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Abstract

This paper examines the dynamics of youth smoking behavior using a model of

rational addiction with learning. Individuals in the model face uncertainty regarding

the parameters that determine their utility from smoking. Through experimentation,

individuals learn about how much they enjoy smoking cigarettes as well as the effects

of reinforcement, tolerance, and withdrawal. The addition of learning to the dynamic

optimization problem of adolescents provides an explanation for the experimentation

of the non-smoker. I estimate the parameters of the model using data from the Na-

tional Longitudinal Survey of Youth 1997 and compare the overall fit of the model to

the model without learning. The estimated model is also used to analyze the effect

of cigarette taxes and anti-smoking policies. I find that the model with learning is

better able to fit the observed data and that cigarette taxes are not only effective in

reducing the level of youth smoking, but can even increase welfare for some individuals.
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1 Introduction

Despite its historically low level in the U.S., cigarette smoking remains a major public health

concern. The Surgeon General estimates that tobacco use causes approximately 480,000

deaths per year in the United States and is estimated to cause between $289-332.5 billion

in economic costs (USDHHS, 2013).1 Tobacco use is the leading preventable cause of death,

yet people continue to smoke despite the high level of public awareness of its adverse health

effects. Because cigarettes are addictive, it may be easier to discourage smoking initiation

than to encourage smoking cessation. Also, cigarette manufacturers have historically tar-

geted their advertisements to young people in the hopes of cultivating lifelong customers.

Among adults who become daily smokers, approximately 90 percent smoke for the first time

before age 18 (USDHHS, 2012). For these reasons, policy interventions aimed at reducing

the level of smoking in the population often target young people.

The decision to engage in a harmful addictive behavior, such as smoking, seemingly

presents a problem for standard economic models. For a forward-looking utility-maximizing

agent, consuming a harmful addictive substance would be an irrational act. The Rational

Addiction (RA) model of Becker and Murphy (1988) shows that consumption of an addictive

substance can be explained using the standard economic framework. Their explanation

of addictive behavior centers around the concept that past utilization of addictive goods

impacts current utility from consumption of these goods. A major criticism of the Becker

and Murphy model is the implication that individuals are always acting optimally, so addicts

do not regret their decision to consume the addictive good. In their model addiction is not

a problem or even an undesirable outcome, so there is no place for policy intervention to

treat or prevent addiction. Empirical evidence suggests that many individuals regret their

decision to smoke. Approximately 70% of adult smokers wish to quit smoking entirely and

over half have attempted to quit smoking in the past year (NHIS, 2010).

Another limitation of the RA model as a model of youth smoking behavior is that it

treats smoking initiation as exogenous. In this paper, I extend the RA model so that it

is better able to explain the individual’s smoking initiation decision. Specifically, I relax

the assumption of perfect information in the RA model by incorporating learning about

one’s preferences. The parameters that determine the utility one receives from smoking are

initially unknown, but the individual has beliefs about their true value. As an individual

experiments with smoking, he receives utility signals and updates his beliefs. The addition of

uncertainty and learning to the optimization problem of adolescents provides an explanation

1Economic costs include direct medical costs in addition to the lost productivity attributable to smoking
related illnesses. Estimates are for the years 2009-2012.
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for the experimentation of the non-smoker and allows for the possibility that an individual

who starts to smoke may later regret that decision. Therefore, policies that prevent an

individual from experimenting with cigarettes may be welfare improving as the individual

would be prevented from making a decision he may later regret.

The main purpose of this paper is to quantify the effectiveness of anti-smoking policies

and to evaluate the resulting impact on individual welfare. In order to do this, I recover

the policy-invariant utility function parameters of a rational addiction model with learn-

ing by fitting a dynamic discrete choice model of optimal smoking decision making to the

observed data. As the first attempt to estimate the structural parameters of a rational ad-

diction model with learning about preferences, this research allows for empirical testing of

the perfect information assumption in the RA model (i.e., the assumption that individuals

know their utility function parameters). I estimate the model parameters using the National

Longitudinal Survey of Youth 1997 (NLSY97).

Estimation of the parameters of a dynamic discrete choice model is generally computa-

tionally intensive as each iteration over the parameter space requires re-solving the dynamic

optimization problem. The inclusion of uncertainty and learning over multiple parameters

further complicates estimation of the model. To circumvent these computational issues, I

use the Expectation Maximization (EM) algorithm in conjunction with Conditional Choice

Probability (CCP) estimation and Monte Carlo simulation to estimate the model parame-

ters. The estimation procedure provides a significant computational advantage, which allows

for the estimation of a more complex model than is feasible using full-solution techniques.

Preliminary estimation results demonstrate that allowing for uncertainty and learning

in a dynamic model of youth smoking significantly improves the overall fit of the model.

Results from counterfactual policy simulations suggest that policies that impact individuals’

initial beliefs about their utility function parameters are effective in reducing youth smoking.

Taxes are also shown to be effective in reducing the level of smoking. The estimated model

predicts that a doubling of the price of cigarettes would reduce the prevalence of youth

smoking by 41.6% and adult smoking by 35.1%. An increase in the legal purchasing age

from 18 to 19 years old would decrease youth smoking by 21.6%. However, there would be

no effect on adult smokers as the higher legal purchasing age would only cause a delay in

smoking initiation. The results of the welfare analysis show that increasing cigarette taxes

would only lead to a relatively small loss in total welfare as the welfare gains to keeping

those who would later regret the decision to smoke from starting to smoke offset the loss of

welfare from smokers having to pay a higher price for cigarettes.

The remainder of the paper proceeds as follows: Section 2 reviews the related literature.

Section 3 presents the model. Section 4 discusses the data. Section 5 develops the estimation
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routine. The estimation results are presented in section 6, and section 7 concludes.

2 Related Literature

Becker and Murphy (1988) developed the RA model to show that seemingly irrational be-

havior could be explained using a standard economic framework of a forward-looking utility-

maximizing agent. The model’s welfare implications have caused many to abandon the

general framework of the RA model and to develop “irrational” models to explain the time

inconsistency of addictive behavior. These alternative theoretical models generally feature

dual-states of the world or individuals with dual-selves.2 Addiction results when an individ-

ual is in an addictive state of the world or if the behavior of the individual is being controlled

by the self that is more prone to addiction.

Other models of the consumption of addictive goods generate time-inconsistent behavior

by deviating from the standard assumptions regarding how future utility is discounted. The

simplest deviation is the myopic model. A myopic individual completely discounts future util-

ity and only considers the current period’s utility when making decisions. Other deviations

from the standard assumptions regarding time preferences include an endogenous discount

factor (Orphanides and Zervos, 1998) or hyperbolic discounting (Gruber and Koszegi, 2001).

Finally, Orphanides and Zervos (1995) argue that the problem with the RA model is not the

assumption of a rational, forward-looking agent but the assumption of perfect information.

An individual in their model can be one of two types (addict or not an addict). The individ-

ual learns which type he is if he consumes the addictive good. The model estimated in this

paper is an extension of the theoretical model proposed by Orphanides and Zervos (1995).

The RA model assumes that individuals are forward-looking, and there have been many

studies that attempt to test the validity of this assumption empirically in the context of

consumer demand for an addictive good. The evidence is generally consistent with forward

looking behavior (Becker et al., 1994; Chaloupka, 1991).3 One of the limitations of the

empirical addiction literature is that papers primarily attempt to compare the rational ad-

diction model to the myopic model. No work (of which the author is aware) has been done

to estimate alternative models or to empirically test the other assumptions of the RA model.

Most of the literature involves reduced form estimation, but a few papers have estimated the

structural parameters of an addiction model (Arcidiacono et al., 2007; Choo, 2000; Gordon

and Sun, 2009; Darden, 2011).4

2Papers that use the dual-state approach include Winston (1980) and Bernheim and Rangel (2004).
Papers that use the dual-self approach include Thaler and Shefrin (1981) and Benabou and Tirole (2004).

3See Chaloupka and Warner (2000) for a thorough summary of the empirical literature.
4There is a learning component to the life-cycle model of Darden (2011), but the learning is over the health
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Much of the analysis in the economics literature of policy interventions on youth smoking

has focused on cigarette taxes. The rational addiction framework implies that individuals

who are not currently consuming the addictive good should be more responsive to changes

in the price of that good than current users. Many studies have found a significant effect

of taxes on smoking initiation. Some studies, however, have found that cigarette taxes

have little to no significant effect on youth smoking initiation (DeCicca et al., 2002, 2008;

Emery et al., 2001). Importantly, some of the studies in this literature find that nonsmokers

are more price sensitive than smokers while also controlling for unobserved heterogeneity

(Fletcher et al., 2009; Gilleskie and Strumpf, 2005). Finally, some studies have found that

taxes merely delay smoking initiation rather than prevent people from becoming smokers

(Glied, 2002). There have been fewer papers that examine the effect of other anti-smoking

policies on youth smoking and the results have been mixed (Tworek et al., 2010).5

One of the main applications of learning models in economics is in the area of consumer

learning from experience goods (Erdem and Keane, 1996; Ackerberg, 2003).6 These models

estimate the learning process involved when consumers purchase unfamiliar goods. The

consumer learns about the utility he receives from consuming these goods and updates his

beliefs each time the good is consumed. This paper fits into the structural learning literature

because the utility that the individual receives from consuming an addictive good is initially

unknown and is learned over time if the individual consumes the addictive good. This paper

extends the standard models used by incorporating the unique features of consuming an

addictive good.

3 Model

This section sets up the individual’s decision problem regarding optimal smoking behavior.

An individual receives utility from consuming cigarettes as well as the consumption of other

goods. In order to incorporate the features of consuming an addictive good, the individual’s

utility in the current period also depends on past levels of smoking in a manner consistent

with the scientific literature on addiction (Laviolette and van der Kooy, 2004; Nestler and

Aghajanain, 1997). Past consumption of the addictive good affects current utility through

reinforcement, which occurs when the marginal utility of smoking is increasing in the level

of past smoking. As the body becomes accustomed to consuming an addictive substance,

larger quantities of the substance must be consumed to achieve a similar effect. This physical

effects of smoking. Individuals are assumed to know their preferences (i.e., utility function parameters).
5For an overview of the effectiveness of anti-smoking legislation in general, see Goel and Nelson (2006).
6See Ching et al. (2011) for an overview of the empirical economic applications of learning models.
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transition is referred to as developing tolerance. Habitual use of an addictive good also

generates physical dependence. As a result, the individual experiences adverse effects from

attempting to lower the level of consumption of the addictive good. This transition may

result in a withdrawal effect. Withdrawal is modeled as an asymmetric adjustment cost, i.e.

a cost associated with decreasing the amount consumed.7 These effects are parameterized

in the model (ρ, τ , and ω for reinforcement, tolerance, and withdrawal respectively), the

magnitude of these effects depends on the level of past smoking, and these parameters

vary across individuals. For certain combinations of these individual specific parameter

values, the combined effect of reinforcement, tolerance, and withdrawal generates adjacent

complementarity in the consumption of cigarettes. Adjacent complementarity, which Becker

and Murphy (1988) use as the defining characteristic of addiction, occurs when current

consumption of a good is increasing in past consumption.

3.1 Utility

Each year, individual n makes an annual smoking decision and chooses his level of smoking

from a discrete set of alternatives, aj ∈ {a1, a2, . . . , aJ}, which reflect the average daily

cigarette consumption during the year. The decision not to smoke is represented by the level

of smoking a1. The price of a single cigarette in period t is denoted pt. The addictive stock is

denoted as Sn,t and is defined as the level of smoking in the prior year.8 The contemporaneous

utility associated with alternative j > 1 for individual n at time t if the individual did not

smoke in the previous period (Sn,t = 0) is:

ujn,t =
(
αn + ξjXn,t

)
z(aj)− γnptaj + εjn,t (1)

where ε is a vector of independent and identically distributed alternative-specific preference

shocks that follow a Generalized Extreme Value (GEV) distribution. The utility from smok-

ing depends upon the individual-specific match parameter αn, demographic variables (Xn,t),

the level of smoking through the function z(a) (explained below), and the expenditure on

smoking (which depends on both the price of cigarettes and level of smoking). The param-

eter γn measures the individual’s sensitivity to the price of cigarettes and is a function of

age, work status, and income.9 Additionally, the individual’s demographic variables affect

7This approach of explicitly modeling withdrawal effects as asymmetric adjustment costs to achieve
adjacent complementarity in a rational addiction model was developed by Suranovic et al. (1999).

8This definition of the addictive stock implies full depreciation which is justified by the frequency of the
smoking decision. Future versions of this paper will test whether the parameter estimates of the model
change if this assumption is relaxed.

9The utility from consuming one’s entire income in other goods is normalized to zero.

6



utility by imposing additional costs or benefits on different levels of smoking. If a variable

only affects the utility of smoking versus not smoking and does not affect the decision of how

much to smoke conditional on smoking, then the coefficient ξj will be constant for j > 1.

Variables in this category include the individual’s race or religion. These variables may affect

the social acceptance of smoking within the individual’s culture. Variables that potentially

affect utility differently for different levels of smoking could include whether the individual

is under 18 years of age or whether the individual has older siblings. These variables were

shown to be significant in the smoking decision of young people in Gilleskie and Strumpf

(2005).

If the individual has a positive level of smoking stock (i.e., Sn,t > 0) then the utility for

alternative j > 1 is:

ujn,t =
(
αn + ρng(Sn,t) + ξjXn,t

)
z(aj)− τnSn,t − ωnq(aj, Sn,t)1[aj < Sn,t]− γnptaj + εjn,t (2)

The addictive stock affects the marginal utility of smoking through the reinforcement,

tolerance, and withdrawal terms. The reinforcement effect, ρg(S), increases the marginal

utility of smoking for every positive level of smoking. The tolerance effect, τS, enters current

period utility for positive levels of past and current consumption and decreases the utility

associated with each positive level of smoking. The adjustment cost or withdrawal cost,

ωq(a, S), only enters the current period’s utility when the individual reduces his consumption

from one period to the next. The utility of not smoking (j = 1) is normalized to only include

the withdrawal term (if Sn,t > 0) and the preference shock. The functions z, g, and q have

the following properties:

1. z′(a) > 0, z′′(a) < 0, lima→0 z
′(a) <∞

2. g(0) = 0, g′(Sn,t) > 0, g′′(Sn,t) < 0

3. q(aj, Sn,t) ≥ 0 for all aj ≤ Sn,t and q(aj, Sn,t) = 0 if aj = Sn,t

The assumptions on the function z allow for a corner solution since the marginal utility

from smoking is finite when the individual chooses not to smoke. The function q, which is a

component of the withdrawal effect, is also assumed to be increasing in the size of the decrease

in smoking from one period to the next. The functions g and q allow the reinforcement and

withdrawal effects to be nonlinear.10 The Estimation section discusses the specific functional

forms used. The individual’s smoking preference parameters are θn = (αn ρn τn ωn)′. The

parameter αn determines the individual’s match quality for smoking. The parameters ρn, τn,

10The tolerance term could also be allowed to be nonlinear in S.
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and ωn correspond to the effects of reinforcement, tolerance and withdrawal, respectively.

The parameters in θn vary across individuals and are jointly normally distributed in the

population: θn ∼ N(θ̄,Σ).

3.2 Timing

The individual does not initially know the value of his smoking preference parameters (θn).

He makes an annual smoking decision based on his beliefs about the parameters. At the

start of the period, the individual observes prices, government tobacco policies, demographic

variables (X), and the alternative specific preference shock. Then, the individual chooses a

level of smoking and receives a utility signal. The individual uses this signal to update his

beliefs at the end of the period.

An individual who has never smoked before the current period faces a sequential smoking

decision within the period, where he first decides whether to experiment with smoking be-

fore making a smoking consumption decision for the year. The consumer learning literature

generally finds that learning about match quality occurs relatively quickly. Since it would

not take a full year to learn the match quality parameter α, an individual who has never

smoked must first decide whether to experiment with smoking. Let aE denote the level of

consumption associated with experimentation. If he chooses to experiment, he learns his

true value of α and proceeds to make a smoking decision for the rest of the period. If he

chooses not to experiment, his smoking consumption for the period is zero and he will face

the experimentation decision again in the next period. In periods after the individual experi-

ments, the only decision is about annual smoking consumption. The utility of experimenting

is:

uEn,t = (αn + ξEXn,t)z(aE)− γptaE + εEn,t (3)

The utility shock for experimenting is assumed to be from a Type I Extreme Value distribu-

tion. For the sequential decision, individuals observe the preference shock for experimenting

at the start of the period but do not observe the preference shock for the smoking decision

until after they experiment.

3.3 Beliefs and Learning

3.3.1 Learning over the Utility Function Parameters

The individual’s initial prior beliefs are denoted as θn,0 ∼ N(mn,0,Σn,0). Assuming Ratio-

nal Expectations, the mean and variance of the individual’s initial prior beliefs equal the
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population mean and variance of θ.11

The individual updates his beliefs according to a Bayesian learning process based on the

signals received. After experimenting, the individual learns his true value of α. Without loss

of generality, assume that the individual first experiments with the addictive good in period

0. The initial prior for the period 0 consumption decision is the initial prior distribution

conditional on the realized value of α. Let mn,0|αn and Σn,0|αn denote the mean and covariance

matrix of the initial prior distribution conditional on α = αn. This conditional distribution

becomes the initial prior distribution for the subsequent learning over the parameters ρ, τ ,

and ω.

In every period that an individual chooses to smoke, he receives utility signals about the

value of the reinforcement and tolerance parameters. If the individual reduces his level of

smoking in period t from the level in period t − 1, he receives a signal for the withdrawal

parameter. For the level of smoking aj and past smoking {Sn,l}tl=0, the signals are as follows:

δn,t =


(ρn + λn,t)1[aj > 0] λn,t ∼ i.i.d. N(0,

σ2
λ

aj(1+g(Sn,t))
)

(τn + ψn,t)1[aj > 0] ψn,t ∼ i.i.d. N(0,
σ2
ψ

1+Sn,t
)

(ωn + ηn,t)1[aj < Sn,t] ηn,t ∼ i.i.d. N(0,
σ2
η

Sn,t−aj )

(4)

The variation in the observed signal around its true value is assumed to be uncorrelated

with the other parameters. The accuracy of the reinforcement signal is proportional to the

quantity consumed as well as the level of past consumption, which implies that individuals

face a trade-off between the speed of learning and the risk of becoming addicted. The

accuracy of the tolerance signal is greater for higher levels of past consumption, and the

accuracy of the withdrawal signal increases with larger decreases in consumption. The

individual uses this utility signal to update his beliefs about his true parameters. I assume

that the individual is able to distinguish between the signals if multiple signals are received

in a given period and that the signal noises are uncorrelated (conditional on aj and Sn,t).

The individual’s posterior beliefs at the end of period t after choosing a level of smoking

equal to aj (i.e., the individual’s beliefs after receiving the signals associated with the smoking

decision) are:

θn,t+1|α ∼ N(mn,t+1|α,Σn,t+1|α) (5)

where

mn,t+1|α = Σ−1
n,t+1|α(Σ−1

n,t+1|αmn,t|α + Φ−1
n,tδn,t) (6)

11Some restriction on the initial prior beliefs is required for identification. It may be possible to introduce
heterogeneity in the initial priors by allowing the parameters of the initial prior beliefs to vary by observable
characteristics.
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Σn,t+1|α = (Σ−1
n,t|α + Φ−1

n,tBn,t)
−1 (7)

Φ−1
n,t =


aj(1+g(Sn,t))

σ2
λ

0 0

0 1+Sn,t
σ2
ψ

0

0 0
Sn,t−aj
σ2
η

 (8)

Bn,t =

 1[aj > 0] 0 0

0 1[aj > 0] 0

0 0 1[aj < Sn,t]

 (9)

Equations (6) and (7) are the updating equations for the mean and variance of the indi-

vidual’s beliefs. The updated mean is a weighted average of the prior mean and the signal,

where the weights are the precision (inverse of the variance) of the prior and the signal. Φ

is a diagonal matrix of the signal precision, and B is a diagonal matrix with indicators for

a given signal being received. As the individual receives more signals, the precision of his

beliefs increases. Since the signals are unbiased, the individual’s beliefs converge to the true

parameter values.

Note that even though the signal noises are uncorrelated, the learning process for each

parameter is not independent of the learning process for the other parameters. Since the

parameters are correlated in the population and the population covariance matrix is the

variance of the individual’s initial prior beliefs, there is correlation in the learning process

among the parameters. Even if the individual never receives a withdrawal signal, his beliefs

about the value of his withdrawal parameter will change as he receives more information

about the value of his other parameters.

3.3.2 Expectation of Future Prices, Policies, and State Variables

There are two components of the retail price of cigarettes: the manufacturer’s price of

the product and state and federal excise taxes. Determinants of the price of the product

include the price of tobacco, production technology, labor costs, and other costs of production

and distribution. Since surveyed individuals are not typically asked about their subjective

expectations for future prices, some assumption must be made for how individuals forecast

prices. One possible specification is to assume that the base component of the price follows

a simple stochastic process (e.g., time trend with an AR(1) error). The justification for this

specification is that individuals likely have some idea as to any time trend in the price as

well as some realization that price shocks are persistent over time.

The other component of price, the excise tax, is much more difficult for the individual to

forecast because it is determined by the political system. Specifying how individuals form

10



expectations over other future tobacco policies presents a similar challenge. Estimates of

the model presented in this work will impose the likely unrealistic assumption of perfect

foresight.12

The endogenous state variables include the individual’s beliefs and the addictive stock.

The addictive stock is defined as the prior period’s level of smoking, so the addictive stock

evolves deterministically conditional on a particular smoking choice. The individual uses

his current beliefs about smoking preferences to evaluate the different smoking alternatives,

while taking into account the potential information that he will receive from each possible

choice. The individual also has perfect foresight regarding the observed exogenous state

variables in X.13

3.4 The Individual’s Problem

Each period, the individual chooses a level of smoking that maximizes his expected dis-

counted lifetime utility given his beliefs and the value of the other state variables. The

individual evaluates his expected discounted lifetime utility using backwards recursion. Let

T denote the final period the individual is observed in the data, and let djn,t be an indicator

variable that equals one if the individual selects alternative j in period t. Then the value

function in period T is:

Vn,T (Sn,T ,mn,T ,Σn,T , Xn,T ) = E
[

max
j

djn,T

(
uj(θn,T , Sn,T , Xn,T ) (10)

+βE[Vn,T+1(Sn,T+1,mn,T+1,Σn,T+1, Xn,T+1, Hn,T+1) | Sn,T ,mn,T ,Σn,T , Xn,T , d
j
n,T = 1]

)]
The continuation value function VT+1 contains an additional state variable H that contains

the individual’s cumulative smoking history (i.e., total number of years smoked at each level

of smoking).14 The cumulative smoking history affects the individual’s utility later in life

through potential adverse health effects of smoking. The expectation over the discounted

future value term is taken with respect to the future state variables. Current period utility is

the expected utility given the current period’s prior beliefs. Since the parameters in θ enter

the utility function linearly, the expected utility for the current period is just the utility

evaluated using the mean of the individual’s current prior. The value function for earlier

12Other possibilities include assuming that the individual expects current tobacco taxes and policies to
continue indefinitely or that individuals form expectations regarding the frequency and magnitude of excise
tax changes based upon recent experience (i.e., a form of adaptive expectations).

13For some variables, such as the individual’s age, this assumption is not unrealistic.
14The state variable H is suppressed in the value functions of earlier periods to simplify notation. Although

the cumulative history does not affect utility in earlier periods, it still impacts the individual’s behavior by
changing the discounted expected future lifetime utility in period T.
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periods can be defined recursively starting from the terminal period value function:

Vn,t(Sn,t,mn,t,Σn,t, Xn,t) = E
[

max
j

djn,t

(
uj(θn,t, Sn,t, Xn,t)

+ βE[Vn,t+1(Sn,t+1,mn,t+1,Σn,t+1, Xn,t+1) | Sn,t,mn,t,Σn,t, Xn,t, d
j
n,t = 1]

)]
(11)

If the individual has never smoked prior to period t, the value function for the experi-

mentation decision is defined as:

V E
n,t(mn,0,Σn,0, Xn,t) =

max
{
uEn,t + Eα[Vn,t(mn,0|α,Σn,0|α, 0, Xn,t)] , βE[V E

n,t+1(mn,0,Σn,0, Xn,t+1)]
}

(12)

The first term inside the max operator is the value from experimenting in the current period.

This term includes the utility from experimenting plus the value of the consumption decision

for the current period. The value of the consumption decision depends upon a particular re-

alization of α, which is unknown at the time of the experimentation decision, so the expected

value of the consumption decision is calculated by integrating over potential realizations of

α. The second term inside the max operator is the value associated with not experimenting,

which is the discounted expected future value of the next period’s experimentation decision.

The individual’s problem is to choose the optimal sequence of experimentation and con-

sumption in order to maximize his discounted lifetime expected utility. In the first period,

the individual’s beliefs are the initial prior beliefs and the individual has no experience with

smoking.

4 Data

The data used to estimate the structural parameters of the model are from the NLSY97.

The first wave of the survey was conducted in 1997 and included 8,984 individuals who were

born between 1980 and 1984 (age at first interview ranged from 12 to 18). Subsequent waves

have been conducted annually and are ongoing. This paper uses the first 13 waves of the

data (through the 2009 wave). There are several advantages of using this data set for the

study of youth smoking initiation. First, the individuals in the data set are surveyed at

a young age during which the decision to begin smoking is made. Second, the survey is

conducted annually, which is generally the shortest interval between observations in large

nationally-representative panel data sets. The learning process is better identified with
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annual observations as opposed to less frequent observations.15 Finally, the questions related

to smoking are asked every wave. I supplement the geocoded restricted use version of the

NLSY97 data set with tobacco policy data by matching individuals with the tobacco policies

in their state. Relevant policies for this study include the cigarette excise tax, restrictions

on tobacco advertising, spending on anti-smoking policies, and indoor smoking bans.

4.1 Sample Selection and Attrition

In a dynamic structural model, missing choice data add additional complexity in estimation.

If an individual is in the sample, leaves, and later re-enters the sample, then the estimation

routine has to integrate over all possible sequences of choices in the missing periods to

calculate the value of the state variable when the individual re-enters the sample. One

alternative is to only estimate the model on individuals who are observed in each time

period. Restricting the sample to individuals observed in every time period avoids the

difficulties in estimation, but the resulting sample may no longer be representative of the

population if attrition is non-random. Table 1 reports the proportion of individuals with a

given number of missing waves. Only about 60% of the original sample (5,385 of the original

8,984 individuals) is observed in every wave. Approximately 11% of this sample has one

missing observation, and an additional 10% have either two or three missing observations.

The preliminary estimation sample only includes the individuals who are observed in every

wave. An additional 598 individuals are excluded due to missing smoking, demographic, or

geographic data. The preliminary estimation sample contains the 4,787 individuals observed

in every wave with nonmissing data for the key variables.

Table 1 : Individual Level Survey Participation

Total years missing 0 1 2 3 4 5 6 7+ Total

Frequency 5,385 1,011 582 378 330 254 219 825 8,984

Percent 59.94 11.25 6.48 4.21 3.67 2.83 2.44 9.18 100

15If the individuals are only observed infrequently, then it is likely that much of the uncertainty would
be resolved after a relatively small number of observations. It would be difficult to identify the dynamic
learning process if the econometrician only had a few observations per individual where uncertainty and
learning mattered.
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4.2 Data Summary and Construction of Key Variables

In the NLSY97, individuals are asked whether they have smoked since the previous interview.

If the answer is yes, the individuals are asked about their smoking behavior over the month

prior to the interview. Specifically, the question asks, “during the past 30 days, on how many

days did you smoke a cigarette?” If the answer is greater than zero, the next question asks,

“when you smoked a cigarette during the past 30 days, how many cigarettes did you usually

smoke each day?” I construct a categorical smoking variable from the answers to these two

questions. The total number of cigarettes smoked in the past month is simply the product of

the answer to these two questions and is divided by 30 to give the average number of cigarettes

smoked per day. The range of possible values for the average number of cigarettes smoked

per day is divided into four intervals to create the discrete choice variable aj. These intervals

correspond to not smoking, light smoking (0-5 cigarettes per day), moderate smoking (5-15

cigarettes per day), and heavy smoking (more than 15 cigarettes per day).

Table 2 : Categorical Smoking Statistics

Smoking Level
Range Frequency

Percent E[a|aj]
(cigarettes per day) (in person years)

None a1 = 0 44, 186 69.65 0

Light 0 < a2 ≤ 5 9, 714 16.50 1.63

Moderate 5 < a3 ≤ 15 5, 469 9.21 10.50

Heavy 15 < a4 2, 862 4.64 23.51

Table 2 reports the range of each of the intervals, the number of observations (in person

years) in each interval, and the mean of average cigarettes smoked per day conditional on

being in the range of the interval. The distribution of the average cigarettes smoked per day

is skewed to the right with the majority of the observations concentrated at the mass point

of zero.

Table 3 reports the transition probabilities for the smoking categories. The transition

probabilities illustrate several key features of the data. First, individuals increase their level

of smoking gradually. Individuals are more likely to increase to the next highest level than

they are to jump several levels. Also, for any given level of smoking, there is a high probability

that individuals will transition to a lower level of smoking. For light and moderate levels of

smoking, the probability that individuals decrease the amount they smoke is approximately

30%. For the heaviest smokers, this probability is almost 40%. The amount of decreases in

the level of smoking observed in the data is difficult to reconcile with the standard RA model,
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Table 3 : Cumulative Smoking Transition Probabilities

Smoking level at t

Smoking level at t− 1 None Light Moderate Heavy

None
0.900 0.081 0.014 0.005

(36,748) (3,321) (562) (193)

Light
0.297 0.537 0.141 0.026

(2,679) (4,848) (1,269) (233)

Moderate
0.097 0.175 0.575 0.154

(482) (871) (2,862) (767)

Heavy
0.065 0.059 0.249 0.627

(169) (155) (650) (1,635)

Note: frequencies in parentheses

Table 4 : Under 18 Smoking Transition Probabilities

Smoking level at t

Smoking level at t− 1 None Light Moderate Heavy

None 0.882 0.099 0.015 0.004

Light 0.360 0.448 0.151 0.040

Moderate 0.116 0.146 0.517 0.221

Heavy 0.076 0.093 0.271 0.559
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but is consistent with the model of behavior that incorporates uncertainty and learning.

Table 4 reports the transition probabilities for individuals under 18 years old. Relative

to the full sample there is less persistence in smoking choices, with more movement (both

upward and downward) between smoking categories. This is consistent with the learning

model since it will take some experience before individuals are able to determine what level

of smoking is optimal for their specific utility function parameters.

Table 5 presents summary statistics for smoking behavior and demographic variables in

three of the early waves.16 Over these waves, the proportion of individuals who currently

smoke increases, however, it does fall in later waves. The other variables included in the

Table 5 : Summary Statistics of Smoking and Demographic Variables in Select Years

Year

1997 1999 2001

Time-Varying Variables Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.

Ever smoked 0.363 0.481 0.517 0.500 0.598 0.490

Current smoker 0.156 0.363 0.265 0.441 0.315 0.464

Number of cigarettes per day 0.541 2.559 1.618 5.064 2.368 6.135

Age 14.23 1.474 16.82 1.432 18.88 1.430

Employed 0.447 0.497 0.530 0.499 0.708 0.455

Real annual income* 247.5 762.6 1,208 3,178 3,889 6,295

Income ¿ $20,000 0.000 0.014 0.010 0.098 0.028 0.164

Married 0.000 0.014 0.013 0.115 0.053 0.224

Any children in household 0.007 0.085 0.047 0.212 0.107 0.310

High School student 0.982 0.133 0.691 0.462 0.292 0.455

College student 0.000 0.020 0.128 0.334 0.303 0.460

High School graduate 0.001 0.035 0.240 0.427 0.605 0.489

Time-Invariant Variables

Female 0.536 0.499

Black 0.255 0.436

Father’s educ (years) 10.32 5.752

Mother’s educ (years) 11.79 4.242

* In year 2000 dollars.

table enter the individual’s decision to smoke, either directly through the utility received from

smoking or through the cost of smoking. The NLSY does not ask about parent’s smoking

16See the Data Appendix for summary statistics for all waves.
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behavior. Parental smoking behavior potentially enters the individual’s smoking decision

through the individual’s beliefs as well as through the cost of smoking. Parental education

and other parental characteristics could serve as a proxy for parent smoking behavior.

Figure 1 presents the proportion of individuals in each smoking category by age. The

proportion of individuals choosing to smoke increases steadily during the teenage years,

reaches a peak for individuals in their early 20s, and declines slightly as individuals progress

through their 20s. The decline in smoking rates for individuals in their 20s is primarily

due to a lower proportion of light smokers. The proportion of moderate and heavy smokers

remains relatively constant after reaching a peak around the age of 20. Figure 2 presents the

proportion of current smokers by gender and race. Blacks have a substantially lower rate

of smoking compared to other ethnic groups, and females have a lower smoking rate than

males.

4.3 Cigarette Prices and State Excise Tax Data

The cigarette tax and price data used in this paper are from Orzechowski and Walker’s

Tax Burden on Tobacco. The price used is a sales weighted average of the premium brand

cigarettes sold in a given year. Cigarettes are taxed at the federal and state level. In some

instances they are also taxed at the county and municipal level. The federal cigarette tax

in 2011 was $1.01 per pack. The tax rates vary considerably across states. In 2011, state

cigarette taxes ranged from a low of $0.17 per pack in Missouri to a high of $4.24 in New

York. At the start of the sample period in 1997, state cigarette taxes ranged from a low

of $0.025 in Virginia to a high of $0.825 in Washington. Historically, the states with the

lowest tax rates on tobacco are the tobacco-producing states of the southeast. From 1997-

2011, only two states have had a constant tax rate, and most states have had multiple tax

increases over the period. The variation in tax rates is largely responsible for the variation

in the retail price of cigarettes across states. In 2011, the average retail price of cigarettes

per pack ranged from $4.70 in Missouri to $10.29 in New York.

Table 6 present the summary statistics across the 50 states and the District of Columbia of

the real price of cigarettes as well as the real total tax. The average real price approximately

doubles over the sample period, and the amount of the average real tax increases by about

three times. Over the time frame, the variability in both the prices and taxes across states

increases. Most years the average real price increases due to increases in taxes. In years

when there are no tax changes in a state, the real price of cigarettes falls as the nominal

price increases less than inflation.

Figure 3 shows how real retail cigarette prices and taxes have changed over time in
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Figure 1: Smoking Choice Probabilities by Age

Figure 2: Gender and Racial Differences in Smoking Rates by Age
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Table 6 : Summary Statistics of State Tobacco Price and Taxes

Year Real Price Real Tax (State + Federal)

Mean SD Min Max Mean SD Min Max

1997 2.265 0.327 1.796 3.305 0.633 0.217 0.284 1.143

1998 2.477 0.353 2.013 3.576 0.661 0.256 0.280 1.310

1999 3.200 0.361 2.698 4.304 0.670 0.271 0.274 1.282

2000 3.318 0.393 2.777 4.512 0.760 0.279 0.365 1.450

2001 3.500 0.370 3.035 4.458 0.752 0.291 0.355 1.410

2002 3.787 0.550 3.107 5.671 0.927 0.432 0.397 1.819

2003 3.843 0.567 3.157 5.452 1.041 0.453 0.388 2.284

2004 3.815 0.615 3.088 5.343 1.064 0.515 0.378 2.598

2005 3.847 0.643 3.095 5.292 1.157 0.528 0.406 2.513

2006 3.772 0.673 2.899 5.365 1.135 0.527 0.393 2.533

2007 3.883 0.652 2.906 5.520 1.191 0.518 0.382 2.462

2008 3.896 0.737 2.893 5.687 1.244 0.579 0.368 2.511

2009 4.711 0.846 3.406 6.458 1.856 0.628 0.867 3.588

New York and North Carolina. Much of the price difference between these two states can be

attributed to the difference in their cigarette taxes. Also, the increase in the price of cigarettes

over time is driven by the increase in the tax rates. Other factors behind the increase in

cigarette prices over this time period are the Tobacco Master Settlement Agreement in 1998,

and the increase in the federal cigarette tax rate in 2009.17 Figure 4 shows the distribution

of state cigarette tax rates over time. At the beginning of the sample period, state cigarette

taxes were relatively low. Over time, both the mean and variance of the state cigarette tax

distribution increased.

4.4 State Level Tobacco Policy Data

In addition to tobacco excise taxes, there are many other policies that states can pursue to

influence the level of youth smoking. Some of these policies enter into the individual’s prob-

lem through the budget constraint by imposing non-monetary costs on obtaining tobacco.

Some examples of policies that enter the individual’s problem in this way are restrictions

17In 1998, 46 states came to an agreement with the four largest cigarette manufacturers. The states
agreed to drop their lawsuits against the tobacco companies, which sought compensation for the treatment
of tobacco-related illnesses in the Medicaid system. In exchange, the tobacco companies agreed to a monetary
settlement, restrictions on the marketing of tobacco products to young people, and the funding of a national
anti-smoking organization. The tobacco companies raised the price of cigarettes by 45 cents per pack in
response to the settlement to cover the payments to the states.
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Figure 3: Real Cigarette Taxes and Prices in NY and NC (in year 2000 dollars)

Figure 4: Distribution of Real State Cigarette Taxes by Year

20



on the sale of tobacco to minors, bans on the sale of tobacco in vending machines, and re-

strictions on free samples of tobacco products. Another way for tobacco policies to influence

behavior is through restrictions on tobacco consumption. The overall utility one receives

from smoking will be less if there are restrictions on where and when one can smoke. Exam-

ples of restrictions on tobacco consumption are indoor smoking bans and smoke-free schools.

Finally, some tobacco policies influence the individual’s beliefs and expectations. In the

context of this paper, these policies influence the individual’s initial prior beliefs. Examples

include restrictions on cigarette advertisements, funding of tobacco prevention and education

programs, and requiring tobacco education in schools. The data on state tobacco policies

are from the Centers for Disease Control (CDC), the National Cancer Institute (NCI), and

the Substance Abuse and Mental Health Services Administration (SAMHSA).

5 Estimation

5.1 Likelihood Function

Define the conditional value function for alternative j as the deterministic portion of flow

utility from that alternative (i.e., utility minus the preference shock) plus the discounted

expected future value of lifetime utility conditional on alternative j being chosen. Then, the

conditional value function associated with alternative j in period t is given by:

vjn,t(Sn,t,Γn,t, Xn,t) =
(
αn + Et[ρn|Γn,t]g(Sn,t) + ξjXn,t

)
z(aj)− Et[τn|Γn,t]Sn,t1[aj > 0]

− Et[ωn|Γn,t]q(aj, Sn,t)1[aj < Sn,t]− γnptaj + βEt[Vn,t+1(Sn,t+1,Γn,t+1, Xn,t+1)|djn,t = 1]

(13)

where

Vn,t+1(Sn,t+1,Γn,t+1, Xn,t+1) = E[max
j
vjn,t+1(Sn,t+1,Γn,t+1, Xn,t+1) + εjn,t+1] (14)

The expectation over the future value term is taken with respect to the distribution of future

beliefs, future demographic state variables, and future prices. The evaluation of current

period utility depends upon the mean of the prior beliefs only. The variance of the prior

does affect the expectation over future beliefs. The utility from not smoking is normalized

to include the cost of withdrawal only, so ξ1 = 0. The state variables are the level of smoking

stock (i.e., last period’s smoking decision) and the individual’s beliefs, denoted by Γ, which
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include beliefs about parameter values and future prices.18 I assume an i.i.d. type I extreme

value (EV) preference shock.19 The choice probabilities after experimentation are given by:

P j
n,t =

ev
j
n,t∑J

k=1 e
vkn,t

for j = 1, . . . , J (15)

For individuals who have never smoked, they first choose whether or not to experiment,

and then, conditional on experimenting, they decide the level of smoking. Let dEn,t be a

dummy variable that equals one if the individual experiments in period t. The conditional

value of experimenting is:

vEn,t = (E[αn|Γn,t] + ξEXn,t)z(aE)− γptaE + Et[Vn,t|dEn,t = 1] (16)

The conditional value function of not experimenting is simply the discounted expected maxi-

mum of the next period’s value function conditional on not experimenting and not consuming

any of the addictive good. The probability for experimenting, PE
n,t, is given by the Logistic

cumulative distribution function. For an individual who has never smoked prior to period

t, the behavior in period t is captured by the joint probability of experimenting and level

of smoking (PE
n,tP

j
n,t). The decision to experiment is made based on the individual’s belief

about his level of α, so PE
n,t is calculated based on an individual’s beliefs. If he decides to

experiment, he learns his true level of α, so P j
n,t is calculated using the individual’s true value

of α.

There are a total of N individuals, and each individual is observed for a total of T + 1

periods. The likelihood of individual n making the sequence of choices {∪j{djn,t}, dEn,t}Tt=1 is:

Ln

(
γ, ξ | θn,Γn,0,Λn

)
=

T∏
t=0

(( J∏
j=1

P
j djn,t
n,t

)An,t ∗ [(1− PE
n,t)

1−dEn,t
(
PE
n,t

J∏
j=1

P
j djn,t
n,t

)dEn,t]1−An,t)
(17)

where An,t is an indicator for the individual having ever smoked prior to period t. If the

individual has smoked prior to period t (i.e., An,t = 1), the individual makes a consumption

decision. If the individual has not smoked prior to period t (i.e., An,t = 0), then the

18The price process has yet to be formally incorporated into the model, so the following estimation routine
assumes perfect knowledge of future prices. The proposed estimation routine can be extended to estimate
the parameters of a random price process.

19One of the major limitations of the multinomial logit model is the assumption that the shocks are
uncorrelated over alternatives (i.e., the Independence of Irrelevant Alternatives (IIA) assumption). The
use of random parameter, or mixed, logit can overcome the limitations of this assumption. In fact, mixed
multinomial logit can approximate any discrete choice model derived from a random utility model to within
any arbitrary degree of precision (McFadden and Train, 2000).
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individual makes a sequential experimentation and consumption decision. This individual

likelihood is conditional on the individual’s true addictive parameters (θn), the distribution

of individual’s initial prior beliefs (Γn,0), and a given sequence of signal noise draws (Λn =

{ψn,t, λn,t, ηn,t}Tt=0). This formulation is equivalent to conditioning on the individual’s beliefs

at time t since the beliefs in time t are completely determined by the individual’s initial

prior, the sequence of signal noise, and the sequence of choices. Since the individual’s true

parameters and signal noise sequences are not observed by the researcher, the unconditional

likelihood is calculated by integrating the conditional likelihood over the distribution of these

unobserved variables:

Ln(γ, ξ, σ2
ψ, σ

2
λ, σ

2
η, θ̄,Σ) =∫

θ

∫
Λ

Ln

(
γ, ξ | θn,mn,0,Σn,0,Λn

)
dF (Λ|σ2

ψ, σ
2
λ, σ

2
η) dF (θ|θ̄,Σ) (18)

and the full log-likelihood function is given by:

L (γ, ξ, σ2
ψ, σ

2
λ, σ

2
η, θ̄,Σ) =

∑
n

log
(
Ln(γ, ξ, σ2

ψ, σ
2
λ, σ

2
η, θ̄,Σ)

)
(19)

The total dimensions of unobserved variables is 3 ∗ T + 4.20 The integrals do not have a

closed form solution, so they must be approximated numerically. The parameters to be

estimated include the utility function parameters (γ, ξ), the mean and covariance matrix of

the population distribution of the rational addiction parameters (θ̄,Σ), and the variances of

the signal noise distributions (σ2
ψ, σ

2
λ, σ

2
η).

5.2 Identification

The model parameters are identified through the observed sequences of smoking decisions.

The parameters ξ and γ are identified through differences in smoking decisions between

individuals with different observable characteristics. The price sensitivity parameter γ is

identified by both cross-sectional variation and variation over time in the price of cigarettes.

The utility from not smoking when the smoking stock is zero is normalized to zero. The

parameter α affects the utility for each level of smoking regardless of past smoking. The

reinforcement parameter captures the effect of the interaction between the current level of

smoking and the smoking stock. The tolerance parameter only depends on the smoking

20The dimension of the unobserved signals is likely to be less than 3*T since some of the signals are
observed by the researcher. Based upon the sequence of actions, the researcher knows whether or not a
signal is received in a given period.
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stock, so, for a given level of smoking stock, a change in the tolerance parameter only affects

the probability of smoking versus not smoking. The reinforcement parameter affects the

probability of smoking versus not smoking, but it also affects the probability of each level

of smoking. The withdrawal parameter only affects the utility of a reduction in the level

of smoking from one period to the next, so this parameter is identified by smokers who

reduce their level of smoking or quit smoking entirely. The match, tolerance, reinforcement,

withdrawal, and price sensitivity parameters do not vary across alternatives. Differences in

utility for the different levels of smoking for these parameters are ultimately a result of the

functional form assumptions.

The individual-specific parameters are not point identified for each individual. There

is no way to estimate a specific value of these parameters for each individual. Also, since

these parameters are continuous, a distributional assumption is required for the population

distribution of parameters. Then, given that the conditional value function is defined over

the support of the distribution of the unobserved continuous variables, the parameters of

the population distribution (mean and covariance) are identified. The identification behind

the learning process is driven by the fact that the valuation an individual attributes to

each alternative depends upon the individual’s current beliefs only and not the individual’s

true parameters. The individual’s beliefs converge to the true parameters as the individual

receives additional signals. Therefore, individuals with a lot of experience will behave accord-

ing to their true parameter values. Also, if an individual knows his true parameter values,

he can use the model to calculate an optimal consumption sequence. Differences between

the optimal consumption sequence if the individual knows his true parameter values and the

decisions of the individual when he is inexperienced are driven by the difference between

the individual’s beliefs and his true parameter values. The speed at which the individual’s

consumption sequence converges to the optimal consumption sequence with full knowledge

identifies the speed of learning (i.e., the variance of the signals). Additional restrictions on

the learning process are necessary for identification. These include restrictions on the initial

prior beliefs (Rational Expectations), distributional assumptions for the beliefs and signals

(both Normal), and Bayesian updating.

5.3 Estimation Procedure

There are several computational requirements that make estimation of the parameters of

the model by Full Information Maximum Likelihood difficult. The main issue is that the

evaluation of the log likelihood function requires integrating over the continuous distribution

of population parameters and over all possible sequences of signal noise. Simulated maximum
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likelihood is one method that is used to overcome this problem. The unconditional likelihood

function is approximated numerically by taking random draws from the distribution of the

unobserved variable, evaluating the conditional likelihood, and taking the average of the

conditional likelihoods over the draws. Evaluating the conditional likelihood, however, for a

single draw still involves significant computation. The solution to the individual’s problem

requires integrating over future beliefs, which are multidimensional continuous variables.

One way to reduce the computational burden of evaluating the value function is to use the

Conditional Choice Probability (CCP) method of Hotz and Miller (1993).

Hotz and Miller (1993) show that when the preference shock has a GEV distribution, the

future value term in the conditional value function can be expressed as a function of future

flow utilities and conditional choice probabilities (CCPs). For certain classes of problems

(e.g., optimal stopping problems), taking the difference in conditional value functions leads

to the future value term only containing one period ahead flow utilities and CCPs. In other

problems, the future value term associated with the difference in conditional value functions

contains flow utilities and CCPs for a finite number of future periods. This property is called

finite dependence, and it is a feature of the problem in this paper.21 Standard CCP estimation

involves estimating the CCPs in a first stage using the data and using the estimated CCPs to

calculate the individual’s value function. One limitation of the standard method is that it do

not allow for unobserved heterogeneity. Arcidiacono and Miller (2011) develop a method of

CCP estimation that allows for a finite distribution of unobserved heterogeneity by using the

Expectation Maximization (EM) algorithm. The unobserved heterogeneity in this paper are

the individual’s beliefs and the individual’s true parameter values, which are both continuous.

Matsumoto (2015) extend the work of Arcidiacono and Miller (2011) to allow for a continuous

distribution of unobserved heterogeneity.

It can be shown that the values of the parameters that maximize the likelihood function

(19) also maximize the following transformed likelihood function:22

L (γ, ξ, σ2
ψ, σ

2
λ, σ

2
η, θ̄,Σ) =

∑
n

∫
θ

∫
Λ

πn(θn,Λn)

(∑
t

(1− An,t)
[
(1− dEn,t)log(1− PE

n,t) + dEn,tlog(PE
n,t)
]

+
∑
j

djn,tlog(P j
n,t)

)
dΛ dθ (20)

where π is the conditional probability that the parameter values are θ, θ0, and Λ given the

21See the Estimation Appendix for the derivation of the CCP representation of the future value term.
22This is the expected conditional (on the unobserved variables) likelihood, where the expectation is taken

with respect to the distribution of the unobserved variables conditional on the observed variables and the
choices.
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observed choices. This conditional probability is given by:

πn(θn,Λn) =
f(θn|θ̄,Σ)f(Λn|σ2

ψ, σ
2
λ, σ

2
η)
∏

t Ln,t(θn,Λn)∫
θ

∫
Λ

∏
t Ln,t(θn,Λn)f(Λn|σ2

ψ, σ
2
λ, σ

2
η)f(θn|θ̄,Σ) dΛ dθ

(21)

The estimation routine in this paper used the likelihood function in equation 20. The pro-

cedure starts by taking M draws from the distribution of the unobserved variables for each

individual as well as initial guesses for the values of the parameters and the CCPs. The esti-

mation proceeds by using the EM algorithm, specifically a simulated EM algorithm (SEM).

The EM algorithm is an iterative procedure that alternates between an expectation step (or

E-step) and a maximization step (or M-step). The E-step updates the CCPs and π using

the prior iteration values of the parameters and CCPs. The M-step updates the value of the

parameters by maximizing the likelihood function using the updated CCPs and π. The esti-

mation continues to iterate over these two steps until the parameter estimates converge. The

use of the EM algorithm to incorporate unobserved heterogeneity has several advantages.23

The most significant advantage is that the EM algorithm, or the SEM algorithm in the

current context, reintroduces additive separability of the likelihood function. This property

allows for sequential estimation of the likelihood function. In the current context, additive

separability of the likelihood function allows for the parameters of the experimentation and

consumption decisions to be estimated separately. The estimation procedure is presented in

greater detail in the Estimation Appendix.

5.4 Initial Conditions

The first period that individuals are observed in the NLSY97 is not the same as the initial pe-

riod of the individual’s optimization problem. That is, individuals may enter the estimation

sample having already smoked. The values of the state variables in the initial wave of data

depend on prior decisions and state variables that are not observed by the researcher. Some

individuals have never smoked by the first wave. Others have smoked at some point prior

to the first wave but are not observed to smoke in the first wave. Finally, some individuals

are regular smokers at the first wave. The latter two groups present an initial conditions

problem both in that the prior year’s smoking is not observed in the first period and it is not

observed how much they have learned. Individual’s initial prior beliefs also present an initial

conditions problem. I assume that individual initial priors are identical to the population

distribution of the parameters (i.e., Rational Expectations).24

23See Arcidiacono and Jones (2003) for a full discussion.
24In future work, I will attempt to parameterize the initial priors by allowing the mean of the initial priors

(and perhaps the variance as well) to be functions of individual characteristics and state tobacco policies.
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For individuals who have smoked prior to the first wave, the amount smoked in the

period prior to the first wave is treated as discrete unobserved heterogeneity. The individual

likelihood is calculated for each possible alternative in period t = 0. The probability that

the individual selected alternative j in period t = 0 is:

P j
n,0 =

1

1 + exp(ξjICX
IC
n,0)

(22)

The individual likelihood is calculated by multiplying the likelihood conditional on selecting

alternative j in period t = 0 by the probability P j
n,0 and summing over the alternatives.

5.5 Functional Forms

The utility for the smoking level associated with alternative j, contains several modifying

functions. The purpose of these functions is to allow for utility to be nonlinear in both

the level of smoking and the level of past smoking. In order to estimate the parameters

of the model, these generic functions must be replaced with specific functional forms. The

function z(a) incorporates the standard utility function assumptions except that the marginal

utility of smoking is positive for a level of smoking equal to zero. Also, the utility from not

smoking is normalized to zero. The function z(a) is assumed to take the following form:

z(a) = log(1 + a). The function that modifies the effect of reinforcement takes the following

form: g(St) =
√
St. Finally, the function that modifies the withdrawal effect has the following

form:

q(aj, Sn,t) = Sn,t ∗
(

1− exp
(
c ∗ (aj − Sn,t)

))
(23)

When the individual smokes the same amount as the prior period, q = 0. If the individual

smokes less than the prior period, the withdrawal cost is positive. For a given level of last

period smoking, the withdrawal cost decreases as the individual smokes more in the current

period. This decrease occurs at an increasing rate. The parameter c affects the curvature of

the function q as well as the maximum possible withdrawal cost. This parameter is initially

fixed at a value of 0.15. Finally, the discount parameter β is set to 0.95.

6 Results

6.1 Parameter Estimates

This section presents the parameter estimates for the model. The estimation sample includes

white males who are observed in every time period. The version of the model that is estimated
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Table 7 : Estimation Results, Population Distribution Parameter Estimates

Parameter Description
Model with Model without

Learning Learning

ᾱ Mean of match parameter -0.925 -1.351 (0.042)

ρ̄ Mean of reinforcement parameter 0.361 0.363 (0.011)

ω̄ Mean of withdrawal parameter 0.466 0.150 (0.014)

V ar(α) Variance of match parameter 0.124 4.723 (0.221)

V ar(ρ) Variance of reinforcement parameter 0.204 0.167 (0.009)

V ar(ω) Variance of withdrawal parameter 0.472 0.038 (0.004)

Cov(α, ρ) Covariance of match and reinforcement 0.063 0.867 (0.031)

Cov(ρ, ω) Covariance of reinforcement and withdrawal -0.104 0.061 (0.006)

Cov(α, ω) Covariance of match and withdrawal -0.116 0.274 (0.032)

σλ Standard deviation of reinforcement signal 0.994 -

ση Standard deviation of withdrawal signal 1.086 -

Note: Standard Errors in parentheses

differs from the model presented earlier in that the tolerance parameter τ is not estimated

and set to zero. Table 7 presents the parameter estimates for the model with learning as well

as the model without learning. The match parameter is negative for a large majority of the

population. Even individuals with a negative match parameter could receive positive utility

from smoking due to the effect of reinforcement. Individuals below the age of 18 experience a

utility cost from smoking, which is likely due to their inability to purchase cigarettes legally.

This cost is increasing in the level of smoking. The variance of the signals is significantly

different from zero, which suggests that the learning component of the model is significant.

In order to test the importance of learning, I estimate a version of the model without

learning. In the model without learning individuals are assumed to know the value of their

parameters, but the parameters vary across individuals.25 Estimates of the parameters from

the model without learning differ in important ways from the parameter estimates from the

model with learning. The mean of the population distribution of the match parameter is

larger in magnitude in the model without learning and has much higher variability in the

population. The mean value of the reinforcement parameter is nearly the same in both

models, and the mean of the withdrawal parameter is smaller in the model without learning.

The population variance of the reinforcement and withdrawal parameters is smaller in the

model without learning.

25The model without learning corresponds to a restricted version of the model with learning. Specifically,
the model without learning is equivalent to the model with learning where the mean of the initial prior is
set to the individual’s true parameter value and the variance of the initial prior is set to zero.
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Table 8 : Estimation Results, Coefficients on Observable Variables

Preference Shifting Variables

Variable
Model with Model without

Learning Learning

Years until age 18, light smoking -0.238 -0.435 (0.052)

Years until age 18, moderate smoking -0.316 -0.903 (0.176)

Years until age 18, heavy smoking -0.074 -1.016 (0.337)

Years until age 18 squared, light smoking -0.034 0.005 (0.012)

Years until age 18 squared, moderate smoking -0.184 0.001 (0.039)

Years until age 18 squared, heavy smoking -0.311 -0.013 (0.074)

Married, light smoking -0.212 -0.052 (0.039)

Married, moderate smoking -0.215 -0.127 (0.051)

Married, heavy smoking -0.511 -0.041 (0.048)

Has children in household, light smoking 0.114 0.167 (0.039)

Has children in household, moderate smoking -0.113 0.107 (0.051)

Has children in household, heavy smoking 0.026 -0.032 (0.049)

Price Sensitivity Variables

γ̄, Mean Price sensitivity 0.870 0.442 (0.025)

Under age 18 0.036 -0.053 (0.112)

Employed 0.004 -0.009 (0.018)

Income greater than $20k -0.070 -0.024 (0.009)

Unobserved Prior Consumption Variables

Constant, light smoking 1.228 5.913 (4.978)

Constant, moderate smoking -0.354 1.047 (1.189)

Constant, heavy smoking -0.379 -0.543 (1.623)

Years since first smoked, light smoking 2.107 -3.581 (5.137)

Years since first smoked, moderate smoking -0.271 -0.135 (0.213)

Years since first smoked, heavy smoking -0.558 -0.153 (0.330)

Experimentation Variables

Years until age 18 -4.697 -

Years until age 18 squared 0.186 -

Married 2.20 -

Has children in household 3.047 -

aE 3.565 -
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Table 8 presents the estimates of the coefficients on the observable variables. The first

panel includes the estimates for the variables that enter the utility function as preference

shifters. The next panel includes the variables that affect price sensitivity, and is followed by

the parameters that affect the probability of different levels of prior unobserved consumption.

The last panel includes the variables that enter the utility of experimentation. Note that

there is no experimentation decision in the model without learning since individuals already

know they value of the match parameter. Other than the age variables, the coefficients on

observable characteristics tend to be relatively small in magnitude

6.2 Model Fit

Table 9 presents the observed transition probabilities from the data as well as the transition

probabilities from simulated outcomes generated using the model with learning and the

estimated parameters. The model is able to fit the observed transition probabilities well.

For smoking transitions for individuals under 18, the simulated data tends to overstate the

persistence in smoking behavior, particularly for remaining a nonsmoker and a heavy smoker.

The model is better able to fit the transition probabilities for individuals over 18 years old.

Table 9 : Transition Probabilities, Observed and Simulated Data

Under 18 years old

Smoking level at t

Observed Data Simulated Data

Smoking level at t− 1 None Light Moderate Heavy None Light Moderate Heavy

None 86.81 10.47 1.83 0.88 92.39 5.23 1.39 0.99

Light 35.21 44.92 14.25 5.62 29.04 49.89 14.98 6.09

Moderate 15.70 10.74 49.59 23.97 11.98 16.71 44.91 26.40

Heavy 9.84 8.20 22.95 59.02 10.40 6.67 15.82 67.10

Over 18 years old

Smoking level at t

Observed Data Simulated Data

Smoking level at t− 1 None Light Moderate Heavy None Light Moderate Heavy

None 89.60 8.09 1.52 0.79 86.59 10.78 1.88 0.75

Light 27.12 57.88 12.24 2.76 28.33 56.14 12.44 3.09

Moderate 9.90 16.30 55.82 17.99 11.92 14.75 55.17 18.15

Heavy 6.30 5.09 21.26 67.35 6.98 4.06 17.77 71.18

Figure 5 shows the proportion of individuals in each smoking category by age for both the

observed and simulated data using the estimated model with learning. The simulated data

closely match the observed age profile of smoking behavior. Figure 6 compares the proportion

of individuals in each smoking category by age for the observed data and for simulated data
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using the model without learning. The model without learning does a relatively poor job in

matching the observed data.

6.3 Policy Simulations

In this section, I use the parameter estimates from the model with learning to conduct

policy counterfactual experiments. I consider policies that alter cigarette prices, beliefs

about withdrawal, and the legal smoking age.26

6.3.1 Prices

The tobacco excise tax is a popular policy tool among policymakers and anti-smoking advo-

cates to reduce the level of smoking. The specific policy experiment is doubling the price of

cigarettes. Under the counterfactual policy, individuals are faced with a price of cigarettes

that is two times what is observed in the data. This counterfactual measures the long run

impact of a change in the price of tobacco. Figure 7 depicts the smoking rates by age for

the baseline simulation and the simulated data under the counterfactual prices.

Doubling prices has a dramatic effect on the proportion of smokers. For individuals over

18 years old, the proportion of nonsmokers increases by over 30 percentage points as a result

of the higher prices. The proportion of light smokers decreases by around 90 percent, and

the proportion of moderate and heavy smokers decreases by around 75 percent.27

6.3.2 Beliefs

Prior to experimentation with cigarettes, a young individual has beliefs about his smoking

preference parameters. The model imposes rational expectations for the initial beliefs. How-

ever, the individual’s initial beliefs are likely influenced by a number of factors and could

potentially be influenced by anti-smoking policies. For example, advertisements that high-

light the addictive nature of cigarettes and the difficulty of quitting smoking may affect the

individual’s beliefs about the value of the parameters that govern the effects of reinforcement,

tolerance, and withdrawal.

In this counterfactual experiment, the mean initial prior for the withdrawal parameter

is increased by one standard deviation of the population distribution. Only the initial be-

lief about the withdrawal parameter changes. The actual distribution of the withdrawal

parameter in the population is the same.

26The legal smoking age is the minimum age at which an individual can legally purchase tobacco products.
27One concern with this counterfactual is that the CCPs are estimated using the data, so they are only

identified for values of the state variables that are observed in the data.
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Figure 5: Smoking Rates by Age, Observed and Simulated Data from the Model with Learn-
ing

Figure 6: Smoking Rates by Age, Observed and Simulated Data from Model without Learn-
ing
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Increasing the mean value of the withdrawal parameter in one’s initial prior beliefs causes

a reduction in the overall level of smoking. Individuals are now less likely to experiment

with smoking given the higher anticipated cost of quitting. The higher expected withdrawal

cost results in a large reduction in the proportion of moderate and heavy smokers. The

proportion of light smokers is about the same relative to the baseline simulation. Some

individuals who were light smokers under the baseline simulation decide not to smoke under

the counterfactual. These individuals are offset by those who were moderate and heavy

smokers under the baseline who remain light smokers for a longer period before transitioning

to higher levels of smoking under the counterfactual. The increase in the expected withdrawal

cost has the effect of extending the experimentation period.

6.3.3 Legal Smoking Age

Another possible policy tool that targets youth smoking is the minimum legal age to pur-

chase tobacco. In this counterfactual experiment, the effect of increasing the minimum legal

purchase age to 19 years old. Relative to the baseline simulation, increasing the purchase age

is effective in reducing smoking among teenagers. However, increasing the legal purchase age

only delays smoking rather than preventing it. The smoking rates converge to the baseline

simulation for all smoking categories once individuals are able to legally purchase tobacco.

These counterfactual simulations confirm that increasing the price of cigarettes is an

effective policy tool to reduce the prevalence of smoking. Changing the legal smoking age

would have the effect of reducing youth smoking, but would likely have only a minimal

impact in reducing smoking in the broader population. Policies that target an individual’s

initial prior beliefs about the utility of smoking could be very effective in reducing smoking.

Specifically, increasing an individual’s beliefs about the withdrawal cost would lead to a

relatively large reduction in the probability that individual would become a heavy smoker.

6.4 Welfare Analysis

Thus far, the policy analysis has evaluated the effectiveness of alternative policies in reducing

the level of smoking without taking into account the effect of the policies on an individual’s

welfare. One of the key advantages of the model with learning is the ability of the model

to explain regret. In the standard RA model, policies that increase the cost of smoking will

lower the welfare of every individual. In the model with learning, a policy that increases the

cost of smoking may lower the welfare of some individuals, but it may increase the welfare of

others. If an individual who would later regret the decision to become a smoker decided not

to smoke because of the policy, that policy would increase his welfare (assuming the policy
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Figure 7: Smoking Rates by Age, Baseline Simulation and Price Counterfactual Data

Figure 8: Smoking Rates by Age, Baseline Simulation and Beliefs Counterfactual Data
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Figure 9: Smoking Rates by Age, Baseline Simulation and Smoking Age Counterfactual
Data

did not affect the utility from not smoking).

To evaluate the effect of the alternative policies on welfare, I calculate the expected life-

time utility (ELU) for each individual’s simulated sequence of choices. This measure includes

the deterministic portion of utility evaluated using the individual’s true parameters.28 The

objective in constructing this measure of welfare is to determine the effect of the alternative

policies on the individual’s ex-post welfare. The welfare measure is normalized with respect

to the sequence of never smoking. The expected flow utility portion of the welfare measure

is already normalized from the normalization of the utility function.

Table 10 shows the summary statistics for the ELU measure of individual welfare for the

baseline simulation as well as under the different counterfactuals. The ELU of an individual

is zero for an individual who never smokes. The mean ELU for the baseline simulation is

1.773 and the median is −1.900. A vast majority of individuals have an ELU that is less

than zero, indicating that they are ex-post worse off than if they had never smoked. In the

price counterfactual, the proportion of individuals who never smoke increases. By increasing

the proportion of individuals who never smoke, these policies decrease the proportion of

individuals with a negative ELU, but the policies also decrease the proportion of individuals

28Note that expected lifetime utility refers to the ex-post deterministic flow utility up to the end of the
sample period.
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with a positive ELU. Individuals who enjoy smoking are negatively affected by the increase

in the price of cigarettes. Increasing initial beliefs about the difficulty of quitting smoking

decreases welfare on average as it decreases the proportion of individuals with a positive

ELU and increases the proportion of individuals with a negative ELU.

Table 10 : Welfare Analysis

Mean ELU Std ELU Med ELU Pr(ELU<0) Pr(ELU=0) Pr(ELU>0)

Baseline 1.773 27.172 -1.900 0.726 0.049 0.225

Price Cf -0.460 13.381 -0.172 0.719 0.095 0.186

Belief Cf -0.085 20.073 -1.049 0.739 0.070 0.191

Age Cf 1.126 24.886 -1.658 0.730 0.052 0.218

7 Conclusion

This research develops a model of rational addiction with learning in order to explain the

smoking initiation decision of young people. Estimation of the structural parameters of

the model requires significant computational resources, and is not computationally feasible

using a full solution estimation routine unless significant restrictions are placed on the model.

Therefore, this paper proposes the use of an alternative estimation routine. This estimation

routine uses the EM algorithm and CCP estimation, which reduces the computational burden

of estimating the structural parameters of the model.

Overall, the model is able to fit the data well. In particular, the model with learning fits

the data significantly better than the model without learning. The estimated parameters

of the model are used to conduct counterfactual policy experiments. Since an individual’s

decision to smoke depends upon his beliefs about his smoking preference parameters, policies

that affect one’s beliefs can have a significant impact on smoking behavior. Increasing

individuals’ beliefs about the difficulty of quitting smoking is effective at reducing the number

of heavy smokers. Increasing cigarette prices is shown to be an effective policy tool to reduce

youth smoking, although the model without learning overstates the importance of the price

of cigarettes. An increase in the legal age to purchase cigarettes would lead to a decrease in

the number of youth smokers, but it would only delay smoking initiation so adult smoking

behavior would not be affected. The analysis of individual welfare supports the use of taxes

as an anti-smoking policy tool. An increase in the price of cigarettes improves the ex-post

level of utility for some individuals by discouraging those who would later regret the decision

to smoke from ever experimenting with cigarettes, but hurts those who do enjoy smoking.
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The results of this paper suggest several potential avenues of future research. First,

the analysis performed considers the demand side of the market. Although the analysis

in this paper demonstrates the importance of learning in explaining cigarette demand, the

model would need to be extended to incorporate optimal firm behavior in order to better

capture the general equilibrium effects of policy changes. An individual’s initial beliefs are an

important determinant of early smoking behavior, as changing the initial beliefs was shown

to have a large effect on behavior in the counterfactual simulation. Additional exploration

of how these initial beliefs are formed would be useful. In particular, to what degree are

the individual’s initial beliefs influenced by the smoking behavior of others (e.g., parents,

siblings, peers) or by advertising (either pro- or anti-smoking). Finally, the importance

of learning in explaining youth smoking behavior begs the question of how learning about

cigarette smoking preferences may impact learning about preferences for consuming other

addictive goods such as alcohol or illegal drugs. There are potential knowledge spillovers

about the dynamic effects of consuming an addictive good (i.e., tolerance, reinforcement,

and withdrawal), which may be correlated across different addictive goods for an individual.
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A Data Appendix

Table A1 presents the summary statistics by year for the sample of individuals who are

observed in every wave of the survey. The proportion of individuals who smoke increases

over the first few waves. The proportion of smokers peaks at around 36% in 2002 and remains

in the low 30’s for the rest of the sample period.

B Estimation Appendix

B.1 CCP Representation and Finite Dependence

When the preference shock is GEV, the future value term in the conditional value function

has a closed form solution. With type I EV errors, the future value term can be expressed

as the one period ahead CCP and conditional value function of any alternative. The closed

form expression of the future value term is:

E[max
j
vjt+1] = log(

J∑
k=1

ev
k
t+1) + e.c. (24)

where e.c. is Euler’s constant.29 To express the future value term in terms of the conditional

value function and CCP of alternative 1, consider the probability of choosing alternative 1

in period t+ 1:

P 1
t+1 =

ev
1
t+1∑J

k=1 e
vkt+1

(25)

29Individual subscripts are suppressed for simplicity.
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Table A1: Summary statistics by year for individuals observed every period
(N = 5, 385)

Year
1997 1998 1999

Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Ever smoked 0.373 0.484 0.473 0.499 0.532 0.499
Current smoker 0.164 0.370 0.239 0.427 0.279 0.448
# of cigs/day 0.560 2.572 1.274 4.566 1.674 5.137
Age 14.23 1.472 15.87 1.430 16.84 1.439
Employed 0.441 0.497 0.501 0.500 0.522 0.500
Income 243.5 749.5 626.3 1,720 1,189 3,168
Married 0.000 0.019 0.004 0.064 0.013 0.112

2000 2001 2002
Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Ever smoked 0.579 0.494 0.618 0.486 0.648 0.478
Current smoker 0.316 0.465 0.335 0.472 0.361 0.480
# of cigs/day 2.122 5.616 2.451 6.168 2.703 6.535
Age 17.91 1.435 18.90 1.427 19.90 1.402
Employed 0.611 0.488 0.697 0.459 0.750 0.433
Income 2,191 4,565 3,785 6,281 4,877 7,702
Married 0.026 0.159 0.052 0.222 0.074 0.262

2003 2004 2005
Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Ever smoked 0.697 0.460 0.668 0.471 0.684 0.465
Current smoker 0.350 0.477 0.361 0.480 0.357 0.479
# of cigs/day 2.936 7.019 2.772 6.349 2.880 6.631
Age 22.85 1.420 20.85 1.424 21.88 1.418
Employed 0.830 0.376 0.785 0.411 0.804 0.397
Income 10,832 13,255 6,327 8,995 8,485 11,807
Married 0.108 0.310 0.143 0.350 0.182 0.386

2006 2007 2008
Variable Mean Std. Dev. Mean Std. Dev. Mean Std. Dev.
Ever smoked 0.709 0.454 0.717 0.450 0.722 0.448
Current smoker 0.354 0.478 0.343 0.475 0.328 0.470
# of cigs/day 2.818 6.462 2.740 6.488 2.760 6.827
Age 23.81 1.420 24.77 1.432 25.78 1.426
Employed 0.854 0.353 0.870 0.336 0.867 0.340
Income 14,024 15,555 17,402 18,905 20,711 20,735
Married 0.217 0.412 0.248 0.432 0.277 0.447
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Now, take the log of both sides:

log(P 1
t+1) = v1

t+1 − log(
J∑
k=1

ev
k
t+1) (26)

Substituting the log-sum term into the future value term gives the CCP representation of

the future value term:

Et[max
j
vjt+1] = u1

t+1 + EVt+2 − log(P 1
t+1) + e.c. (27)

When forming the choice probabilities in the likelihood function, all that matters is the differ-

ence in conditional value functions. Finite dependence occurs when two sequences of choices

lead to the same future state in expectation. Then when taking the difference in conditional

value functions, the remaining future value terms in the CCP representation cancel. The

state variables are the individuals beliefs and the prior period’s decision. The expectation

in the current period of future mean priors is simply the mean of the current period priors

for any future sequence of signals (i.e., Et[mt+k] = mt, ∀k and ∪j {djt+1, . . . , d
j
t+k−1}). The

variance of the priors only depends on the number and intensity of the signals; the timing

of the signals does not matter. So the expected distribution of a future period’s beliefs will

be the same along any two sequences that generate the same number and intensity of the

signals. The other state variable is the prior period’s decision, which will be the same as long

as the two sequences end with the same alternative. The following table gives the sequences

that generate finite dependence.

period t− 1 t t+ 1 t+ 2 t+ 3

sequence 1 0 aj 0 0

sequence 2 0 0 aj 0

For any aj > 0

sequence 1 aj′ aj 1 aj′ 0

sequence 2 aj′ 0 aj′ aj 0

For any aj, aj′ > 0

Consider the simpler case, which is when the individual did not smoke in the prior period.

The conditional value function in period t for any alternative j > 1 and j = 1 are:

vj(d1
t−1 = 1,Γt) = uj(mt) + β ∗ E[V (Γt+1|djt = 1)]

v1(d1
t−1 = 1,Γt) = β ∗ E[V (Γt+1)|d1

t = 1]

(28)
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The CCP representation of the future value term in the conditional value function for alter-

native j > 1 is:

E[V (Γt+1|djt = 1)] = u1(E[mt+1|djt = 1])− Em[log(P 1(mt+1|djt = 1))]

+ βu1(E[mt+2|djt = 1, d1
t+1 = 1])− βEm[log(P 1(mt+2|djt = 1, d1

t+1 = 1))]

+ β2E[V (Γt+3|djt = 1, d1
t+1 = 1, d1

t+2 = 1)] (29)

and the CCP representation of the future value term in the conditional value function for

alternative j = 1 is:

E[V (Γt+1)|d1
t = 1] = uj(E[mt+1|d1

t = 1])− Em[log(P j(mt+1|d1
t = 1))]

+ βu1(E[mt+2|d1
t = 1, djt+1 = 1])− βEm[log(P 1(mt+2|d1

t = 1, djt+1 = 1))]

+ β2E[V (Γt+3|d1
t = 1, djt+1 = 1, d1

t+2 = 1)] (30)

When calculating the choice probability in the likelihood function, all that matters is the

difference between these conditional value functions. The t+ 3 expected future value term is

the same for the alternative j > 1 and j = 1 conditional value functions, so it will cancel out

in the difference term. All that remains are the flow utilities for periods t, t + 1, and t + 2

as well as CCPs for periods t+ 1 and t+ 2. Note that the CCPs are functions of the mean

prior beliefs (m), which depend on the realized value of the signal. If no signal is received,

then the CCP can be evaluated using the current period beliefs. If, however, a signal is

received, then calculating the expectation requires integrating over possible realizations of

the signal. Approximating these integrals numerically adds to the computational burden of

the estimation procedure, but the computational requirements are much less than would be

needed to fully solve the dynamic learning problem.

An additional advantage of the CCP representation of the value function with finite

dependence is that it is not necessary to estimate a separate closing function for the value

function in the final period that the individuals are observed, which is the case when solving

for the value function using backwards recursion.

The experimentation decision is an optimal stopping problem, which is one of the original

class of problems where the CCP representation was applied. The conditional value function

of experimenting is:

vEn,t = uEn,t + Et[Vn,t|dEn,t = 1] (31)

In periods after the individual experiments, he no longer faces an experimentation decision.

So, the conditional value function for experimenting does not include a future value term
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for future experimentation decisions. The expectation over the value of the consumption

decision is over the iid preference shock as well as potential realizations of the value of α.

The conditional value function for not experimenting is the discounted expected value of the

next period’s experimentation decision. The CCP representation of this future value term

is:

vNEn,t = βEt[V
E
n,t+1] (32)

= βEt[v
E
n,t+1 − log(PE

n,t+1) + ec]

= βEt[u
E
n,t+1 + Et+1[Vn,t+1|dEn,t+1 = 1]− log(PE

n,t+1) + ec]

Note that the CCP representation does not contain a future value term for the experimenta-

tion decision for period t+2. Now both conditional value functions contain an expected value

of the consumption decision in the period that the individual experiments. The expected

value of the consumption decision in the conditional value function for experimenting can

be expressed as a function of the CCP of not smoking and the conditional value function of

not smoking:

Et[Vn,t|dEn,t = 1] = Et[u
1
n,t + βEt[Vn,t+1|d1

n,t = 1]− log(P 1
n,t) + ec] (33)

The future value term will cancel with the future expected value of the consumption decision

in the conditional value function of not experimenting. Then the difference in the conditional

value functions of not experimenting and experimenting is:

vNEn,t − vEn,t = −uEn,t + E[log(P 1
n,t)]− ec+ β(uEn,t − E[log(PE

n,t)] + ec) (34)

The probability that an individual experiments is:

PE
n,t =

1

1 + exp(vNEn,t − vEn,t)
(35)

B.2 Estimation Procedure

This section describes the details of the estimation procedure. The estimation procedure

uses the EM algorithm to estimate the parameters that maximize the likelihood function

(equation 20). The integrals in the likelihood function are approximated numerically, so the

likelihood function becomes a simulated likelihood function in estimation.30 The procedure

30When the EM algorithm is used to maximize a simulated expectation (the likelihood being maximized
is the expected conditional likelihood), it is called a simulated EM (SEM) algorithm.
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begins with initial guesses for the parameters and the CCPs as well as M vectors of draws

from the standard normal distribution for each individual, {zmn }Mm=1. These draws are used

to form a sample of N ∗M simulated individuals. Each iteration proceeds according to the

following steps:

1. Calculate the value of the unobserved state variables for each individual using the

current estimates of the population distribution parameters and the M draws using

the following equations and the corresponding elements of the vector z:

θmn = θ̄ + Ch′ ∗ zmn (36)

{λmn,t}Tt=1 = σλ ∗ zmn , {ψmn,t}Tt=1 = σψ ∗ zmn , and {ηn,t}Tt=1 = ση ∗ zmn (37)

where Ch is the Cholesky decomposition of Σ. These values of the addictive parameters

and the noisy component of the signals are used to calculate the individual’s prior

beliefs for each period.

2. E step, part 1: Use the prior iteration parameter values and CCPs, denoted P̂ , to

update π:

π(θmn ,Λ
m
n ) =

∏
t Ln,t(θ

m
n ,Λ

m
n , P̂ )∑

m

∏
t Ln,t(θ

m
n ,Λ

m
n , P̂ )

(38)

3. E step, part 2: Use the updated values of π to update the CCPs. There are sev-

eral methods for updating the CCPs. The method used in this paper is to estimate

a weighted multinomial logit model of the observed choices on a flexible polynomial

of the state variables (both observed and unobserved), where the values of π are the

weights. The coefficients from this multinomial logit are used in order to approximate

the CCPs at the relevant combinations of state variables in the solution to the indi-

vidual’s problem. This method for updating the CCPs is analogous to least squares

value function interpolation. The only heterogeneity in utility from experimentation

is in observable characteristics. Therefore, the CCPs for the experimentation decision

can be estimated outside of the main estimation routine. Similarly, state transition

probabilities that do not depend on the unobserved heterogeneity, or that only depend

on the unobserved heterogeneity through the smoking choice, can also be estimated in

a first stage.

4. M step: Using the updated CCPs and π, the parameters are updated by maximizing
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the simulated log-likelihood function:

L̃ (γ, ξ, σ2
ψ, σ

2
λ, σ

2
η, θ̄,Σ) =∑

n

1

M

∑
m

π(θmn ,Λ
m
n )L (θmn ,Λ

m
n , P̂ , γ, ξ|σ2

ψσ
2
λ, σ

2
η, θ̄,Σ) (39)

The parameters of the population distribution of unobserved heterogeneity can be

estimated separately and have a closed form solution (Train, 2007). The updated

parameters are simply the weighted mean (for θ̄) and variance (for Σ, σ2
λ, and σ2

η)

of the values of θmn and Λm
n , where the weights are the values of π. The remaining

parameters are estimated using simulated maximum likelihood.

These steps are repeated until the parameters converge. The criteria for convergence can

either be based on changes in the parameter values or changes in the likelihood function. In

practice, there are a wide range of criteria used to determine the convergence of the SEM

algorithm. Also, the algorithm may not converge to the global maximum, so to confirm

any potential maximum, the algorithm must be rerun using different starting values. The

convergence criteria used for preliminary estimation results are that the parameters change by

less than one half of one percent, which is the criteria suggested by Train (2007). A feature

of the EM algorithm is that the likelihood function weakly increases from one iteration

to the next. Performing the full maximization in the M-step yields the largest possible

increase in the likelihood but may be computationally intensive. The computational burden

is particularly great if an the derivative and Hessian must be approximated using finite

differences. In order to reduce the computational burden, I use an alternative version of the

EM algorithm. This alternative version of the EM algorithm replaces the full optimization of

the M-step, which gives the greatest possible likelihood improvement, with a procedure that

is simply guaranteed to improve the likelihood function. This version of the EM algorithm is

called a Generalized EM algorithm (GEM) and is commonly implemented by replacing the

maximization in the M-step with a single Newton-Raphson iteration. GEM algorithms share

similar convergence properties as the EM algorithm, although they converge at a slower rate.

Even though GEM algorithms require more iterations to converge, each iteration requires

much fewer evaluations of the likelihood function.

This estimation procedure is still computationally demanding, although standard proce-

dures would likely be infeasible.31 Evaluating the likelihood for a single simulated individual

only takes a fraction of a second, but with N ∗M simulated individuals, a single evaluation

31Using Simulated Maximum Likelihood to estimate the version of the model without learning took around
12 hours for a modest number of draws.
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of the likelihood function can take hours.32

32There are two factors that influence the number of calculations needed to evaluate the likelihood function
for a single simulated individual. The most significant determinant of the number of necessary calculations
is the number of draws used to approximate the future value terms. Increasing the number of draws by a
given factor increases estimation time by nearly the same factor. The second determinant of estimation time
is the number of terms used in the interpolation of the CCPs. Increasing the number of terms by using a
higher order polynomial approximation increases the calculations needed to evaluate the likelihood function.
However, the most significant effect of increasing the number of interpolation terms comes in the increase in
the time it takes to update the CCPs.
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