a house-
hold, is randomly assigned to one of two modes of
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data collection: interview or diary. The remainder of
this paper will consider only data from the CE Inter-
view Survey. The CE Interview Survey includes ro-
tating panels: each CU in the sample is interviewed
every 3 months over five calendar quarters and then
is dropped from the survey. Each quarter, approx-
imately 20 percent of the addresses are new to the
Survey. The interviewer uses a structured question-
naire to collect both demographic and expenditure
data in the Interview Survey.

Third, variance estimates are obtained by the
BRR method. Under a standard design with two
PSUs selected with replacement from each stratum,
the standard BRR method selects one PSU from
each stratum in a balanced manner to form a set of
half samples. These half samples are used to com-
pute the resulting variance estimator.

Fourth, in the traditional sampling literature, jus-
tification for this approach uses the (approximate)
independence of sample selection across strata and
PSUs, and focuses only on the sampling error com-
ponent of survey error. However, in the CE Inter-
view Survey, we often need to have variance estima-
tors that account for both sampling and measure-
ment error. In addition, interviewers often collect
data in more than one PSU. For some variables, the
interviewer-level component of measurement error
may be nontrivial. Consequently, one must con-
sider the modification of standard replicate-based
variance estimators that will account appropriately
for the correlation across strata and PSUs induced
by interviewer level measurement error. This pa-
per considers some simple variance estimators based
on a collapsed-stratum approach. The collapse pro-
cedure is intended to ensure that the newly paired
variance-PSUs do not share a common interviewer
but have similar population characteristics. Specific
matching algorithms are developed and applied to
data from the CE Interview Survey. These algo-
rithms arise from optimality criteria related to the
bias and stability of the variance estimator, and use
stratum and primary-unit level variables like popu-
lation size, as well as interviewer characteristics.



2. Variance Estimators Based on
Standard and Modified Pairings of
Variance PSUs

In keeping with common practice, work with vari-
ance estimation for the CE Survey has tended to
focus primarily on the variances of sampling errors
as such. Consider a survey variable Yhij for CU j
in design PSU i in design stratum h and define the
population total

Y =
L∑

h=1

Yh

where Yh =
Nh∑
i=1

Yhi, Yhi =
Mhi∑
j=1

Yhij , L is the num-

ber of design strata, and Nh is the number of design
PSUs in design stratum h and Mhi is the number
of CUs in design PSU i in design stratum h. Given
probability weights whij and a two-PSU-per-stratum

design, a simple estimator of Y is Ŷ =
L∑

h=1

Ŷh where

Ŷh = Ŷh1 + Ŷh2 and Ŷhi =
∑

j∈Shi

whij Ŷhij . In addi-

tion, a simple estimator of the design variance of Ŷ
is

V̂ (Ŷ ) =
L∑

h=1

V̂ (Ŷh) . (1)

where
V̂ (Ŷh) =

(
Ŷh1 − Ŷh2

)2

(2)

Under the assumption that sampling is indepen-
dent across strata and that design PSUs are selected
with replacement, V̂ (Ŷ ) is unbiased for the design
variance of Ŷ . Under without-replacement sampling
of PSUs and additional conditions, V̂ (Ŷ ) will be a
conservative variance estimator, due to omission of
the finite population correction.

However, we sometimes wish to have an estima-
tor of variance that accounts for both sampling and
nonsampling errors. Under the conditions described
in Section 1, the estimator (1) may have a negative
bias if a given interviewer collects data in both PSUs
selected from a given stratum h. Consequently, one
may wish to replace the variance estimator (1) with

V̂ ∗(Ŷ ) =
G∑

g=1

V̂ ∗(Ŷg) (3)

where the {2×L} design PSUs are partitioned into
G groups called “variance strata”; variance stratum
g contains n(g) design PSUs; these n(g) design PSUs

are placed into two groups called “variance PSUs”
s(g1) and s(g2) such that no interviewer collects data
in both s(g1) and s(g2); Ŷ(g) = Ŷ(g1) + Ŷ(g2) and

V̂ ∗(Ŷ(g)) =
(
Ŷ(g1) − Ŷ(g2)

)2

. Under the assump-

tion that the expectations of Ŷ(g1) and Ŷ(g2) are
equal and additional regularity conditions, V̂ ∗(Ŷ )
will be approximately unbiased or conservative for
the combined variance of Ŷ . The remainder of this
paper presents algorithms for construction of vari-
ance strata and PSUs that satisfy the condition that
no interviewer collects data in both s(g1) and s(g2) .

3. Algorithms for Optimal Pairing

We developed three algorithms to implement the
general ideas of Section 2.

First, in some public-use datasets, variance strata
and PSUs are not identified explicitly, but are de-
fined implicitly by the inclusion or exclusion of
sample elements in specific replicate-weight groups.
Section 3.1 presents an algorithm for identification
of current variance stratum and PSU membership
based on the patterns of replicate weights assigned
to each sample element.

Second, we need to re-group our PSUs into new
variance strata and PSUs such that within a new
stratum, data collected by a given interviewer will
be contained in no more than one new variance PSU,
which will in turn allow the computation of the new
variance estimator (3). Section 3.2 presents a simple
algorithm for this task.

Finally Section 3.3 presents an algorithm for as-
signment of replicate weights based on the newly-
defined variance strata and PSUs, and Section 3.4
discusses the use of commercial software to imple-
ment the algorithms in Sections 3.1-3.3.

3.1 Algorithm for identification of current
variance stratum and PSU membership
from current replicate weight patterns

Before we can implement the ideas of Section 2, we
need to identify the variance stratum and PSU as-
signments used in our current variance estimator (1),
or replication-based versions thereof. In some cases,
the public-use dataset and documentation provides
explicit labels for these strata and PSUs. In other
cases, the dataset omits this information and pro-
vides only the replicate weights needed for calcula-
tion of a variance estimator through balanced re-
peated replication. For the latter cases, note that
sample elements have the same replicate weight pat-
terns across the replicates if and only if they are in
the same variance stratum. Also note that sample



elements have complementary replicate weight pat-
terns across the replicates if and only if they are in
the same variance stratum but also in the other vari-
ance PSU. Therefore, we can use the replicate-weight
pattern to identify variance stratum and variance
PSU membership using the following algorithm:

1. Let Q be the number of replicate weights
used for the current BRR procedure, and let
w̃jq be the BRR weight for sample element j
and replicate q. Define w∗

jq = {1 if w̃jq 6=
0 ; 0 otherwise}. Change values of weights in
such a way that new weights equal 0 if old
weights were equal to 0; otherwise new weights
equal 1. For cases in which the weights w̃jq were
given by the Fay BRR method with a factor K,
new weights equal 0 if old weights were equal
to { full weights × K }otherwise new weights
equal 1 (see Appendix A).

2. Order the data from Step 2 by values of new
weights.

3. Group data from Step 3 by the same new weight
pattern across the Q replicates. Each group of
data is a variance PSU. Note that the first vari-
ance PSU and the last variance PSU are comple-
mentary and belong to the same variance stra-
tum; the second variance PSU and the second to
the last variance PSU are complementary and
also belong to the same variance stratum. In
the same manner, find all complementary vari-
ance PSUs, and identify variance stratum and
variance PSU membership.

3.2 Algorithms for matching variance PSUs

Using the following algorithm, we assigned variance
PSUs which do not share interviewers to each vari-
ance stratum:

1. Make a two-column dataset with variance PSU
and interviewer variables.

2. Read the data from Step 1 into an array, b, so
that b[i] is a set of interviewers in ith variance
PSU. Note that a number of elements of b[i]
may be different from a number of elements of
b[j].

3. Let p be a number of variance PSUs. Create
a p × p penalty matrix, M, with an arbitrary
initial value in each cell.

4. Assign a value to M[i,j] according to the op-
timality criteria: for example, M[i,j]=0 if b[i]
and b[j] are disjointed; M[i,j]=1 otherwise.

5. Find the row whose row sum is the largest. If
k-th row has the largest sum, then k-th variance
PSU is the hardest to match with other variance
PSUs.

6. Let ‘x’ be the largest value of M[i,j]. Make the
every element of k-th column larger than ‘x’,
the largest number, so that k-th variance PSU
will not be matched with other variance PSU
later.

7. In the k-th row, find the index ‘j’ whose element
is the smallest. Make the every element of j-
th column larger than ‘x’, the largest number,
so that j-th variance PSU will not be matched
with other variance PSU later.

8. Match k-th variance PSU and j-th variance
PSU. Add the matched pair [k,j] to the list of
matched pairs, ‘matched’.

9. Make every element of j-th row and k-th row 0
so that j-th row and k-row will not be chosen
as the ones with the maximum row sum.

10. Repeat the procedure by choosing the row with
next largest row sum.

Note that there is no unique pairing in this case.
We can reward a pairing such as one with equal num-
bers of interviewers or any kind at Step 4.

3.3 Algorithms for attaching new BRR
weights

Each rematched pair in a variance stratum did not
share the common interviewers. Choose the num-
ber of replicates, Q, in such a way that Q is the
next higher multiple of 4 of the number of vari-
ance strata, G. We also have the full-sample set of
weights. For the purpose of the current BRR proce-
dure, we treated the weights as fixed. Consequently,
this BRR method will not account explicitly for the
additional components of variability associated with
other weight adjustment steps, and the dependence
of these additional steps on the other units included
in the sample. We assigned weights to rematched
variance PSUs using the following algorithm:

1. From a Q × Q Hadamard matrix, choose only
G variance strata with Q replicate weights.

2. Choose one variance PSU from each variance
stratum based on the Hadamard matrix by
choosing, say, the first group, if the correspond-
ing entry value of the Hadamard matrix is 1.

3. Join the new weight (0 or 1) from Step 2 with
a data with variance strata and PSU variables.



4. Merge new weight data from Step 3 with the
original data by variance PSU variable.

5. Compute {new weight × final weights × 2} for
new BRR weights.

3.4 Use of Commercial Software

The previous three subsections presented three al-
gorithms. In implementation of the first two algo-
rithms with commercial software, we found it impor-
tant to use packages with the following characteris-
tics.

First, to implement the membership-identification
algorithm in Section 3.1, we needed a package that
enables us to group sampling units with the same
replicate weight patterns across the replicates. We
found that SAS had the features required: SAS Proc
Sort lets us sort data by multiple variables such as
the Q replicate weights in our example. In choosing
software, SAS, being the standard statistical soft-
ware, at BLS was our first choice.

Second, to implement the variance PSU matching
algorithm in Section 3.2, it was necessary to conduct
all possible pairwise comparisons among variance
PSUs, and see whether two variance PSUs share
common interviewers. Note that a number of in-
terviewers of a variance PSU may differ from the
number of interviewers of the other variance PSU.
In Maple, defining an unbalanced array is straight-
forward. In SAS however, we found it a challenging
task. Maple has a rich set of built-in data structures
such as sequences, lists, and sets (Heal et al. 1996).
It is much smoother to implement a collapsing pro-
cedure using Maple, due to its specific features.

4. Applications to the U.S. Con-
sumer Expenditure Survey

The CE uses two modes of data collection, diary
and interview. The principal reason for this use of
multiple collection modes is that some expenditures
(generally small or frequently purchased items) are
believed to be more readily captured through a di-
ary, while other items (generally purchases that are
larger, less frequent, or otherwise more salient) are
more readily captured through a periodic in-person
interview (Eltinge et al., 2000). Expenditures are re-
ported at a relatively fine level of aggregation known
as the six digit Universal Classification Code (UCC)
level (Eltinge et al., 2000).

We considered only the components of the mean
monthly expenditure of the CE Interview Survey
that contribute to current CE production estimates.
In particular, we exclude interview data collected for
UCCs that are published on the basis of diary data

only. Consequently, the “Overall Mean” entries are
based on data from the 432 UCCs for which publica-
tion is based on the interview reports. In addition,
the entries for “Apparel” are based on apparel UCCs
that are published from interview data; similarly for
home furnishings; travel and utilities.

The data used for this analysis was generated
from the monthly expenditures (MTABQ) files and
the CU characteristics and income (FMLYQ) files
of the Phase 3 databases. For computing the mean
monthly expenditure, we used the UCCs collected in
the Interview Survey and used for publishing quar-
terly expenditures (see 2000 Interview Stub Para-
meter File). We didn’t include Pension and Social
Security expenditures which were stored in the in-
come (ITAB) file.

4.1 PSU Characteristics Used in the Stra-
tum Collapse Method

The original sample design included 105 PSUs
(31 self-representing and 74 non self-representing).
Three self-representing PSUs were each randomly
partitioned into four variance PSUs; for each of these
three cases, the four variance PSUs were grouped
into two variance strata. In addition, four self-
representing PSUs were each randomly partitioned
into two variance PSUs. In each of these four cases,
the resulting pair of variance PSUs formed a vari-
ance stratum. Also, 24 self-representing PSUs were
placed into 12 pairs. Each of these 24 PSUs was
then randomly partitioned into two half-PSUs, and
matched with a half-PSU from the other PSU in its
pair. This resulted in another 24 variance PSUs. Six
of the large non self-representing PSUs became vari-
ance PSUs, and were paired to form a total of three
variance strata. Forty-four non self-representing
PSUs were paired to form 22 variance PSUs con-
tained in 11 variance strata. Finally, 24 PSUs were
grouped into eight variance PSUs containing three
original PSUs each; these in turn were grouped into
four variance strata. In summary, all of the self-
representing PSUs were split into two or four sec-
tions in forming the variance PSUs. None of the
non self-representing PSUs were split. Every one of
the 80 variance PSUs could be mapped back to 105
original PSUs.

Therefore, each non self-representing PSU is con-
tained entirely within one variance PSU. Thus,
for variance PSUs constructed from non self-
representing PSUs, interviewers are contained in
more than one variance PSU only if that inter-
viewer was in more than one original PSU. However,
each self-representing PSU is contained in either two
or four variance PSUs. Consequently, for variance



PSUs constructed from self-representing PSUs, in-
terviewers may be in more than one variance PSU
solely because of the random partition process.

Note that self-representing PSUs were collapsed
only with self-representing ones, and non self-
representing PSUs were collapsed only with non
self-representing ones. Hence we call a variance
PSU formed with self-representing PSUs a self-
representing variance PSU, and a variance PSU
formed with non self-representing PSUs a non self-
representing variance PSU.

The CE Interview Survey had 792 interviewers in
Year 2000, and more than half of those interviewers
collected data in more than one variance PSU.

5. Discussion

Depending on the algorithms, it is sometimes nec-
essary to run a number of iterations to assign vari-
ance PSUs which do not share the interviewers to
each variance stratum for all variance strata. We
have currently developed an algorithm which shows
the separability (No-Common-Interviewers) through
one iteration. It is possible to incorporate various
optimality criteria in the objective function matrix
used to construct a given set of variance PSUs and
strata. For example, one may match pairs on the
basis of the number of interviewers assigned to a
variance PSU, or on the basis of the number of in-
terviewers that a given variance PSU shared with
other variance PSUs, or on the basis of population
characteristic variable in variance PSU pairing.
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7. Appendix A: Modifications of Sec-
tion 3.1 for Fay BRR Weights

For some general background on the Fay BRR
method, see Fay (1989) and Judkins (1990). Stan-
dard BRR methods define replicate weights w̃jq that
(for a given replicate q and sample element j) are
equal to either zero or approximately 2 × wj Full,
the full-sample weight assigned to element j in com-
putation of Ŷ , say. In contrast with this standard
method, the Fay method defines replicate weights
wjq Fay that (under conditions) are approximately
equal to {(2−K)×wj Full} or {K×wj Full} where K
equals some value in the interval (0, 1); For example,
Fay (1989) considers use of K = 0.5. The above-
mentioned approximation is not exact in cases in
which one reproduces weight modification steps (e.g.
poststratification for each set of replicate weights),
as generally preferred under a theoretically rigorous
development. In some special cases, these modifica-
tions can lead to substantial variability in the result-
ing replicate weights wjq Fay .

With the exception of extreme cases of the above-
mentioned variability, one may identify membership
in current variance strata and PSUs from Fay BRR
weights through the algorithm of Section 3.1, with
step 2 replaced by 2

′
Define w∗

jq = {1 if
wjq F ay

wj F ull
>

0.5 ; 0 otherwise}.

8. Appendix B

8.1 SAS codes for finding current replicate
weight patterns

* Change values of weights to 1 or 0 values to find
weight pattern easily;
* If old weight > 0 then new weight = 1, and old weight
=0 then new weight = 0;
* In our example, we have 44 replicate weights;

data newdata (drop= I);
set olddata;
array Weight(44) wtrep01-wtrep44;
do I=1 to 44;
if Weight(I)>0 then Weight(I)=1;
end;
run;

* Sort data by replicate weights (1 or 0);

proc sort data= newdata;
by wtrep01-wtrep44;
run;

* Note that variance PSUs have the same weight
patterns across the replicates;

* Assign new identification number to variance PSUs;

data final;

set newdata;

by wtrep01-wtrep44;

retain ID 0;

if first.wtrep44 then ID +1;

run;

8.2 Maple codes for matching of PSUs

] A ‘]’ character causes Maple to ignore all remaining
text on the line, and is used for comments like this one.

] ] creating macros: maxi, mini, maxind, minind ] ]
] an example ‘a’ is a list
> restart:
> a:=[1,4,5,2,3,3, 1, 3,5]:
] maxi is the maximum value of observations
> maxi:=a->sort(a)[nops(a)]:
] mini is the minimum value of observations
> mini:=a->sort(a)[1]:
] if value < max, then keep adding index
> maxind:=proc(a) local i,k;
> k:=1: for i from 1 to nops(a)
> while a[i]<maxi(a) do k:=k+1;
> end do; k;
> end:
] if value > min, then keep adding index
> minind:=proc(a) local i,k;
> k:=1: for i from 1 to nops(a)
> while a[i]>mini(a) do k:=k+1;
> end do; k;
> end:
] example of actual values of maxi, mini, maxind,
] minind for ‘a’
> a; maxi(a); mini(a); maxind(a); minind(a);
[ 1, 4, 5, 2, 3, 3, 1, 3, 5 ]
5
1
3
1

] ] creating macro: rs which is row sum for each row ] ]

]using an example ‘m’

> n:=4:

> m:=[seq([seq(i*j,i=1..n)],j=1..n)]:

> i:=‘i’: j:=‘j’:

> rs:=proc(m) local i,n, an: n:=nops(m[1]);

> for i to n do;

> an[i]:=sum(m[i,j],j=1..n): od;

> [seq(an[i],i=1..n)];

> end:

] ] numerical results using an example ‘m’] ]

] display ‘m’;

> m;



[ [1, 2, 3, 4], [2, 4, 6, 8], [3, 6, 9, 12], [4, 8, 12, 16]]

] display row sums for matrix ‘m’;

> rs(m);

[10, 20, 30, 40]

] display which row has the maximum row sum of ‘m’

> maxind(rs(m));

4

] display which row has the minimum row sum in ‘m’;

> minind(rs(m));

1

]‘map’ is a built-in function is to apply ‘maxi’ function

] to each row of ‘m’; ‘m’ has four rows,

] and in each row of ‘m’, it will display maximum

> map(maxi,m);

[4, 8, 12, 16]

] ] creating macro ‘fm’ ] ]

] fm (first match) is a key macro which uses all previous

] macros

] Copy the matrix ‘m’ to ‘mt’ so that ‘m’ is not changed.

] Find maximim value of each row of ‘mt’,

] and find the maximum value

] among those maximum values, and call it ‘x’.

] Put matched pairs to ‘matched’.

] ‘matched’ is empty at the beginning;

] Find the row whose rowsum is the largest.

] Make the every element of k-th column larger

] than ‘x’, the largest number so that k-th PSU

] will not be matched with other group later.

] In the k-th row,

] find the index ‘j’ whose element is the smallest.

] Make the every element of j-th column larger

] than the largest number, ‘x’ so that

] j-th PSU will not be matched with other group later.

] Match k-th group and j-th group.

] Add the matched pair [k,j] to

] the list of matched pairs, ‘matched’.

] Make every element of j-th row and k-th row 0

] so that j-th row and k-row will not be chosen

] as the ones with the maximum row sum.

] Repeat the procedure by choosing the row

] with maximum row sum.

> fm:=proc(m) local i,x,j,mt,k,ii,jj, c, matched;

> mt:=m: x:=maxi(map(maxi,mt)): matched:=[ ]:

for c from 1 to nops(m)/2

> do

> k:=maxind(rs(mt)):

> for jj from 1 to nops(m) do mt[jj,k]:=x+1: end do:

> j:=minind(mt[k]): for ii from 1 to nops(m) do

mt[ii,j]:=x+1: end do:

> matched:=[op(matched),[k,j]];

for jj from 1 to nops(m) do mt[k,jj]:=0:

> mt[j,jj]:=0:end do: end do: matched; end:

] ] In the example ‘m’, ] ]

] the largest value in ‘m’, maxi(map(maxi,m))=16.

] hence x= 16.

] The fourth row has the largest row sum.

] Set every element in the fourth column to 17

] which is x+1.

] The first element of the fourth row

] has the smallest value.

] Set every element in the first column to 17

] which is x+1.

] Match the fourth group with the first group,

] and now ‘matched’ is [[4,1]].

] Then replace every element in the first and

] the fourth rows to 0. Repeat the procedure

] by choosing the row with maximum row sum.

] Note the third row has the largest row sum.

] Finally, ‘matched’ is [[4,1],[3,2]].

> m;

[ [1, 2, 3, 4], [2, 4, 6, 8], [3, 6, 9, 12], [4, 8, 12, 16]]

> fm(m);

[[4, 1], [3, 2]]

> n:=‘n’:

] ] Define ‘a’ the list of the data. ] ]

] “c:/mydata.txt” has variance PSU

] and interviewers ID information.

> a:=readdata(“c:/mydata.txt”, integer,2):

] mm is the number of entries.

> mm:=nops(a);

mm := 1655

] p is the number of variance PSUs.

> p:=80:

] b is the list of each variance PSU, and

] elements of b[i] are interviewers ID numbers

] in ith variance PSU.

> b:=[seq({}, i=1..p)]:

> for i from 1 to p do

> for j from 1 to mm do

> if evalb(a[j,1]=i) then b[i]:={op(b[i]),a[j,2]}; end if;

> end do;

> end do;

> i:=‘i’: j:=‘j’:

] Example of the third variance PSU in our example.

> b[3];

{204, 205, 210, 215, 216, 221, 230, 240, 243, 247, 249,

250, 255, 259, 265, 267, 357, 358, 360, 383, 387, 391,

398, 400, 408}
] Construct a p × p penalty matrix where p=80

] in our example.

> m:=[seq([seq(2,i=1..p)],j=1..p)]:

> for i from 1 to p do

> for j from 1 to p do

> if evalb(b[i] intersect b[j] ={}) then m[i,j]:=0: else



> m[i,j]:=1:

> end if;

> end do;

> end do;

> i:=‘i’: j:=‘j’:

> result:=fm(m);

8.3 SAS codes for attaching new BRR
weights

* The following SAS codes describe steps 1-3 in Section

3.3;

* In our example, we have 40 variance strata.

Hence, we chose 44*44 Hadarmard matrix;

* We changed ‘+’ and ‘-’ in the Hadarmard matrix

to 1 and 0, respectively, and saved it to C:\ MyDirectory

\ 44Pal.xls;

* We then imported the worksheet from SAS;

proc import out=Hadarmard44 datafile= “C:\ MyDi-

rectory \ 44Pal.xls” replace; getnames=No;

run;

* ‘in.paired’ is 80*2 matrix which has two vari-

ables, variance strata and variance PSU;

* Sort ‘in.paired’ by variance strata, and named output

file ‘paired’;

libname in ‘C:\ MyDirectory ’;

proc sort data=in.paired out=paired;

by strata;

run;

proc iml;

use Hadarmard44;

* remove the first row of Hadarmard whose en-

tries are 1 and then all 0 values;

Hadarmard = Hadarmard[2:44,];

RepWt = j(80,44,0);

do i=1 to 40;

do j=1 to 44;

* Choose a variance PSU from each variance stra-

tum based on the Hadamard matrix;

* For example:;

* if Hadarmard[,]=1 then pick the first one by setting

first one’s value=1;

* if Hadarmard[,]=0 then pick the second one by setting

second one’s value=1;

if Hadarmard[i,j]=1 then RepWt[(2*i -1),j]=1;

else if Hadarmard[i,j]=0 then RepWt[(2*i),j]=1;

else RepWt[i,j]=0;

end;

end;

* RepWt (80*44) is a matrix of replicate weights,

1 or 0, based on Hadarmard matrix;

* Create NewWt by adding variance strata and variance

PSUs information to RepWt

use paired;

NewWt = paired ‖ RepWt;

name ={Strata PSU wtnew01 wtnew02 wtnew03

wtnew04 wtnew05 wtnew06 wtnew07 wtnew08 wtnew09

wtnew10 wtnew11 wtnew12 wtnew13 wtnew14 wtnew15

wtnew16 wtnew17 wtnew18 wtnew19 wtnew20 wtnew21

wtnew22 wtnew23 wtnew24 wtnew25 wtnew26 wtnew27

wtnew28 wtnew29 wtnew30 wtnew31 wtnew32 wtnew33

wtnew34 wtnew35 wtnew36 wtnew37 wtnew38 wtnew39

wtnew40 wtnew41 wtnew42 wtnew43 wtnew44};
create in.NewWt from NewWt [colname=name];

append from NewWt;

quit;


