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Abstract
This paper considers sensitivity analyses intended to supplement standard simulation-based evaluations of survey procedures.
The principal ideas are motivated by, and illustrated with, a study of bootstrap variance estimators for the U.S. International
Price Program.
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1. Introduction

For many large-scale surveys, a complete characterization of the survey process involves a complex assemblage of
many factors, including the frame; the sample design; instrument design; field work; edit, imputation and weighting
methods; and computational steps in calculation of point estimators, variance estimators, and inferential statistics
like interval estimators. The statistical properties of the resulting survey procedure (e.g., bias, variance or confidence-
interval coverage rates) depend on random processes that may affect each of the factors above.

Survey methodologists often use simulation studies to obtain some indications of the practical impact of some
of these factors on specific survey procedures. However, due to the abovementioned complexities, the designs of
these simulation studies generally use relatively simple approximations to the true survey design, and focus primary
attention on sensitivity of results to changes in a small number of characteristics of the design or the underlying
population structures. For example, in a study of nonresponse adjustments, one might use a relatively simple
approximation to the underlying sample design and population units, and focus primary attention on differences in
underlying nonresponse-probability models and prospective weighting-adjustment methods.

These simplifications can provide a very reasonable approach to study of survey procedures, but naturally do not
provide direct indications of the extent to which reported results may be sensitive to differences between features
of the true survey process and corresponding features of the simplified process represented in the simulation study.
Due to the complexity of many true survey processes, it generally will not be realistic to provide a comprehensive
sensitivity analysis, but it can be useful to develop systematic approaches to study these sensitivity issues for selected
features. One possible approach is as follows.

A. Provide a mathematical characterization of the survey features for which one may wish to study deviations
between the true survey process and the approximate process used in a simulation study.

B. For some of the factors identified in step (A), produce a numerical evaluation of the impact that specified
deviations have on particular performance criteria, e.g., point estimator bias and variance; variance estimator
bias and stability; and confidence interval coverage rates and mean widths.

C. Use results from steps (A) and (B) to identify specific types and magnitudes of deviations that warrant fur-
ther empirical study. This follow-up empirical work may often involve a substantial investment of additional
resources (e.g., through additional data collection or in-depth analysis of other data) and thus is likely to be
feasible only for high-priority cases identified in step (B).

The remainder of this paper will focus attention on one possible approach to carrying out step (B). Specifically:

1. Suppose that standard simulation results are based on functions θ̂(X) of a random vector X . For example,
θ̂(·) may be a parameter point estimator or interval estimator, and X is a vector of the underlying sample
observations, weights and other numerical values used in calculation of θ̂(·)
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2. Suppose further that the standard simulation condition under which we generate X can be embedded in a
more general model FX (γ) where γ = (γ1, γ2, · · · , γK)′ is a K-dimensional parameter vector that characterizes
the multi-dimensional approximations used in the standard simulation study. In addition, let γ0 be the value of
the vector γ under standard simulation conditions, and suppose that we wish to study the impact of deviations
from standard conditions in one particular dimension k. In other words, our standard simulation study presents
the properties of θ̂(X) under the distribution FX(γ0) only. To study this, we define a neighborhood Γ0k that
contains the value γ0k. For example in some applications, one would use Γ0k = [γ0k − εk γ0k + εk] for some
specified εk > 0. We then consider the properties of θ̂(X) for several members of the class of distributions
{FX(γ) : γi = γ0i , i 6= k ; γk ∈ Γ0k}. For example, if K = 2 and we wish to study the sensitivity of simulation
results to deviations of γ1 from its standard-case value of γ01, while keeping γ2 at its standard-case value of γ02,
we will be considering the class of distribution {FX(γ) : γ1 = γ01 , γ2 = γ02} where Γ01 = [γ01 − ε1 γ01 + ε1]
for some specified ε1. In the language of steps (A)-(C) above, the selected dimension k corresponds to a
specific type of deviation, and the range of values in the neighborhood Γ0k corresponds to the magnitude
of deviation under consideration. In some cases, selection of the neighborhood Γ0k may be based on prior
empirical information. However, in other cases (including the current study), the selection of Γ0k is simply an
initial exploratory step and does not necessarily correspond to the values of γk that one may encounter in a
specific application.

3. Expand the simulation study to consider properties of θ̂(X) for several values of γ in a neighborhood of the
standard-condition value γ0 .

4. Compare results from part (3) across the values of γ in the specified neighborhood of γ0 . This can provide some
indication of the extent to which, respectively, the null-case simulation results (generated under conditions γ0)
do or do not provide a satisfactory approximation to the properties of θ̂(X).

2. Application to Variance Estimation for the U.S. International Price Program (IPP)

2.1 U.S. International Price Program

This work originated with a study of the properties of bootstrap variance estimators that were considered for use
in the IPP. See Chapter 15 of the Bureau of Labor Statistics Handbook of Methods, International Price Indexes,
Bobbitt et al.(2007), Chen et al.(2007), and Cho et al.(2007) for general background on the IPP and on the prospective
bootstrap variance estimators. For the current work four of features are of primary importance.

First, the IPP uses a heavily stratified multistage sample design; at the final stage of sampling, field economists
collect monthly price quotes for specific items. For a given item i and month t, define a price quote pit, and also
define a “short term relative” quantity rit = pit/pi,t−1, the ratio of the price quotes for item i in months t and t− 1,
respectively. Price-index estimators θ̂t are complex nonlinear functions of the STR terms from current and previous
months, rit as well as sampling weights, computed through several levels of aggregation.

Second, due to the complexity of the design and the estimation process, use of standard analytic approaches to
develop linearization-based variance estimators and other analysis tools may be problematic. Instead, the IPP has
studied the potential use of bootstrap and other resampling-based methods for variance estimation. The current
paper will restrict attention to one bootstrap variance estimator V̂ , based on the general approach of Rao et al.(1992);
Bobbitt et al.(2007) provides details of the implementation.

Third, simulation work for the current paper focused on variance estimation for price-index estimators θ̂t for
relatively large subpopulations known as “Chapters,” which are two-digit strata with principal emphasis on Chapter
P07 (“edible vegetables, roots, and tubers”) and P90 (“optical, photographic, measuring and medical instruments”).
Chapter P07 had a single design stratum, while Chapter P90 had six design strata. In addition, the distributions of
item-level STR values, θ̂it, for item i and month t, were quite different in Chapter P07 and Chapter P90, respectively.
For example, in Figure 2 of Cho et al.(2007), the θ̂it values display a relatively high degree of dispersion within P07,
but they are largely concentrated around θ = 1 within P90. In addition, define the proportion πgt to equal the
proportion of items i inside classification group g at month t for which θ̂it = 1, i.e., for which the price quote was
the same in months t − 1 and t. Figures 1 and 2 of the current paper display box plots of πgt for months 1 through
12 for classification groups g in, respectively, the Chapters P07 and P90 and for each month t = 1, · · · , 12. Note
especially that for P07, the πgt values have relatively small means and medians (below 0.5 for each month) and
display a relatively high level of dispersion. On the other hand, for P90, the πgt values have much higher means and
medians (above 0.75 for all months) and a somewhat lower degree of dispersion. In other words, within Chapter
P90, prices are very often constant across months, and so the values θit often equal one. Within Chapter P07, prices
are less often constant across months, and so the values θ̂it are less often equal to one.



Fourth, the simulation work in Chen et al.(2007) and Cho et al.(2007) was based on 1000 independently selected
samples s of units, in which each sample s was selected from an import-panel frame used previously to draw samples
for the IPP production surveys. For the simulation works of seven chapters (two-digit strata) in Cho et al.(2007)
and the current paper, each sample s involved approximately 3,300 items.

2.2 Exploratory Analysis of Sensitivity of Variance Estimator Properties to Dependence of STR
Values on Unit Size

To carry out a simulation-based evaluation of the bootstrap variance estimator V̂ , it was important to have the
samples s described above, and to assign an STR value to each item contained in a given selected sample s.
Specifically, in keeping with the approach in Chen et al.(2007) and Cho et al.(2007), let θgit be a random variable
selected from a distribution function Fgt(·).

In these previous papers, the STR values θgit were selected independently across months t and across items i
and were treated as independent of unit-level trading dollar value Zgi, say. These independence assumptions can be
reasonable under some conditions, but it is useful to study the extent to which the properties of V̂ may be sensitive
to moderate deviations from these conditions. To do this, let θgit be generated independently as described above.
Define the alternative STR values θ∗git by

θ∗git = β0 + β1θgit + β2Zgi (1)

where we will consider several possible values of β1 which correspond to different degrees of dependence between
θ∗git and θgit. Choose β0 and β2 such that E(θ∗git) = E(θgit), V (θ∗git) = V (θgit), and β1 > 0. Specifically, we need to
find β0 and β2 to satisfy the following:

E(θgit) = E(θ∗git) = β0 + β1 E(θgit) + β2 E(Zgi) (2)

V (θgit) = V (θ∗git) = β1
2 V (θgit) + β2

2 V (Zgi) . (3)

Routine algebra then leads to the expressions

β1 =
[
1 − β2

2

{
V (Zgi)
V (θgit)

}] 1
2

(4)

and

β0 = (1 − β1) E(θgit) − β2 E(Zgi) (5)

where (β0, β1, β2) are fixed coefficients selected to ensure E(θ∗git) = E(θgit) and V (θ∗git) = V (θgit). We can vary β1

to induce varying degrees of dependence between θ∗git and θgit. β2 is a free parameter that we can vary to induce
varying degrees of dependence between θ∗git and Zgi. Varying β2 allows us to explore the impact of varying degrees
of association between θ∗git and size-based weight Zgi .

Specifically, for the IPP application, we considered five possible values of β1, equal to 1.0, 0.99, 0.90, 0.75 and
0.50, respectively. Note that the condition β1 = 1 corresponds to the assumption that θ̂git is independent of Zgi, as
in the above-cited previous simulation studies. At the other extreme, the conditions β1 = 0.75 or β1 = 0.50 would
correspond to hypothetical cases in which the STR values θ̂git were strongly associated with the size measure Zgi.
Also, for the numerical work in the present paper, we replaced the theoretical values E(Zgi) and V (Zgi) with the
sample mean and variance of the trading dollar values in each specified chapter (two-digit stratum). Similarly, we
replaced E(θgit) and V (θgit) with the sample mean and variance for STR values in each specified combination of
Chapter and month t. We then computed values of β2 > 0 and β0 from expressions (4) and (5), the selected values
of β1, and the four moments described above.

Thus, the coefficients β0 and β2 varied across different combination of Chapter and month, thereby ensuring
that the moment equations (2) and (3) are satisfied at the Chapter × month level of aggregation. Finally, note
that equation (1) introduces a specific type of deviation from the previous assumption of independence of STR from
trading dollar value. Specifically, expression(1) induces an offset β2Zgi that is constant over the months t. One
could explore alternative forms of deviation from the assumption of independence, but the details are beyond the
scope of the present paper.



2.3 Comparison Criteria

Our primary interest is the properties of bootstrap variance estimator (Rao et al., 1992). Define θ̂cs to be an
estimated STR for a Chapter c and a sample s where s = 1, · · · , 1000. Define

¯̂
θc. = 1000−1

1000∑

s=1

θ̂cs

and Ṽc. = (1000− 1)−1 ∑1000
s=1

(
θ̂cs − ¯̂

θc.

)2

.

Let V̂cs be a bootstrap variance estimator of a two-digit stratum c and sample s. Define the estimator of relative
bias

Ṽ −1
c.

( ¯̂
V c. − Ṽc.

)
(6)

where ¯̂
V c. = 1000−1 ∑1000

s=1 V̂cs .
In addition, define the degrees of freedom term

d̂ = 2
( ¯̂
V c.

)2 {
Ṽ

(
V̂cs

)}−1

(7)

where Ṽ
(
V̂cs

)
= (1000− 1)−1

1000∑
s=1

(
V̂cs − ¯̂

V c.

)2

.

2.4 Numerical Results

Figure 3 and 4 display numerical values of the simulation-based relative bias (6) and degrees-of-freedom term (7),
respectively, for Chapter P07. For both cases, the horizontal axis corresponds to 36 consecutive months. Note that
the relative-bias results differ substantially across different choices β1, and appear to move downward an asymptote
close to −0.7 as β1 declines from 1.0 to smaller positive values. In addition, the degrees-of-freedom term also declines
as we consider smaller values of β1. Figure 5 and 6 display the corresponding relative-bias and degrees-of-freedom
results for Chapter 90. These results are qualitatively similar to those obtained for P07.

3. Discussion

For complex surveys, simulation-based evaluations require consideration of approximations XA to the true popula-
tion, design, estimation procedures, and adequacy of the resulting approximations to the true properties.

We considered a simulation study based on STR observations θgit. Instead of an independent selection of STR,
we simulated θ∗git by inducing moderate dependence of STR on Zgi, weight related to size. For each Chapter in our
study, we compared the properties of θ∗git, which were newly simulated, with the ones of θgit across 1000 samples.
We also compared relative bias, and degrees of freedom of the variance estimator across different values of β1.

One could consider extending the current work in several dimensions, including the following. First, as noted
in Section 2.2 expression(1) induces one specific level-shift type of dependence of STR values on trading dollar
values. One could consider exploration of other possible deviations from the standard assumption of independence.
For example, if in expression(1) one replaced β2Zgi with β2Zgiegit for some smooth positive function h(·), where
{egit, t = 1, · · · , 36} are independent and identically distributed random variable, with mean zero and finite variance,
then (conditional on appropriate definitions of β0, β1 and β2) one would have induced a violation of independence
through which trading dollar value conditionally affects the variance, but not the mean, of the STR values θ∗git.

Second, as noted in Section 1, one could incorporate this current sensitivity analysis into a broader study
that obtained empirical information on the magnitudes of potential deviations from assumed conditions; and that
considered alternative estimators tuned to those the deviations of largest observed magnitudes. These extensions
are of interest, but detailed development is beyond the scope of the current work.
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Figure 1: Boxplots of the Proportion of STR Values Equal to One for Classification Groups in Chapter P07:
Historical Data from Months 1-12 over 13 years

Figure 2: Boxplots of the Proportion of STR Values Equal to One for Classification Groups in Chapter P90:
Historical Data from Months 1-12 over 13 years



Figure 3: Comparison of Relative Bias for P07 across Five Different Values of β1

Figure 4: Comparison of d̂ for P07 across Five Different Values of β1



Figure 5: Comparison of Relative Bias for P90 across Five Different Values of β1

Figure 6: Comparison of d̂ for P90 across Five Different Values of β1


