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Abstract
Using software being developed by the National Bank of Belgium to estimate and select among Frequency Specific Models,

we investigate how often these models are selected over the Box-Jenkins Airline model, which they generalize, for a set of
BLS series and a set of Census Bureau series. Consequences for seasonal adjustment are considered, as is the stability under
future data additions of the model selection procedure used to select among these models.
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1. Frequency Specific Models

We present results from a study of the applicability of the Frequency Specific Models (FSMs) of Aston, Findley,
McElroy, Wills and Martin (2007) to two sets of seasonal economic time series, one set from the Bureau of Labor
Statistics (BLS), the other from the U.S. Census Bureau. These models are generalizations of the most widely used
seasonal ARIMA model, the (0,1,1)(0,1,1) or Airline model of Box and Jenkins (1970). They make possible improved
modeling of series whose seasonal movements are dominated by frequency components with frequencies in a proper
subset of the seasonal frequencies 1, 2, 3, 4, 5 and 6 cycles per year (for monthly data). Our study was done with a
prototype of a versatile menu-driven program named GenAirNBB that is being developed for Internet distribution
by the National Bank of Belgium. Its model-based seasonal adjustments shown are not official seasonal adjustments
of any of the authors’ agencies.

For a monthly seasonal time series Zt, the Box-Jenkins Airline model is

(1−B)(1−B12)Zt = (1− θB)(1−ΘB12)εt, (1)

where εt is a zero-mean i.i.d. process with finite variance. Here B is the backshift operator; BZt = Zt−1, B12εt =
εt−12, etc. The coefficients are constrained to satisfy |θ| , |Θ| ≤ 1, with no loss of generality for Gaussian εt.

If Θ ≥ 0, as is typical for modeled macroeconomic time series, including all series in our study, (1) can be written
as
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Thus, the same coefficient Θ1/12 applies in each factor associated with the suite of seasonal frequencies j = 1, 2, . . . , 6
cycles/year. (Note that 1+Θ1/12B = 1−Θ1/12 cos( 2π6

12 )B.) It also occurs in one of the two nonseasonal MA factors
on the r.h.s. that is paired with a trend differencing operator 1−B on the l.h.s.

An extreme alternative to (2) is the 8-coefficient frequency specific model in which every occurrence of Θ1/12 in
(2) is replaced by a different coefficient,
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with |cj | ≤ 1, 0 ≤ j ≤ 6. However, with monthly series of typical lengths, (3) has the undesirable property of usually
having spurious unit estimates cj = 1 for one or more 0 ≤ j ≤ 6, falsely indicating perfectly predictable behavior at
some of these frequencies. (Theoretical and empirical explanations for this phenomenon are discussed in Aston et
al., 2007.) To overcome this deficiency, constraints can be placed on the coefficient vector

c =
(

θ c0; c1 c2 c3 c4 c5 c6

)
(4)

of (3). Aston et al. (2007) considered two types of constraints on (4). In their 3-coefficent type (our focus), c1, . . . , c6

have only two distinct values, denoted c1 and c2, and c0 = c1:
There are 6 models in which c2 applies to a single frequency. E.g., the {1} model with
c =

(
θ c1; c2 c1 c1 c1 c1 c1

)
.

There are 15 models in which c2 applies to two frequencies. E.g., the {1,4} model with
c =

(
θ c1; c2 c1 c1 c2 c1 c1

)
.

Finally, there are 20 models in which c2 applies to three frequencies. E.g., the {1,2,4 model with
c =

(
θ c1; c2 c2 c1 c2 c1 c1

)
.

Thus there are 41 3-coefficient models, and our notation for each is the set of seasonal frequencies associated with
c2.

Aston et al. (2007) also considered 4-coefficient specializations of (4) in which cj , 1 ≤ j ≤ 6 have only two distinct
values, denoted c1 and c2, and c0 is unconstrained. These 4-coefficient models do not occur in our study. (They
were not preferred over the selected 3-coefficient models for any series.)

2. Model Selection Criteria Generalizing AIC

Akaike’s AIC. For a model for a time series, let ϑ̂, dim ϑ, and L(ϑ̂) denote respectively the maximum likelihood
parameter vector, its dimension, and the associated maximum log-likelihood value.

The estimated model’s AIC is defined by

AIC
(
ϑ̂
)

= −2L(ϑ̂) + 2 dim ϑ.

If AIC(ϑ̂A) and AIC(ϑ̂F ) denote the AIC values of the Airline model and an FSM, Akaike’s Minimum AIC criterion
(MAIC), see Konishi and Kitagawa (2007), says that the FSM is to be preferred if

AIC(ϑ̂A) > AIC(ϑ̂F ).

MAIC’s asymptotic Type I error probability with a single FSM F is achieved for a family F of several FSMs
with the same number of coefficients as F by preferring the minimum AIC model in F over the Airline model when

AIC(ϑ̂A) > min
F∈F

AIC(ϑ̂F ) + ∆F ,

holds for a certain ∆F > 0. We call this criterion GMAIC.
For the 3-coefficient families F considered here, the simulation-based Table 1 of Aston et al. (2007) gives ∆F = 2.8

for the family of 6 models with c2 assigned to a single frequency and ∆F = 4.6 for the family of all 41 3- coefficient
models.

In Aston et al. (2007), this model selection procedure was applied to all 72 Census Bureau Manufacturing, Import
and Export series modeled with the Airline model for production seasonal adjustment in 2004. FSMs were preferable
for 21 series (29%). 17 of the preferable FSMs were 3-coefficient models. 18 preferable FSMs were invertible (i.e.
all |cj | < 1). At present, there is no justification for the use of MAIC for series with truly noninvertible models.
Various special arguments used to prefer FSMs estimated as noninvertible are given in Aston et al. (2007).

3. New Results for Census Bureau and BLS Series

We first present summary FSM results obtained with GenAirNBB for series with the final year of data omitted. The
full data span for the Census Bureau series runs from January 1992 through December 2007. The full data span for
the BLS series runs from January 1993 through December 2004. The regressors (trading day, holiday, outlier) used
with the FSMs are those used with the airline model. The precise sets of series and their GMAIC results, obtained
by omitting the last year of data, are



• Among all 10 Census Bureau Monthly Retail Trade and Food Service series currently modeled for direct seasonal
adjustment with the Airline model: FSMs (all 3-coefficient and invertible) are selected for 3 series (30%).

• Among all 52 BLS series modeled with the Airline model in the study of Scott, Tiller and Chow (2007): FSMs
(all 3-coefficient, all but one invertible) are selected for 10 series (19%). The estimate c2 = 1 causing the one
FSM to be noninvertible is treated as spurious because the same FSM is the GMAIC model for the full series,
where c2 = .90.

Remark 1. If we remove from consideration the 17 BLS series with a seasonal factor range (max - min) smaller
than the smallest seasonal factor range, 3.54 percent, of a BLS series for which an FSM is accepted, then the success
rate for FSMs for BLS series becomes 10/35 (29%). (The smallest seasonal factor range among the 10 Census Bureau
series is 31.14 percent.)

Next, going beyond issues considered in Aston et al. (2007), we examine the effect on model selection of extending
each of the 13 series to include the final year of data that had been withheld. For the Airline model, this means
applying to each full series X-12-ARIMA’s implementation of the automatic model selection procedure of Gómez
and Maravall (2000) (in which AIC in not used for ARIMA model selection) to check if a different seasonal ARIMA
model is selected instead of the airline model. For the FSMs, it means checking if the FSM chosen for the shorter
series still has the smallest AIC among the 41 FSMs fit to the full series. For the FSMs, we considered a model
change for the extended series to be negligible when the minimum AIC among FSMs differed from the AIC of the
initially chosen FSM by less than 1.0, see Burnham and Anderson (2004).

Summary Results From Adding Data to Series With an FSM Preferred

• For the 3 Census Bureau series: 0 changes from the Airline model; 0 FSM changes

• For the 10 BLS series: 1 change from the Airline model, to an ARIMA(1,1,1)(1,1,1)–whose AIC is less than
the AIC of the GMAIC FSM, the same FSM chosen for the shorter series;
4 FSM changes—1 nonnegligible, from {1,4} to {1,2,4}. Details are presented below.

Remark 2. In seasonal adjustment practice, the model used is usually not changed from one year to the next
unless model quality diagnostics (e.g. Ljung-Box Q statistics or spectrum diagnostics) indicate that it is inadequate
for the extended series.

3.1 Details for Two Series

We finish by presenting results for two illustrative examples. In the tables, for the Airline model, Θ = c12
1 = c12

2 .
A Ljung-Box Q statistic, testing zero autocorrelation of the model residuals at a suite of lags with maximum lag
at most 24, is counted as statistically significant if its p-value is below .05. The p-values of Q at maximum lags 12
and 24 are denoted p12 and p24 and are shown when significant. For the canonical seasonal adjustments of Hillmer
and Tiao (1982), with an Airline model, values Θ ≤ 0.35 suggest variable seasonal patterns and result in seasonal
adjustments with quite substantial smoothing. By contrast, values Θ ≥ .80 suggest quite stable seasonal patterns
and result in only quite localized seasonal movement suppression, see Findley and Martin (2006). Correspondingly,
for an FSM, when c12

2 is much smaller than Θ and c12
1 is not much larger than Θ, the canonical seasonal adjustment

and trend (obtained from GenAirNBB) are noticeably smoother than the Airline model’s, as is seen for the example
series in Figures 2,3, 5 and 6 below for the last four years of the full series. In the nonseasonal MA factors, the closer
the coefficients are to one, the more linear are the canonical trends. Small coefficients are associated with highly
variable trends, see Figures 6 and 7.

3.1.1 A Census Bureau Food Service Series

Table 1. Model Results for Sales by Restaurants and Bars
Series End Selected Model θ c1 c12

1 c12
2 No. Sig. Qs p12, p24 < 05 AIC

12/06 Airline .32 .97 .67 .67 11 p12 ' .02 -1013.7
12/06 {1} .55 .98 .76 .22 0 - -1020.8
12/07 Airline .35 .97 .68 .68 7 - -1093.4
12/07 {1} .56 .98 .75 .24 1 - -1099.4

The FSM reduces the number of significant Qs and has c12
2 << Θ. Figure 1 shows that each calendar month’s

seasonal factors from the {1} model for the full series move much less smoothly and with greater range than the
Airline model’s, resulting in greater smoothness in the seasonal adjustment and trend in Figures 2 and 3.



3.1.2 A BLS Current Employment Series

Table 2. Model Results for Performing Arts and Spectator Sports Payroll Employment
Series End Selected Model θ c1 c12

1 c12
2 No. sig. Qs p12, p24 < 05 AIC

12/03 Airline -.07 .96 .62 .62 21 p12, p24 ' .01 2446.7
12/03 {1, 4} .01 .98 .78 .32 4 - 2439.7
12/04 Airline -.07 .95 .55 .55 19 p12, p24 ' .01 2688.9
12/04 {1, 2, 4} .07 .99 .84 .34 1 - 2679.7

The FSMs reduce the number of significant Qs and have c12
2 << Θ. Figure 4 shows that each calendar month’s

seasonal factors from the {1,2,4} model for the full series move less smoothly and with greater range than the Airline
model’s, resulting usually in greater smoothness in the seasonal adjustment and trend in Figures 5 and 6.

For the full series, the {1,4} model still has 4 significant Qs (at lags 4–7) and its AIC of 2681.8 is larger by 2.1
than the AIC of the {1,2,4} model Table 2, where it is seen that the latter model has 1 significant Q. Fig. 7. shows
that this {1,2,4} model’s trend has mostly smaller month-to-month changes in the final years than the {1,4} model’s
trend.
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Monthly Sales By Restaurants and Bars
Seasonal Monthly Sub-Plots (1992-2007)
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Figure 1: The {1} model’s seasonal factors vary more and with greater ranges than the Airline model’s over each
calendar month, as might be expected from c12

2 << Θ and c12
1 ≈ Θ.



Monthly Sales By Restaurants and Bars
Seasonally Adjusted Series
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Figure 2: The {1} model’s seasonal adjustment is mostly smoother than the Airline model’s. (Shown for the last
four years.)

Monthly Sales By Restaurants and Bars
Trend
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Figure 3: Relative to the {1} model’s trend, the Airline model’s trend has additional small oscillations of doubtful
significance. (Shown for the last four years.)



Performing Arts & Sports Expenditures
 Seasonal Monthly Sub-Plots (1993-2004)
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Figure 4: The {1,2,4} model’s seasonal factors range more widely and slightly less smoothly than the Airline
model’s in each calendar month.

Performing Arts & Sports Expenditures
Seasonally Adjusted Series
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Figure 5: The {1,2,4} model’s seasonal adjustment oscillates less widely than the Airline model’s. (Shown for the
last four years.)



Performing Arts & Sports Expenditures
Trend
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Figure 6: The {1,2,4} model’s trend is smoother than the Airline model’s, with month-to-month changes that are
often noticeably smaller. (Shown for the last four years.)

Performing Arts & Sports Expenditures
Trend
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Figure 7: The {1,2,4} model’s trend oscillates less widely than the {1,4} model’s in the last years of the series,
resulting in usually smaller month-to-month changes.


