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Abstract 
The presence of sampling error in an observed time series may obscure underlying 
features, such as seasonality.  Based on simulated series containing sampling error, 
estimation of the seasonal parameter in ARIMA models is examined, with and without 
accounting for the sampling error.  In the former case, results include cases where the 
sampling error is incorrectly specified.  Sensitivity of estimation to length of the series 
and relative size of the sampling error is addressed.  Empirical results from a large set of 
employment series are presented and interpreted in light of the simulation results.  The 
series are from the Bureau of Labor Statistics’ Current Employment Statistics survey. 
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1. Introduction

The classical starting point for analyzing an economic time series is to consider it in 
terms of trend or trend-cycle, seasonal, and irregular or noise.  In practice, most monthly 
or quarterly series come from surveys, in which case we may appropriately add a 
sampling error component.  This component adds nothing to economic analysis, so we 
may wish to extract the signal in order to understand better the underlying behavior of the 
time series.  The aim of this paper is to encourage and illustrate treatment of sampling 
error in modeling or seasonally adjusting time series.  It analyzes a simple simulation 
experiment to indicate how the method can work and to point out potential pitfalls. 
Signal extraction for seasonal time series began about 30 years ago with work of Hillmer 
and Tiao (1982) and has a much longer history in mathematics and other areas of science. 
While not addressing the specific issues of this paper, Gomez and Maravall (2001) give 
some theoretical results on signal extraction for seasonal time series with a nice example. 

My motivation comes from work on variances for X-11 seasonally adjusted series using a 
model-based method due to Bell & Kramer (1999).  The method calls for estimating a 
signal model in the presence of sampling error (SE).  An ongoing test of the method 
involves 137 series from the Current Employment Statistics program at the Bureau of 
Labor Statistics (BLS).  Figure 1a. contains a histogram of the seasonal MA parameter 

12θ  from ARIMA modeling of the observed series.  There is a broad range of values, 
mostly concentrated at the upper end, toward relatively stable seasonality.  Figure 1b. 
shows the distribution for 12θ  in the ARIMA model for the signal, based on signal 
extraction.  The distribution has some concentration near 1 and an even greater 
concentration near 0 and below.  In fact, the values stretch out all the way to -1.  Most 
negative values of 12θ  do not correspond to decomposable models; restriction of 12θ  to 
[0,1] encompasses a broad range of seasonality from highly varying to deterministic. 
Clearly, signal extraction has not worked well for these series.  What has gone wrong? 



Our model for an economic time series is 
     Y T S I= + + (1a)

y Y ε= + , (1b)
where y  is the observed series, Y  the signal or population consisting of trend (trend-
cycle), seasonal, and irregular or noise, and ε  is sampling error.  Hillmer and Tiao 
(1982) show how ARIMA models for series of the form (1a) can be decomposed. 
Harvey (1989) accomplishes decomposition with structural models.  Bell and Hillmer 
(1990) pioneer work with models (1b) having a sampling error component.  Tiller (1992) 
at BLS uses structural models to estimate and remove a sampling error component to 
obtain the official estimates of the unemployment rate for 50 U.S. states and the District 
of Columbia. 

ARIMA-based seasonal adjustment accounting for sampling error can be carried out as 
follows using publicly available software: 

(1) adopt a model for the signal and a complete model specification for the
sampling error, 

(2) apply signal extraction to obtain signal model parameters and a
decomposition  ˆ ˆy Y ε= +  using REGCMPNT,

(3) decompose the signal model and Ŷ  using TRAMO-SEATS
or X13-ARIMA-SEATS,

and 
(4) compute the seasonally adjusted value ˆˆ ˆA y Sε= − − .

Both REGCMPNT, developed by Bell (2004) and X13-ARIMA-SEATS are available 
from the U.S. Bureau of the Census (http://www.census.gov/srd/www/x12a/); the Bank 
of Spain offers TRAMO-SEATS (http://www.bde.es/servicio/software/econome.htm). 
This paper focuses on the second step, signal extraction. 

For the simulation experiment, the signal is specified as an airline model, 
12 12

1 12(1 )(1 ) (1 )(1 )t tB B Y B B aθ θ− − = − −  
with 

2
1 12 0.6, 121aθ θ σ= = = . 

The sampling error is white noise, with variance 100, 
(0,100)t WNε ∼ .

Two plausible explanations are   (1)  instability in signal extraction and  (2)  misspecifi-
cation of sampling error.  We shall see that series length affects stability.  In applying 
signal extraction, external information on sampling error has been used and this 
information may be incorrect.  After all, the variance of a variance estimate can be quite 
large. 

The next section presents a simulation experiment and explains what can be expected 
from basic model theory.  After that, simulation results are given.  Lessons for the 
employment application are drawn.  A final section gives tentative findings. 

2. A Simple Simulation Experiment



Simulation steps: 
(1) decompose the signal model into models for and, ,T S I ,
(2) simulate 1600 series of length 216 (18 years) for each of the four

components and form y  and Y , 
(3) carry out and analyze signal extraction for

(a) 10-year and 18-year series,
(b) alternative values for 2

εσ , 100, 144, and 49.
We shall see the impact of over- and underestimation of the sampling error, both for the 
18-year series and for 10-year series.  The latter are the central 10 years from the full
series.

What does theory tell us about behavior of the observed series?  The differenced 
observed series is 

12(1 )(1 )t t t tw B B y u v= − − = +
where 

12 12(1 .6 )(1 .6 ) , (1 )(1 )t t t tu B B a v B B ε= − − = − − ,
that is, tw  is the sum of MA(13) processes, the latter differenced white noise.  Granger 
and Morris (1976) present several results for sums of independent ARMA processes, 
including the Proposition below.  In particular, the sum of MA processes is again an MA 
process. 

Proposition (Granger & Morris, 1976). 
   Suppose the components are independent. 

1 1 2 2( , ) ( , ) ( *, *)ARMA p q ARMA p q ARMA p q+ = , 
where 

1 2 1 2 2 1* , * max( , )p p p q p q p q≤ + ≤ + + . 

Can we approximate our sum with a simple (001)(001) model?  Matching moments at 
lags 0, 1, and 12 yields the approximation 

12* (1 )(1 )t tw B B bτ τ= − −  
with 

2.744, 258.5bτ σ= = . 
The autocovariances in Table 1 show that *w  is a close approximation.  Both the MA 
parameters and the disturbance variance increase in value to account for the additional 
variability and correlation.  Note that .744τ =  is a “compromise” between .6 for the 
signal and 1 for the differenced white noise.  This result suggests that, given 12θ for an 
observed series containing white noise sampling error, we may expect 12θ  for the 
underlying signal to be smaller.  

Table 1.  Autocovariances of Differenced Observed Series w  and Approximation *w

Lag 0 1 2 " 10 11 12 13 
w 623.8 -298.7 0 0 143.6 -298.7 143.6 

*w 623.8 -298.7 0 0 143.1 -298.7 143.1 



To compare more closely the signal and observed series models, we decompose the 
differenced series.  The component models implied by an airline model are 
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These formulas readily yield stationary models for the differenced components, allowing 
us to decompose the variance of the differenced series, displayed in Table 2.  Going from 
the signal to the observed series, the sizable sampling error component adds much to the 
total variance.  Most of the added variability goes to the irregular component.  The 
variance in the seasonal component is higher, but not by much.  In fact, its share of total 
variance has dropped in half, from 6.3% to 3.0%.  This suggests that in the favorable case 
of white noise sampling error an overall ARIMA model may capture the seasonality in 
the series reasonably well. 

Table 2.  Variance after Differencing Simulation Models 

Trend Seasonal Irregular Total
Signal 12 14 198 224

Observed 13 19 592 624

3. Simulation Results

Table 3 contains results from modeling the simulated signal series ( )rY  and the observed 
series ( ), 1, ,1600ry r = " .  Mean and median estimates for the MA and disturbance 
variance parameters are close to the true values .6 and 121 for the signal and .744 and 
258 for the observed series.  Figure 2 contains histograms for 1θ  and 12θ  for 18- and 10-
year series.  Results for the 18-year series are quite concentrated with 90% of the 
distribution lying roughly within ±0.10 for both signal and observed cases.  For the 10-
year observed series, the most notable features are the stronger cental peak for 1θ  and 
some clustering of values near 1 for 12θ .  All histograms in the paper have a common 
horizontal axis, so it’s hard to assess symmetry in Figure 2.  Note, however, that skew is 
negligible in all cases; the largest magnitude in Table 3 is 0.5 for 12θ  for signal series 
using 10-year series. 

Before examining the signal extraction results, let’s review the signal extraction task. 
Airline models are invertible for 12 ( 1,1)θ ∈ − .  On the other hand, Hillmer & Tiao 
(1982) only establish that these models are decomposable for 12 [0,1)θ ∈ .  This range is 
quite adequate for representing a range of seasonal behavior from rapidly changing to 
essentially deterministic.  Our data are the differences 

12 12
1 12(1 )(1 ) (1 )(1 )t t tw B B a B Bθ θ ε= − − + − −  



and we assume full knowledge of the SE term.  Maximum likelihood methods are used to 
estimate parameters 2

1 12, ,  and aθ θ σ  for the first term.  Variance for this term can be 
increased by increasing any or all of the parameters.  When the bulk of the variance is 
assigned to the second term, it seems intuitive that estimation can be unstable; this indeed 
is seen below when the SE contribution is overestimated. 

Table 4 and Figures 3-5 contain the signal extraction results.  In the most favorable case, 
signal extraction is carried out for 18-year series, supplied with the correct SE variance 

2 100εσ = .  Table 4a. shows that both mean and median values are close to the true 
values for both series lengths.  90% of the distribution lies within (.44, .75) for 1θ  and 
within (.42, .78) for 12θ .  A few small estimates, including two near -1 cause the 1θ  
distribution to have negative skew and contribute to the substantial kurtosis.  Still, signal 
extraction performs well in this case, with fairly tight distributions. 

Table 3.  ARIMA Modeling Estimates for Signal and Observed Series 
 for 18- and 10-year Lengths (no signal extraction) 

a. Signal series

1θ  12θ Disturbance 
variance 

Length 18 10 18 10 18 10 
Mean .60 .61 .60 .62 120 118 

Quantile
Median .60 .60 .60 .61 119 117 

5% .51 .47 .50 .44 100 90 
95% .70 .75 .71 .80 141 148 

I’quartile range .08 .11 .09 .14 17 23 
Skew 0.0 0.1 0.1 0.5 0.2 0.3 

Kurtosis 0.0 0.4 0.3 0.9 0.1 0.1 

b. Observed series

1θ  12θ Disturbance 
variance 

Length 18 10 18 10 18 10 
Mean .73 .74 .73 .75 260 252 

Quantile
Median .73 .73 .73 .73 259 251 

5% .65 .62 .63 .57 219 190 
95% .82 .87 .84 .998 305 319 

I’quartile range .07 .09 .08 .15 35 52 
Skew 0.1 0.3 0.4  0.4 0.2  0.2 

Kurtosis 0.3 1.0 0.8 -0.2 0.2 -0.2



Table 4.  Signal Extraction Estimates as a Function of Sampling Error Input 
and Series Length 

a.  2 100εσ = , true value 

1θ  12θ 2
aσ  

Length 18 10 18 10 18 10 
Mean .60 .58 .60 .61 118 110 

Quantile
Median .60 .60 .60 .60 118 109 

5% .44 .32 .42 .29 75 51 
95% .75 .81 .78 .993 165 175 

I-quartile range .12 .17 .13 .24 36 51 
Skew -4.1 -3.2 -0.1 -1.2 0.2 0.1 

Kurtosis 56.6 22.7 0.8 7.2 0.4 0.1 

b.  2 144εσ = , overestimate 

1θ  12θ 2
aσ  

Length 18 10 18 10 18 10 
Mean .42 .27 .44 .44 59 48 

Quantile
Median .46 .42 .47 .49 58 46 

5% .10 -.93 .13 -.51 19 4 
95% .67 .75 .71 .995 101 110 

I-quartile range .21 .38 .20 .38 33 52 
Skew -2.7 -1.4 -2.5 -1.4 0.3 0.6 

Kurtosis 12.4 1.1 12.8 2.8 0.3 -0.2

c.  2 49εσ = , underestimate 

1θ  12θ 2
aσ  

Length 18 10 18 10 18 10 
Mean .69 .69 .69 .70 193 185 

Quantile
Median .69 .69 .68 .69 192 183 

5% .58 .54 .56 .49 152 127 
95% .79 .85 .82 .995 238 250 

I-quartile range .08 .11 .10 .18 35 50 
Skew -0.0 0.1 0.3 0.3 0.3 0.2 

Kurtosis 0.3 1.1 0.7 -0.1 0.2 -0.1



For the 10-year series, negative skew is quite evident for both distributions, with roughly 
10% of the estimates lying below 0.40 and a few having strongly negative values.  For 
the 12θ  distribution, we see some clustering above 0.85.  10% of the estimates are above 
0.90 and 5% above 0.95.  Thus, results have deteriorated with the shorter series.  While 
the means and medians are close to 0.6, the shape of the distributions shows some 
unsatisfactory characteristics. 

Table 4b. contains results when supplied with an overestimate of the SE variance, 
2 144εσ = .  In terms of variance, this is close to a 50% overestimate; in terms of 

standard deviations, 10 vs. 12, it is only 20%.  For the 18-year series, we see median 
estimates of 0.46 and 0.47 for 1θ  and 12θ  and 58 for 2

aσ .  All three values are smaller, to 
compensate for the large amount of variation attributed to the sampling error.  The 
histogram in Figure 4a. shows greater greater spread than in the previous case; 
interquartile ranges are about 75% higher.  Both distributions have negative skew; 
negative values occur for 3.7% of the estimates of 1θ  and 2.5% for 12θ .  Still, 80% of the 
distribution lies in (.21, .63) for 1θ  and a similar interval for 12θ .  Unsurprisingly, in the 
presence of misinformation, signal extraction yields biased estimates, but, most of the 
time, its estimates provide usable models which are consistent with overall variability in 
the observed series. 

For the 10-year series, signal extraction does not perform well.  The large left tail in the 
histogram for 1θ  in Figure 4b. accounts for 20% of the distribution.  Most of these values 
are negative.  They stretch to -1 and result in a mean of 0.27, compared to the median 
value 0.42.  Both tails are heavy for 12θ :  10% of the estimates are negative and 13% lie 
above 0.95.  The mean 0.44 and the median 0.49 are reasonable, but, with extreme 
estimates occurring in both directions, the interquartile range is nearly double that for the 
18-year series.  We can conclude that estimation is unstable, due to (1)  being constrained
to yield a relatively small variance and (2)  having only 107 data points for estimation of
3 parameters.

Underestimation of the SE variance yields much more stable results, even with 10-year 
series.  Predictably, all three parameters tend to move higher, toward the values from 
modeling without an SE component.  As seen in Table 4c., means and medians for both 
series lengths are near 0.70 for the MA parameters and 190 for 2

aσ .  Figure 5 shows tight 
distributions for the MA parameters with the 18-year series.  For the 10-year series, the 

1θ  distribution still has a strong peak, while that for 12θ  has more spread, including once 
again some clustering of values near 1.  We see that the signal extraction task is easier 
when more variability is attributed to the signal. 

To round out our picture of signal extraction performance, let us examine correlations 
between parameter estimates.  First, we check correlations in modeling the signal and 
observed series, which appear in Table 5a.  Since the components have been generated 
independently, it is not surprising that the correlations between 1̂θ  and 12θ̂ , associated 
with the trend and seasonal respectively, are negligible for both signal and observed 
series and both series lengths.  Correlations between 12θ̂  and the disturbance variance are 



Table 5.  Sample Correlations between Parameter Estimates 

a. Series models

1 12
ˆ ˆ,θ θ 2

1̂, ˆaθ σ 2
12
ˆ , ˆaθ σ

Length 18 10 18 10 18 10

Signal .04 -.01 -.04 -.04 -.09 -.23 
Observed .04 .03 -.06 -.07 -.17 -.36 

b. Signal extraction

1 12
ˆ ˆ,θ θ 2

1̂, ˆaθ σ 2
12
ˆ , ˆaθ σ

Length 18 10 18 10 18 10

2 100εσ = .23 .21 .42 .45 .32 .20 
2 144εσ = .19 -.00 .59 .62 .46 .28 
2 49εσ = .08 .06 .13 .10 .02 -.17 

negative, especially for the 10-year series.  Perhaps, this is related to the clustering of 12θ

estimates near 1 (cf. Figure 5b.); low disturbance variance estimates may occur when 12θ̂
is near 1. 

Turning to signal extraction, when 2 100εσ =  is used, correlations are all positive. 
Apparently, when the series appears less variable overall, all three parameter estimates 
tend to be smaller, and vice versa.  When 2 144εσ = is used, the unstable case, even 

larger values occur for the pairs 2
1̂, ˆaθ σ  and 2

12
ˆ , ˆaθ σ .  The lack of correlation for 1 12

ˆ ˆ,θ θ
for the 10-year series is likely due to the heavy tails at both ends of the distribution for 

12θ .  This suggests that together all three parameters tend toward smaller values when a 

relatively small variance is allotted to the signal.  In the underestimation case, 2 49εσ = , 
the correlations are intermediate between the other signal extraction cases and the 
observed series case.  It is interesting to note that the correlations for the two series 
lengths agree in sign and are close in magnitude in most cases; they don’t disappear with 
the longer series.  

4. Application to employment series

Our simulation provides evidence that signal extraction becomes unstable when sampling 
error is a relatively large proportion of overall variance for the observed series.  One 
measure is the ratio of disturbance variances.  For the simulation, this ratio is 

2 2/ 100 / 258.5 0.4bεσ σ = ≈ . 

The ratio increases to 0.56 when the overestimate 2 144εσ =  is used.  Our 137 BLS 
employment series have the following distribution for this ratio: 



%
(0,  0.4] 23 
(0.4,  1] 55
(1,  ∞) 22

In other words, compared to the employment series, our simulation has a moderate 
amount of sampling error.  Even so, Figure 4b. shows similarities in shape to Figure 1b. 
The results depicted in Figure 1b. are consistent with the hypothesis that many of the SE 
variances are overestimates. 

Variances of these series are large in part because they in some cases correspond to fairly 
detailed industries.  Furthermore, they are change on the log scale, and change values are 
relatively more variable than levels.  This choice of series form has been made because 
(1) monthly change is the most significant statistic for economic analysis and (2)  this
form admits a simple and realistic form for the SE model.  Even using the median of a
year’s worth of estimates, the SE variance values seem often to be overestimates.

For work on variances for seasonal adjustment mentioned in the Introduction, the results 
of this paper suggest restricting movement in the model parameters from those estimated 
for the observed series.  Preliminary work in this direction has begun. 

5. Findings and Future Work

The results in this paper illustrate that signal extraction can effectively estimate a model 
for the signal, given sufficient data and good sampling error (SE) information.  Some 
pitfalls are identified in less favorable situations.  These findings are limited and 
tentative, since they are based on a simple simulation experiment.  It is likely that some 
theory exists to explain the results more definitively.  

Detailed findings 
• For effective signal extraction, more than 10 years of data are needed.

Estimation is reasonably stable with 18-year series, even when SE information
is incorrect.  On the other hand, with 10-year series, undesirable properties emerge.   

• Overestimation of SE variance can cause instability.
As illustrated in Figure 4b., the combination of limited data and overestimation

of SE variance very often results in unlikely or even unusable signal models.  The 
impact differs for the regular MA parameter 1θ  and the seasonal MA parameter 12θ .  
Estimates of 1θ  move strongly in a downward direction from the true value for a large 
number of cases.  Many estimates of 12θ  behave similarly; also, many move upward 
close to 1. 

• Misspecification of SE variance causes bias in estimating signal parameters.
When SE variance is overestimated, the signal disturbance variance tends to be

underestimated, as would be expected.  However, there is positive correlation between 
the estimates of this parameter and the MA parameters.  In particular, the seasonal 
MA estimates are biased downward, even when ample data are available. 

   Underestimation of the SE variance causes signal model parameters to move in 
the opposite direction.  In this case, seasonal MA estimates are biased upward. 



• Sampling error can cause moving seasonality to appear deterministic.
  Most of the histograms for 12θ  based on 10-year series show some clustering 

of values near 1, well above the true value.  Table 4 shows that 5% of the values are 
above 0.99, even when the SE information is correct. 

• An ARIMA model may adequately capture the seasonality in the observed series
when the sampling error is white noise.

   This stems from the result in Granger and Morris in Section 3.  Even when it is 
white noise, the sampling error contributes to the seasonality of the series.  Using the 
results in Table 1, we see that an airline model can essentially capture the 
characteristics of the observed series. 

Future work 
This study represents only an early look at properties of signal extraction for seasonal 
time series.  The technique becomes more useful and significant in the presence of 
correlated sampling error.  Tiller (1992) has shown that apparent short-term trend effects 
can come strictly from correlated sampling error.  His labor force models incorporate a 
complicated sampling error component, often modeled as an AR(15) process, based on 
the rotating panel survey design.  For some of the employment series described in Section 
4, sampling error has been modeled as white noise, but more often as an MA(1) process, 
with relatively small values of the MA parameter.  Ties to theoretical results should 
bolster the results on sensitivity. 
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Figure 1. Distribution of 137 Seasonal MA Parameters
a. Observed Employment Series
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Figure 2. Distribution of MA Parameters - Observed Series
a. 18-Year Series
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b. 10-Year Series
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Figure 3.  Distribution of MA Parameters - Signal Extraction
a. 18-Year Series, SE Var = 100
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b. 10-Year Series, SE Var = 100
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Figure 4. Distribution of MA Parameters - Signal Extraction
a. 18-Year Series, SE Var = 144
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b. 10-Year Series, SE Var = 144
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Figure 5. Distribution of MA Parameters - Signal Extraction
a. 18-Year Series, SE Var = 49
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b. 10-Year Series, SE Var = 49
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