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Quarterly Benchmarking for the Current Employment Survey 

By Matthew Dey and Mark A. Loewenstein1 

  

Executive Summary 

 

 This paper proposes a quarterly benchmarking procedure for the Current Employment Survey 

(CES) that explicitly corrects for differences in seasonality between the CES and the Quarterly 

Census of Employment and Wages (QCEW). 

 Abstracting from seasonal adjustment issues, we show analytically that the proposed procedure 

yields improved estimates of March employment.  This is in spite of the fact that revisions in 

various quarters are likely to be opposite signed. 

 More frequent benchmarking is especially advantageous when CES errors are correlated over 

time, as tends to happen at turning points in the business cycle. 

 The March revision is generally not a good measure of monthly errors in the CES.  A small March 

revision does not in and of itself imply small monthly errors.   

 The performance of the proposed quarterly benchmarking procedure depends on the variance 

of the CES estimator, potential errors in the QCEW, and on how well the seasonal factors in the 

CES and QCEW are estimated. 

 Simulations show that the variance of the proposed estimator is smaller than that of the CES 

under the plausible assumption that errors in the QCEW are relatively small compared to errors 

in the CES.  The larger the errors in the CES, the better is the relative performance of the 

proposed quarterly benchmark estimator even accounting for the fact that seasonal factors will 

be estimated less precisely. 

 

Introduction 

The CES is quick response business survey that provides information on employment, hours, and 

earnings each month.2The CES program benchmarks its employee series in order to re-anchor sample-

based employment estimates to full population counts.  This process is designed to improve the 

accuracy of the CES all employee series by replacing estimates with full population counts which are not 

subject to the sampling or modeling errors inherent in the CES monthly estimates.  These population 

counts are derived from administrative records, and are much less timely than the sample-based 

estimates, but provide a near census of establishment employment.  The CES program is investigating 

possible improvements in its benchmarking procedures.     

                                                           
1 We thank Steve Miller and Ken Robertson for helpful comments on an earlier draft. 
2 For more background on the CES, see the Ken Robertson’s forthcoming article in the Monthly Labor Review.. 
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The major source of benchmark data for the CES survey is the Quarterly Census of Employment and 

Wages (QCEW) program, which collects employment and wage data from States’ unemployment 

insurance (UI) tax records. All businesses subject to UI laws are required to report employment and 

wage information to the appropriate State Workforce Agency (SWA) quarterly; these UI records cover 

about 97 percent of nonfarm wage and salary jobs on civilian payrolls. Benchmarks for the remaining 3 

percent of CES employment are constructed from alternate sources, primarily information from the 

County Business Patterns and the Annual Survey of Public Employment and Payroll publications from the 

US Census Bureau.   Benchmark employment, also called population employment, is the sum of the 

QCEW employment count and the non-covered employment estimate from these other sources.  In the 

rest of this paper the term QCEW is used to denote QCEW plus non-covered employment. 

The size of the benchmark or March revision is equal to the difference between the March QCEW 

employment estimate and the CES estimate of March employment and is widely regarded as a measure 

of the accuracy of the CES estimates.  For the National total nonfarm series, annual benchmark revisions 

have an absolute average of about three-tenths of one percent (0.3%) over the past decade.  For 

National series, only March sample-based estimates are replaced with the population data.  In contrast, 

for State and metropolitan area series, all available months of population data are used to replace 

sample-based estimates.   

A team at BLS is investigating ways of improving the benchmarking procedures.  The discussion in this 

paper is an outgrowth of the work of the CES Benchmarking Team.3  Two improvements in the 

benchmarking procedures are being considered.  In order to provide more timely revisions and to 

reduce the size of the March revisions, the CES program is looking into the possibility of benchmarking 

the CES quarterly instead of annually.  Second, in order to achieve greater consistency among the 

National and the State and metropolitan area estimates, the program is exploring the possibility of 

adopting the same benchmarking procedure for State and metropolitan area estimates as is used for the 

National estimates.  While the empirical work in this paper is confined to the National all employee 

series, our theoretical analysis has broader applicability.  Our theoretical results and the results of our 

simulation exercise apply equally to any series, be it total or industry, or national or local.   

Benchmarking the non-seasonally adjusted CES to the non-seasonally adjusted QCEW throughout the 

year is problematic because of the substantial difference in seasonal patterns between the QCEW and 

the CES series.  The QCEW has always shown larger seasonal movements than the CES, both before and 

after the CES’s conversion to a probability sample design in 2003.  Consequently, we propose 

benchmarking seasonally adjusted CES estimates to the seasonally adjusted QCEW.   

The next section of this paper describes the benchmarking procedure that is currently employed.    We 

then turn to a discussion of the effect more frequent benchmarking can be expected to have on the 

March revision.  With this information as background, we present our proposed benchmarking 

procedure and examine results when it is implemented for the total private CES employment estimates.  

We conclude with a simulation exercise that allows us to evaluate our proposed procedure when there 

are potential errors in both the CES and QCEW and when seasonal factors are measured with error.  

                                                           
3 In addition to the authors of this paper, the benchmarking team includes Ken Robertson, Greg Erkens, Larry Huff, 
Chris Manning, Kirk Mueller, and Dave Talan.  
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Current Benchmarking Procedure 

For the CES National estimates, newly benchmarked data are released with the January Employment 

Situation in early February of each year.  Not seasonally adjusted data are revised for 21 months and 

seasonally adjusted data are revised for 5 years.  For example, with the March 2012 benchmark release, 

not seasonally adjusted data were revised from April 2011 through December 2012.  Seasonally adjusted 

data were revised from January 2008 through December 2012. 

Like all sample surveys, the CES is susceptible to two sources of error: sampling error and non-sampling 

error. Sampling error is present any time a sample is used to make inferences about a population. The 

magnitude of the sampling error, or variance, relates directly to sample size and the percentage of the 

universe covered by the sample. The CES survey captures slightly under one-third of the universe 

employment each month, exceptionally high by usual sampling standards. This coverage ensures a 

relatively small sampling error at the total nonfarm employment level for Statewide and the National 

series.  Both the universe counts and the CES survey estimates are subject to non-sampling errors 

common to all surveys – coverage, response, and processing errors. The error structures for both the 

CES monthly survey and the UI universe are complex. Still, the two programs generally produce 

consistent total employment figures. Over the last decade, annual benchmark revisions at the National 

total nonfarm level have averaged 0.3 percent (in absolute terms), with an absolute range of 0.1 percent 

to 0.7 percent over the past decade.  

 

While the benchmark revision often is regarded as a proxy for total survey error, this interpretation does 

not take into account error in the benchmark source data. The employment counts obtained from 

quarterly UI tax forms are administrative data that reflect employer record-keeping practices and 

differing State laws and procedures. The benchmark revision can be more precisely interpreted as the 

difference between two independently derived employment counts, each subject to its own error 

sources.   Overall however, the universe employment counts are subject to smaller overall error than 

the CES sample-based estimates and therefore serve as a valuable input data to improve the accuracy of 

the CES through benchmarking. 

At the time of annual benchmarking, the monthly sample-based estimates for the 11 months preceding 

and the 9 months following the March benchmark are also subject to revision. Each annual benchmark 

revision affects 21 months of data for not seasonally adjusted series. 

Monthly estimates for the 11 months preceding the March benchmark are re-calculated using a “wedge 

back” procedure. The difference between the final benchmark level and the previously published March 

sample estimate is calculated and distributed back across the previous 11 months.  The wedge is linear; 

eleven-twelfths of the March difference is added to the February estimate, ten-twelfths to the January 

estimate, and so on, back to the previous April estimate, which receives one-twelfth of the March 

difference. This method assumes that the total estimation error (in levels) since the last benchmark 

accumulated at a steady rate throughout the benchmark reference year. 
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Estimates for the 9 months following the March benchmark also are recalculated each year. These post-

benchmark estimates reflect the application of sample-based monthly changes to new benchmark levels 

for March.4   

A Closer Look at the Wedging Procedure 

The current wedging procedure is one possible approach to adjusting monthly CES growth rate 

estimates.  If one is only willing to rely on March information from the QCEW, this appears to be the 

most reasonable method of adjusting monthly CES employment estimates.  However, it is important to 

realize that the wedging procedure implicitly makes questionable assumptions about the CES growth 

rate error process.   

To see the implied error structure when wedged estimates are considered to be the truth, let 𝐸𝑚 denote 

the true employment level in month 𝑚, let 𝑟𝑚 denote the true monthly rate of change of employment 

from month 𝑚 − 1 to month 𝑚 and let �̂�𝑚 denote the initial estimate of 𝑟𝑚.  Then we may write 

(1a)     �̂�𝑚 = 𝑟𝑚 × 𝑒𝑥𝑝(𝜀𝑚),  

(1b)     E(𝑒𝑥𝑝(𝜀𝑚)) = 1   

where exp(𝜀𝑚)-1 denotes the proportional error in the estimated rate of change and .  

Note that the CES employment estimate in month j is given by  

 (2)     �̂�𝑗
𝑐𝑒𝑠 = 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡−1

𝑞𝑐𝑒𝑤
× ∏ �̂�𝑚

𝑗
𝑚=𝐴𝑝𝑟𝑖𝑙,𝑡−1  ,  

while the true employment level is given by 

(3)     𝐸𝑗 = 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡−1
𝑞𝑐𝑒𝑤 ∏ 𝑟𝑚

𝑗
𝑚=𝐴𝑝𝑟𝑖𝑙,𝑡−1 . 

Using (1a) and (3), we can rewrite ((2) as 

(4)     �̂�𝑗
𝑐𝑒𝑠 = 𝐸𝑗 × ∏ 𝑒𝑥𝑝(𝜀𝑚)𝑗

𝑚=𝐴𝑝𝑟𝑖𝑙,𝑡−1 . 

Letting 

(5)     𝑅𝑀𝑎𝑟𝑐ℎ,𝑡 = 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

− �̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠  

denote the annual March revision in year t, the final wedged estimate of employment in month 𝑗 

(running from April of year 𝑡 − 1 to March of year 𝑡) is given by  

(6)     �̂�𝑗
𝑐𝑒𝑠−𝑓𝑖𝑛𝑎𝑙

= 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡−1
𝑞𝑐𝑒𝑤

× ∏ �̂�𝑚
𝑗
𝑚=𝐴𝑝𝑟𝑖𝑙,𝑡−1 +

#𝑗

12
× 𝑅𝑀𝑎𝑟𝑐ℎ,𝑡 

where 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡−1
𝑞𝑐𝑒𝑤

 is March employment count from the QCEW in year 𝑡 − 1, #𝑗 is the number of 

months beyond March of year 𝑡 − 1, so #𝐴𝑝𝑟𝑖𝑙 equals 1, #𝑀𝑎𝑦 equals 2, and so on. Equation (2) 

directly implies that 

                                                           
4 New birth/death factors are also calculated using the more recent data.  We will not go into this here, but a 
discussion of the birth-death model can be found on the CES webpage.  
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(7)     �̂�𝑗
𝑐𝑒𝑠−𝑓𝑖𝑛𝑎𝑙

− �̂�𝑗−1
𝑐𝑒𝑠−𝑓𝑖𝑛𝑎𝑙

= �̂�𝑗
𝑐𝑒𝑠 − �̂�𝑗−1

𝑐𝑒𝑠 +
1

12
× 𝑅𝑀𝑎𝑟𝑐ℎ,𝑡 

or that the difference between the final, wedged OTM change estimate and the initial OTM change 

estimate is equal to a constant that is determined by the size of the revision. 

If we assume that the wedged estimates are truth, that is, that �̂�𝑗
𝑐𝑒𝑠−𝑓𝑖𝑛𝑎𝑙

= 𝐸𝑗, then combining 

equations (2) and (3) and applying some algebra yields a condition on the original CES estimate prior to 

wedging:  

(8)     ∑ 𝜀𝑚
𝑗
𝑚=𝐴𝑝𝑟𝑖𝑙,𝑡−1 = 𝑙𝑛 (1 −

#𝑗

12
×

𝑅𝑀𝑎𝑟𝑐ℎ,𝑡

𝐸𝑗
). 

It follows directly that  

(9)     𝜀𝑗 = 𝑙𝑛 (1 −
#𝑗

12
×

𝑅𝑀𝑎𝑟𝑐ℎ,𝑡

𝐸𝑗
) − 𝑙𝑛 (1 −

#𝑗−1

12
×

𝑅𝑀𝑎𝑟𝑐ℎ,𝑡

𝐸𝑗−1
). 

Figure 1 shows the implied monthly errors prior to wedging for the national, total private CES estimates 

for the period from March 2004 to March 2013.  The implied CES errors are roughly constant throughout 

the year except for January whose monthly growth rate is invariably measured with substantially greater 

error than the other months of the year.5   This error structure seems implausible.  We are not aware of 

any reason why the error in January should be so much greater (in absolute value) than the errors in the 

other months.  And in general, the error in estimated employment should not be constant across the 

other 11 months. 

Recall that we have no knowledge about the individual monthly errors, but we do have information 

about the total error from the size of the March revision. The natural choice of an error correction 

model would be to assume that the original rates are all mismeasured by different amounts, but that 

the implied errors in monthly employment sum to the March discrepancy.  In a typical year, one would 

expect monthly errors to be roughly independent of each other and to have roughly constant variance.  

In years with a large March revision (typically at turning points in the cycle), the errors are likely to be 

correlated, possibly resulting from errors in the estimate of the birth-death residual.  Of course, it is not 

possible to implement a more sophisticated error model without observing alternative employment 

estimates more frequently than once a year.  If one only uses the March QCEW, there really is no 

alternative to wedging back for an entire year.   However, if one benchmarks more frequently using the 

QCEW at other times, then one will need to wedge back for a shorter period of time, so the issue should 

be less serious. 

 

More on the March Revision 

When one benchmarks the CES to the March QCEW, one is implicitly treating the March QCEW 

employment figure as the “truth.”  Using (2), we can rewrite equation (5) as 

                                                           
5 There is a ready explanation as to why the implied error is so large in January.  Employment is generally lower in 
January than in other months throughout the year.  As can be seen from equation (9), for any given March 
employment revision, a lower employment level implies a larger error in the estimated rate of employment 
change.  

http://oeus.sp.bls.gov/DivisionofCurrentEmploymentStatistics/Teams/CESBenchmarkGoalTeam/Shared%20Documents/figure%201%20Dey%20and%20Loewenstein.pdf
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 𝑅𝑀𝑎𝑟𝑐ℎ,𝑡 = 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

− 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡−1
𝑞𝑐𝑒𝑤

× ∏ �̂�𝑚
𝑀𝑎𝑟𝑐ℎ,𝑡
𝑚=𝐴𝑝𝑟𝑖𝑙,𝑡−1 , 

which can in turn be rewritten as  

(10)     𝑅𝑀𝑎𝑟𝑐ℎ,𝑡 = 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡−1
𝑞𝑐𝑒𝑤

× (
𝐸𝑀𝑎𝑟𝑐ℎ,𝑡

𝑞𝑐𝑒𝑤

𝐸𝑀𝑎𝑟𝑐ℎ,𝑡−1
𝑞𝑐𝑒𝑤 − ∏ �̂�𝑚

𝑀𝑎𝑟𝑐ℎ,𝑡
𝑚=𝐴𝑝𝑟𝑖𝑙,𝑡−1 ). 

Equation (10) more clearly expresses what the March revision represents, namely the difference 

between the annual (March-to-March) growth rate implied by the QCEW level estimates and the annual 

growth rate implied by the CES monthly estimates. 

Assuming that the annual growth rate from QCEW equals the “truth”, we have  

(11)     
𝐸𝑀𝑎𝑟𝑐ℎ,𝑡

𝑞𝑐𝑒𝑤

𝐸
𝑀𝑎𝑟𝑐ℎ,𝑡−1
𝑞𝑐𝑒𝑤 = ∏ 𝑟𝑚

𝑀𝑎𝑟𝑐ℎ,𝑡
𝑚=𝐴𝑝𝑟𝑖𝑙,𝑡−1 . 

With equations (1a) and (11), we can rewrite the March revision in equation (10) as  

(12)     𝑅𝑀𝑎𝑟𝑐ℎ,𝑡 = 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

× (1 − 𝑒𝑥𝑝(∑ 𝜀𝑚
𝑀𝑎𝑟𝑐ℎ,𝑡
𝑚=𝐴𝑝𝑟𝑖𝑙,𝑡−1 )). 

Equation (12) makes explicit the relationship between the monthly errors and our interpretation of the 

March revision. Namely, the March revision depends on the cumulative (over the year) monthly errors 

in the CES rates and the closer the cumulative error is to zero, the smaller the March revision is. The 

March revision tells us very little about the individual monthly errors in the CES rates.  Indeed, one 

would hope that monthly errors largely average out, leaving us with a relatively small revision.  A large 

March revision likely means that monthly errors in a given year are highly correlated.  An example of this 

was the start of the Great Recession, where CES underestimated the sizes of the early employment 

losses. 

The Effect of Quarterly Benchmarking on March estimates and March Revisions 

Although the March employment revision does not provide information about individual monthly errors, 

the March estimate does provide a natural diagnostic tool for evaluating the effect of more frequent 

updating.  Throughout this paper, we will be focusing on quarterly updating.6  It is therefore convenient 

to work with quarterly rather than monthly errors.  Let 𝑒𝑥𝑝(𝜀𝑚) − 1 denote the accumulated error in 

the CES estimate in quarter 𝑞 of year 𝑡, where 𝜀𝑞,𝑡 = ∑ 𝜀𝑚
𝑚3(𝑞),𝑡
𝑚=𝑚1(𝑞),𝑡  and 𝑚𝑗(𝑞) represents month 𝑗 in 

quarter 𝑞. 

There is currently a 10 month lag between the QCEW reference period and the time that the QCEW 

employment figures are available for benchmarking.  Consequently, CES estimates are currently revised 

every January (10 months after the preceding year’s March QCEW estimates are available).  With 

                                                           
6 Not only does QCEW information become available on a quarterly basis, but as discussed below, QCEW 

employment information in the last month of a quarter is more reliable than QCEW employment information 

during the first two months of a quarter. 
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quarterly benchmarking, CES estimates would also be revised about 10 months after each quarter 

utilizing the June, September, and December QCEW numbers.7         

Recall the initial estimate of March employment in year 𝑡 as shown in equation (2). The estimate is 

comprised of two parts, the QCEW March employment level in year 𝑡 − 1 and the product of CES 

monthly growth rate estimates from April of year 𝑡 − 1 to March of year 𝑡. Using equation (1a) and our 

definition of quarterly errors, we can rewrite the initial March employment estimate as  

(13)     �̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠 = 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡

𝑞𝑐𝑒𝑤
× 𝑒𝑥𝑝(𝜀2,𝑡−1 + 𝜀3,𝑡−1 + 𝜀4,𝑡−1 + 𝜀1,𝑡). 

The estimate is again comprised of two parts, the QCEW March employment level in year 𝑡 and the 

product of the quarterly errors in the CES rates from second quarter of year 𝑡 − 1 to the first quarter of 

year 𝑡. 

Let us assume for the moment that the June of year 𝑡 − 1 QCEW employment level is the true 

population value such that8  

(14)     𝐸𝐽𝑢𝑛𝑒,𝑡−1
𝑞𝑐𝑒𝑤

= 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡−1
𝑞𝑐𝑒𝑤

× ∏ 𝑟𝑚
𝐽𝑢𝑛𝑒,𝑡−1
𝑚=𝐴𝑝𝑟𝑖𝑙,𝑡−1 . 

Incorporating the second quarter (June) of year 𝑡 − 1 QCEW information into the CES estimate when it 

first becomes available will result in a revised March estimate that can be written as 

(15a)     �̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠(2)

= 𝐸𝐽𝑢𝑛𝑒,𝑡−1
𝑞𝑐𝑒𝑤

𝑥 ∏ �̂�𝑚
𝑆𝑒𝑝𝑡,𝑡−1
𝐽𝑢𝑙𝑦,𝑡−1 𝑥 ∏ �̂�𝑚

𝐷𝑒𝑐,𝑡−1
𝑂𝑐𝑡,𝑡−1  𝑥 ∏ �̂�𝑚

𝑀𝑎𝑟𝑐ℎ,𝑡
𝐽𝑎𝑛,𝑡  

                               = 𝐸𝐽𝑢𝑛𝑒,𝑡−1
𝑞𝑐𝑒𝑤

× ∏ 𝑟𝑚
𝑚𝑎𝑟𝑐ℎ,𝑡
𝐽𝑢𝑙𝑦,𝑡−1 𝑒𝑥𝑝(𝜀3,𝑡−1 + 𝜀4,𝑡−1 + 𝜀1,𝑡). 

                               = 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

× 𝑒𝑥𝑝(𝜀3,𝑡−1 + 𝜀4,𝑡−1 + 𝜀1,𝑡). 

 

Essentially including the June QCEW information into the March estimate will eliminate the errors in the 

CES monthly rates from April to June of year 𝑡 − 1 .   Under reasonable assumptions about the error 

process, the variance of the revised estimate, �̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠(2)

, is lower than the variance of the initial estimate, 

�̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠 .  Specifically, from equations (13) and (15a), it follows that 

(16)    𝑣𝑎𝑟(ln (�̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠 /𝐸𝑀𝑎𝑟𝑐ℎ,𝑡

𝑞𝑐𝑒𝑤
)) −  𝑣𝑎𝑟(ln (�̂�𝑀𝑎𝑟𝑐ℎ,𝑡

𝑐𝑒𝑠(2)
/𝐸𝑀𝑎𝑟𝑐ℎ,𝑡

𝑞𝑐𝑒𝑤
)) = 𝑣𝑎𝑟(𝜀2,𝑡−1) + 2𝑐𝑜𝑣(𝜀2,𝑡−1, 𝜀3,𝑡−1)                                                                                                                                        

                                                                                                                + 2𝑐𝑜𝑣(𝜀2,𝑡−1, 𝜀4,𝑡−1) + 2𝑐𝑜𝑣(𝜀2,𝑡−1, 𝜀1,𝑡). 

If the quarterly errors in the CES are uncorrelated, then the right hand side of (16) reduces to 

𝑣𝑎𝑟(𝜀2,𝑡−1), which is unambiguously positive: eliminating the error in estimated employment growth 

from April to June of year 𝑡 − 1 improves the accuracy of the subsequent March estimate.  With 

                                                           
7 A preliminary QCEW employment estimate is available 3 months earlier.  It is quite possible that little accuracy is 

lost in using the preliminary QCEW estimates rather than waiting for the final QCEW estimates.  We plan to explore 

this possibility in future work. 

8 The assumption that we can observe true employment levels quarterly helps simplify the exposition in this 
section, allowing us to focus on essentials.  We will return to this point later on when we discuss our 
recommended benchmarking methodology, 
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sufficiently strong negative correlation, the right hand side of (16) could actually be negative, but this 

seems very unlikely.  In contrast, there have been times during which the quarterly CES errors have in 

fact been positively correlated, a prime example being the onset of the Great Recession during which 

period CES understated employment losses.   

In summary, provided that the CES yields an unbiased estimate of employment, the initial CES March 

year 𝑡 employment estimate and the revised March year 𝑡 employment estimate in April year 𝑡 should 

on average equal the March QCEW estimate.  However, the revised estimate in April will generally be 

closer to the March QCEW estimate. 

We can also define subsequent March year 𝑡 estimates made using the preceding September and 

December QCEW estimates) as 

(15b)     �̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠(3)

= 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

× 𝑒𝑥𝑝(𝜀4,𝑡−1 + 𝜀1,𝑡) 

(15c)     �̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠(4)

= 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

× 𝑒𝑥𝑝(𝜀1,𝑡). 

 

The revision utilizing QCEW information through the third quarter (September) of year 𝑡 − 1 will result 

in an additional improvement over the first revision using only the June QCEW.  Specifically, it is 

straightforward to show that 

(17)    𝑣𝑎𝑟(ln (�̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠(2)

/𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

)) −  𝑣𝑎𝑟(ln (�̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠(3)

/𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

)) = 𝑣𝑎𝑟(𝜀3,𝑡−1) + 2𝑐𝑜𝑣(𝜀3,𝑡−1, 𝜀4,𝑡−1) 

                                                                                                                               + 2𝑐𝑜𝑣(𝜀3,𝑡−1, 𝜀1,𝑡). 

Similarly, the revision using the December t – 1 QCEW will yield a still tighter estimate of the March year 

t employment estimate.  

The discussion above indicates that more frequent updating yields improved employment estimate, 

using the March estimate as a convenient benchmark.  What can we say about the revisions 

themselves? 

The March revision using the preceding second quarter estimate of the QCEW is given by  

(18a)     𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
(2)

= �̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠(2)

− �̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠   , 

                               =𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

𝑒𝑥𝑝(𝜀3,𝑡−1 + 𝜀4,𝑡−1 + 𝜀1,𝑡) × [1 − 𝑒𝑥𝑝(𝜀2,𝑡−1)] 

 

Similarly, the March revisions using the preceding third and fourth quarter QCEW year t -1 estimates are 

respectively given by  

(18b)     𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
(3)

= �̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠(3)

− �̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠(2)

   

                                =𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

𝑒𝑥𝑝(𝜀4,𝑡−1 + 𝜀1,𝑡) × [1 − 𝑒𝑥𝑝(𝜀3,𝑡−1)] 

(18c)     𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
(4)

= �̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠(4)

− �̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠(3)
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                               =𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

𝑒𝑥𝑝(𝜀1,𝑡) × [1 − 𝑒𝑥𝑝(𝜀4,𝑡−1)] . 

The final revision using the actual March QCEW is given by 

(18d)     𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
(𝐹)

= 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

− �̂�𝑀𝑎𝑟𝑐ℎ,𝑡
𝑐𝑒𝑠(4)

 

                               =𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

[1 − 𝑒𝑥𝑝(𝜀4,𝑡−1)] 

Note that 𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
(𝑞)

> (<) 0 as 𝜀𝑞,𝑡−1 < (>)0.  Also, note that 

 𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
(2)

+ 𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
(3)

+ 𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
(4)

+ 𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
(𝐹)

= 𝑅𝑀𝑎𝑟𝑐ℎ,𝑡.  That is, the four quarterly benchmark revisions 

sum to the benchmark revision when we only benchmark annually.  In addition, note that 

 (19)     |𝑀𝑎𝑟𝑐ℎ,𝑡
(2)

| + |𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
(3)

| + |𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
(4)

| + |𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
(𝐹)

| ≥ |𝑅𝑀𝑎𝑟𝑐ℎ,𝑡|,  

with equality holding if and only if the quarterly benchmark revisions are all positive or all negative.  

When CES errors are opposite signed in different quarters, the revision in one quarter will at least partly 

offset that in another quarter.  This leads to a seeming puzzle: earlier we saw that each revision yielded 

a better estimate of March employment than the previous one.  If this is so, why should the revisions be 

offsetting, with a positive revision in one quarter being followed by a negative revision in a subsequent 

quarter or vice versa? 

A positive initial revision using the QCEW in the second quarter of year t – 1 means that the CES initially 

underestimated employment growth from April to June in year 𝑡 − 1 and a negative second revision 

using the QCEW in the third quarter of year t – 1 means that the CES initially overestimated employment 

growth from July to September in year 𝑡 − 1.  Occurrences like this should be quite common if errors in 

the CES are uncorrelated over time.  When the initial errors in different quarters are in different 

directions, the revisions (which will be opposite signed from the errors) will also be.  Actually, it should 

be reassuring when the quarterly revisions are not all of the same sign because this means that the CES 

is not making systematic errors.  When the CES errors are all in the same direction, so will be the 

revisions.  Quarterly benchmarking is especially valuable in such a case because it allows us to begin 

correcting the systematic errors more quickly than annual benchmarking would.9 

To summarize, offsetting quarterly revisions should not be disturbing because they are an indication 

that the CES is not making systematic errors.  In those hopefully rare occasions when errors are 

correlated (which tend to occur at turning points in the business cycle), quarterly benchmarking 

provides an important safeguard against systematic errors being baked into the estimates for an 

unnecessarily long period of time.           

A Benchmarking Methodology Using Seasonally Adjusted CES and QCEW Data  

As is well documented, the QCEW and the CES have different seasonal patterns – see, for example, 

Berger and Phillips (1993), Berger and Phillips (1994), and Groen (2011).  These seasonal patterns are, of 

                                                           
9 The discussion has abstracted from the possibility that errors in the CES are negatively correlated.  In such a case, 
there would be an even greater tendency for the sum of the absolute values of the quarterly March revisions to 
exceed the absolute value of the annual March revision.  This situation is unlikely to occur in practice.  But again, it 
would not mean that the quarterly revisions do not improve the employment estimates throughout the year. 
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course, not an issue when one benchmarks annually.  However, they must be accounted for if one 

benchmarks more frequently.  A team at BLS has examined several methods of dealing with the 

different seasonal patterns in the QCEW and has determined that it is best to explicitly model and 

estimate the seasonal patterns in the CES and QCEW, as methods that implicitly adjust for seasonality 

have been found lacking.    

Our proposed procedure is quite simple conceptually.  The intuition behind the method follows directly 

from the relationship between the estimated monthly growth rate and the true growth rate in equation 

(1a). We can rewrite the quarterly growth rate estimate as 

(20)     ∏ �̂�𝑚
𝑚3(𝑞)
𝑚=𝑚1(𝑞) = ∏ 𝑟𝑚

𝑚3(𝑞)
𝑚=𝑚1(𝑞) × 𝑒𝑥𝑝 (∑ 𝜀𝑚

𝑚3(𝑞)
𝑚=𝑚1(𝑞) ) ⇒ �̂�𝑞 = 𝑟𝑞 × 𝑒𝑥𝑝(𝜀𝑞) 

so the observed quarterly growth rate equals the true quarterly growth rate times the over-the-quarter 

error term. 

The proposed method assumes that the ratio of the seasonally adjusted quarterly growth rate from the 

QCEW to the seasonally adjusted quarterly growth rate from the CES is a noisy signal of the over-the-

quarter error term such that 

(21)     
�̂�𝑞

𝑆𝐴−𝑄𝐶𝐸𝑊

�̂�𝑞
𝑆𝐴−𝐶𝐸𝑆 = exp (𝜂𝑞), 

The error term  𝜂𝑞 is in turn given by  

(21b)     𝜂𝑞 = 𝛾𝑞 − 𝜀𝑞 

where 𝛾𝑞 is the residual error term reflecting an error in the estimation of the seasonal factors or in 

QCEW itself.  In particular, when a new quarter of QCEW data becomes available, our proposed method 

adjusts monthly rates in that quarter by a constant determined by the ratio of seasonally adjusted 

quarterly growth rates. The adjusted monthly rates can be written as 

(22)     �̃�𝑚(𝑞) = �̂�𝑚(𝑞) × 𝑒𝑥𝑝 (
1

3
𝑙𝑛 (

�̂�𝑞
𝑆𝐴−𝑄𝐶𝐸𝑊

�̂�𝑞
𝑆𝐴−𝐶𝐸𝑆 )) 

Multiplying the monthly rates over the quarter, equation (22) implies that 

(23)     �̃�𝑞 = �̂�𝑞 × 𝑒𝑥𝑝(𝜂𝑞) ⇒ �̃�𝑞 = 𝑟𝑞 × 𝑒𝑥𝑝(𝜀𝑞 + 𝜂𝑞) = 𝑟𝑞 × 𝑒𝑥𝑝(𝛾𝑞) 

so the adjusted quarterly rate equals the true quarterly growth rate times the residual error term. 

Having calculated the adjusted rates for the months in quarter 𝑞, one can readily obtain revised 

employment growth estimates for quarter 𝑞 that in turn yield a revised estimate for employment at the 

end of the quarter.  The revised estimate for the end of quarter employment level in turn leads to a 

revised employment level in subsequent months.  For example, in April 2015, we would obtain 

corrected values for April 2014 – March 2015 employment growth. The corrected values from April 2014 

to June 2014 are obtained by applying the adjusted rates for the period April 2014 – June 2014.  The 

corrected values from July 2014 to March 2015 are obtained by applying the new June 2014 
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employment base, but using the initial CES growth rates.10  Similarly, revised estimates could be 

published when QCEW estimates in September and December become available.11   

As is the case with the three preceding revisions, in the January revision, adjusted growth rates for the 

months January, February and March are calculated according to equations (22) and (23); these 

adjusted growth rates in turn yield revised estimates for employment growth for the January – March 

period.  However, the published revision in January also includes a second component arising from the 

fact that the adjusted quarterly growth rates will have some error.  Multiplying the adjusted quarterly 

growth rates over the year yields an estimate of the over-the-year growth rate that is equal to 

(24)     ∏ �̃�𝑞
1,𝑡
𝑞=2,𝑡−1 = ∏ 𝑟𝑞

1,𝑡
𝑞=2,𝑡−1 × 𝑒𝑥𝑝(∑ 𝛾𝑞

1,𝑡
𝑞=2,𝑡−1 ) =

𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

𝐸𝑀𝑎𝑟𝑐ℎ,𝑡−1
𝑞𝑐𝑒𝑤 × 𝑒𝑥𝑝(∑ 𝛾𝑞

1,𝑡
𝑞=2,𝑡−1 ) 

The second component of the March revision is given by the difference between the March 

employment level and the employment level predicted from the adjusted quarterly growth rates: 

(25)     𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
𝑓𝑖𝑛𝑎𝑙

= 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

− 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡−1
𝑞𝑐𝑒𝑤

× ∏ �̃�𝑞
1,𝑡
𝑞=2,𝑡−1 = 𝐸𝑀𝑎𝑟𝑐ℎ,𝑡

𝑞𝑐𝑒𝑤
× (1 − 𝑒𝑥𝑝(∑ 𝛾𝑞

1,𝑡
𝑞=2,𝑡−1 )) 

The error term 𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
𝑓𝑖𝑛𝑎𝑙

 reflects errors in the estimation of the seasonal factors.  If the seasonal factors 

were estimated perfectly, 𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
𝑓𝑖𝑛𝑎𝑙

 should be 0.12 

In order to guarantee that the estimated over-the-year growth rate equals the over-the-year growth 

rate from the QCEW (which is assumed to be the true over-the-year growth rate) we make a final rate 

adjustment. This could be viewed as similar in spirit to the current wedging procedure with a different 

functional form. Since we have no additional information we will assume that 𝛾𝑞 = 𝛾 for all quarters and 

that the adjustment is equal across all months in the quarter. This results in a final monthly rate 

estimate equal to 

(26)     �̃�𝑚
𝑓𝑖𝑛𝑎𝑙

= �̃�𝑚 × 𝑒𝑥𝑝 (
�̂�

3
) 

                                                           
10 The proposed revision procedure only utilizes QCEW employment estimates for the final month of any quarter 
because the QCEW employment estimate for the final month of a quarter is much more reliable than the estimates 
for the first two months of any quarter.  Evidence for this is provided by the existence of “seam effects” across 
quarters - monthly employment changes between the last month of a quarter are typically larger in absolute value 
and less likely to be zero than the employment changes between the months within a quarter, suggesting that 
employers filling out the UI reports underlying the QCEW have a tendency to copy backward from the third month 
of the quarter to the first and second months.   
11 We should note that even though more current CES data is available, the ratio of seasonally adjusted QCEW to 
CES rates used in (22) is based on data from quarter 𝑞 and backward for both series (that is, seasonal factors are 
estimated over the same period of time for both the CES and QCEW).  Further, the CES rate in equation (22) is only 
adjusted once.  We do not propose adjusting the rate in subsequent quarters even though revised estimates of the 
seasonal factors may lead to a change in the ratio of the seasonally adjusted QCEW to the seasonally adjusted CES. 
For example, we adjust the June 2014 quarterly rate in April 2015 when the June 2014 QCEW becomes available. In 
July 2015 when the September 2014 QCEW becomes available we could estimate a new ratio for June 2014 but 
choose not to. In this sense, the not seasonally adjusted series is fixed when the next year’s March value becomes 
available and the final revision is made. 
12 We may note that possible monthly errors in the QCEW are not reflected in 𝑅𝑀𝑎𝑟𝑐ℎ,𝑡

𝑓𝑖𝑛𝑎𝑙
, as these will average out to 

zero over the year. 
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where 

(27)     𝛾 =
1

4
𝑙𝑛 (

𝐸𝑀𝑎𝑟𝑐ℎ,𝑡
𝑞𝑐𝑒𝑤

𝐸𝑀𝑎𝑟𝑐ℎ,𝑡−1
𝑞𝑐𝑒𝑤

∏ �̃�𝑞
1,𝑡
𝑞=2,𝑡−1

⁄ ) 

It follows directly that 

(28)     ∏ �̃�𝑚
𝑓𝑖𝑛𝑎𝑙𝑀𝑎𝑟𝑐ℎ,𝑡

𝑚=𝐴𝑝𝑟𝑖𝑙,𝑡−1 =
𝐸𝑀𝑎𝑟𝑐ℎ,𝑡

𝑞𝑐𝑒𝑤

𝐸𝑀𝑎𝑟𝑐ℎ,𝑡−1
𝑞𝑐𝑒𝑤  

so the estimated (March-to-March) annual growth rate equals the annual growth rate implied by QCEW 

employment levels. 

Table 1 shows the revisions that result when one applies the method outlined to revise estimates of 

total private employment during the period from 2007 – 2013. 13 Although the March revision does not 

tell us much about the accuracy of the individual monthly errors, it is nevertheless an informative 

statistic.  Recall from our earlier discussion a large revision when benchmarking is only done annually 

suggests that the monthly estimates are correlated over the past year and therefore do not average out 

to zero. 

Looking at the estimates in the second table, we see that as a rule, the estimated March employment 

generally improves as it is revised throughout the year.  In some years, the improvement is quite 

noticeable, especially in years where the initial CES estimate differs substantially from the QCEW value.   

The estimates in the last column are simply the error term 𝑅𝑀𝑎𝑟𝑐ℎ,𝑡
𝑓𝑖𝑛𝑎𝑙

.  These estimates indicate how well 

the adjustment model is estimating March employment.  In every year the absolute value of the March 

revision is smaller under our proposed method than under the current method. At the very least this 

suggests that the ratio of the seasonally adjusted QCEW quarterly growth rate to the seasonally 

adjusted CES quarterly growth rate contains some useful information regarding the nature of monthly 

errors in CES growth rates. This information seems particularly useful when the monthly errors tend be 

correlated as they seem to be from April 2008 to March 2009 and from April 2009 to March 2010. In 

these years, it seems that the CES is systematically overestimating the growth rate which results in a 

large negative revision. In these years our quarterly rate adjustments are always negative which 

indicates that capitalizing on the information contained in non-March QCEW data may give an earlier 

(than the next March) indication that the CES is systematically over or under estimating the growth 

rates. 

While we do not know how well we are estimating employment in the intermediate months, the results 

in the table are suggestive.  Note from equation (23), that the accuracy of the benchmark revision 

depends on the size of 𝛾𝑞 which reflects the error in the estimated seasonal QCEW and CES seasonal 

factor.  The real question, however, is not whether there is error in the seasonal factors, but how large 

this error is relative to the error 𝜀𝑞 in the CES estimate.  The larger is the error in the CES estimate 

relative to the error in the estimated seasonal factors, the larger is the gain from benchmarking.   

                                                           
13 Unlike the current practice, we have estimated the seasonal factors concurrently.  This distinction is not central 
to our analysis. 

http://oeus.sp.bls.gov/DivisionofCurrentEmploymentStatistics/Teams/CESBenchmarkGoalTeam/Shared%20Documents/table%201%20Dey%20and%20Loewenstein.pdf
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A Simulation Exercise 

The results above provide a strong indication that the proposed benchmark procedure results in an 

improved March estimate.  One suspects that the revised quarterly estimates are improvements over 

the initial CES estimates, but there is insufficient information to show this definitively (after all, if we 

knew the true quarterly estimates, we would not need the benchmarking procedure).  In order to get a 

better handle on this, we now perform a simulation exercise.   

The simulation exercise is helpful in answering another important question.  The success of the 

proposed benchmarking procedure depends crucially on how accurately we estimate the seasonal 

factors.  As one drills down by industry and/or area, the finer CES estimates will have a larger error 

component.  This in and of itself makes the proposed benchmarking procedure more advantageous.  But 

there is an offsetting effect.  The greater the error in the CES estimate, the greater will be the errors in 

the resulting estimates of the seasonal factors.  At some point, will the errors in the estimates of the 

seasonal factors be sufficiently great that the quarterly benchmarking procedure actually results in 

errors that exceed those in the unadjusted CES estimates? 

In laying out our simulation model, it is convenient to slightly modify the notation from that used above.   

Let the “true” employment growth that we would like to measure with the CES be given by 𝑟𝑞,𝑡
𝑡𝑟𝑢𝑒−𝑐𝑒𝑠 =

𝑟𝑞,𝑡 × 𝑒𝑥𝑝(𝛿𝑞
𝑐𝑒𝑠), where 𝑒𝑥𝑝(𝛿𝑞

𝑐𝑒𝑠)  represents a seasonal factor.  The CES estimate of employment 

growth in quarter q of year t is then given by   

(29)     �̂�𝑞,𝑡
𝑐𝑒𝑠 = 𝑟𝑞,𝑡 × 𝑒𝑥𝑝(𝛿𝑞

𝑐𝑒𝑠) × 𝑒𝑥𝑝(𝜀𝑞,𝑡
𝑐𝑒𝑠),  

where 𝑒𝑥𝑝(𝜀𝑞,𝑡
𝑐𝑒𝑠) is the error in the CES estimate of the growth rate.   

We are seemingly implicitly assuming that the seasonal variation in the CES represents true seasonal 

variation in the underlying employment.  In reality, the seasonal factors could also reflect systematic 

seasonal errors in the CES.  However, without additional information, one cannot distinguish empirically 

between true seasonal variation in the underlying employment series and seasonal variation that 

reflects systematically seasonal measurement error.       

Similarly, let the QCEW estimate of employment be given by  

(30)     �̂�𝑞,𝑡
𝑞𝑐𝑒𝑤

= 𝑟𝑞,𝑡 × 𝑒𝑥𝑝(𝛿𝑞
𝑞𝑐𝑒𝑤

) × 𝑒𝑥𝑝(𝜀𝑞,𝑡
𝑞𝑐𝑒𝑤

). 

Note that we are no longer assuming that the QCEW is measured without error.  Rather, like the CES, 

the QCEW error has a random component 𝜀𝑞,𝑡
𝑞𝑐𝑒𝑤

.  In addition, there is a QCEW seasonal factor that may 

partly reflect QCEW measurement error that has a systematic seasonal component.  (As one example, 

employers may tend to clean out their employee lists in January).   

Letting 𝛿𝑞
𝑐𝑒𝑠 denote the estimated value of 𝛿𝑞

𝑐𝑒𝑠, the seasonally adjusted estimated CES quarterly growth 

rate is given by 

(31)     �̂�𝑞,𝑡
𝑐𝑒𝑠−𝑠𝑎 = 𝑟𝑞,𝑡 × 𝑒𝑥𝑝(𝛿𝑞

𝑐𝑒𝑠) × 𝑒𝑥𝑝(𝜀𝑞,𝑡
𝑐𝑒𝑠) × 𝑒𝑥𝑝(−�̂�𝑞

𝑐𝑒𝑠). 

Similarly, the seasonally adjusted QCEW quarterly growth rate is given by 
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(32)     �̂�𝑞,𝑡
𝑞𝑐𝑒𝑤−𝑠𝑎

= 𝑟𝑞,𝑡 × 𝑒𝑥𝑝(𝛿𝑞
𝑞𝑐𝑒𝑤

) × 𝑒𝑥𝑝(𝜀𝑞,𝑡
𝑞𝑐𝑒𝑤

) × 𝑒𝑥𝑝(−�̂�𝑞
𝑞𝑐𝑒𝑤

). 

Finally, the benchmarked CES growth rate is given by 

(33)     �̃�𝑞,𝑡
𝑐𝑒𝑠 = �̂�𝑞,𝑡

𝑐𝑒𝑠 × (
�̂�𝑞,𝑡

𝑞𝑐𝑒𝑤−𝑠𝑎

�̂�𝑞,𝑡
𝑐𝑒𝑠−𝑠𝑎 ) = 𝑟𝑞,𝑡 × 𝑒𝑥𝑝(𝛿𝑞

𝑐𝑒𝑠) × 𝑒𝑥𝑝(𝛿𝑞
𝑞𝑐𝑒𝑤

− 𝛿𝑞
𝑞𝑐𝑒𝑤

+ 𝜀𝑞,𝑡
𝑞𝑐𝑒𝑤

). 

The log difference between the CES estimator and true employment growth is simply 

 (34)     𝑙𝑛(�̂�𝑞,𝑡
𝑐𝑒𝑠) − 𝑙𝑛(𝑟𝑞,𝑡

𝑡𝑟𝑢𝑒−𝑐𝑒𝑠) = 𝑙𝑛(𝑟𝑞,𝑡) + 𝛿𝑞
𝑐𝑒𝑠 + 𝜀𝑞,𝑡

𝑐𝑒𝑠 − (𝑙𝑛(𝑟𝑞,𝑡) + 𝛿𝑞
𝑐𝑒𝑠) = 𝜀𝑞,𝑡

𝑐𝑒𝑠 

while the difference between the benchmark estimate and true employment growth is 

(35)     𝑙𝑛(�̃�𝑞,𝑡
𝑐𝑒𝑠) − 𝑙𝑛(𝑟𝑞,𝑡

𝑡𝑟𝑢𝑒−𝑐𝑒𝑠) = (𝛿𝑞
𝑐𝑒𝑠 − 𝛿𝑞

𝑐𝑒𝑠) + (𝛿𝑞
𝑞𝑐𝑒𝑤

− 𝛿𝑞
𝑞𝑐𝑒𝑤

) + 𝜀𝑞,𝑡
𝑞𝑐𝑒𝑤

. 

Provided that both the CES and QCEW errors are mean zero and the seasonal factor estimators from 

both the CES and QCEW series are unbiased, it follows that the estimators in (29) and (33) are also 

unbiased.  The point of the simulation exercise is to compare the variances of the two estimators.  Of 

course, since the estimators are unbiased, the variance of each is equal to its mean squared error (MSE).   

In our simulations, we normalize 𝑟𝑞,𝑡 to 1 (i.e., no employment change) for all four quarters q and all 

years t (t runs from 1 to 5).  We set the seasonal factors to be the following: 

(36)     𝑒𝑥𝑝(𝛿1
𝑐𝑒𝑠) = 0.995, 𝑒𝑥𝑝(𝛿2

𝑐𝑒𝑠) = 1.003, 𝑒𝑥𝑝(𝛿3
𝑐𝑒𝑠) = 0.998, 𝑒𝑥𝑝(𝛿4

𝑐𝑒𝑠) = 1.004 

(37)     𝑒𝑥𝑝(𝛿1
𝑞𝑐𝑒𝑤

) = 0.990, 𝑒𝑥𝑝(𝛿2
𝑞𝑐𝑒𝑤

) = 1.004, 𝑒𝑥𝑝(𝛿3
𝑞𝑐𝑒𝑤

) = 0.997, 𝑒𝑥𝑝(𝛿4
𝑞𝑐𝑒𝑤

) = 1.009 

Note from (36) and (37) that we have set the QCEW to be more seasonal than the CES.  

Finally, we assume that the random errors in the CES and the QCEW are normally distributed with 

respective variance 𝜎𝑐𝑒𝑠
2  and 𝜎𝑞𝑐𝑒𝑤

2 :14 

(38)     𝜀𝑞,𝑡
𝑐𝑒𝑠~𝑁(0, 𝜎𝑐𝑒𝑠

2 ), 𝜀𝑞,𝑡
𝑞𝑐𝑒𝑤

~𝑁(0, 𝜎𝑞𝑐𝑒𝑤
2 ). 

Let      

(39)     𝑝 ≡ 𝜎𝑞𝑐𝑒𝑤
2 /𝜎𝑐𝑒𝑠

2   

In the simulations to follow, we allow both 𝑝 and 𝜎𝑐𝑒𝑠
2  to vary.  For a given value of 𝜎𝑐𝑒𝑠

2 , a lower 𝑝 is 

equivalent to an decrease in 𝜎𝑞𝑐𝑒𝑤
2 .  Thus, the lower is 𝑝, the more precise is the QCEW relative to the 

CES.  We should expect this in turn to lead to improved performance of the benchmark estimator 

relative to the initial CES estimator.  For a given 𝑝, a higher value of 𝜎𝑐𝑒𝑠
2  also means an increase in 

𝜎𝑞𝑐𝑒𝑤
2 .  This in turn means that both the initial CES estimate and the benchmarked estimate will be less 

precise.  There is another likely effect of an increase in 𝜎𝑐𝑒𝑠
2  and 𝜎𝑞𝑐𝑒𝑤

2 .  The greater are these variances, 

the less precise are the estimates of the seasonal factors likely to be, which in turn lowers the precision 

of the benchmarked estimate.  The net effect on the performance of the benchmark estimator relative 

to the initial CES estimator is an open question.  It is not obvious a priori whether for a given value of 𝑝  

                                                           
14 This is a minor modification from our assumption earlier in the paper that we make because in calculating mean 
squared errors below, we will be dealing logs instead of levels 
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a greater 𝜎𝑐𝑒𝑠
2  is associated with improved or worsened performance of the benchmark estimator 

relative to the initial CES estimator. 

For any given combination of 𝑝 and 𝜎𝑐𝑒𝑠
2 , we run 1000 simulations of both 𝜀𝑞,𝑡

𝑐𝑒𝑠 and 𝜀𝑞,𝑡
𝑞𝑐𝑒𝑤

.  This yields 

1000 estimates of the original CES estimate, �̂�𝑞,𝑡
𝑐𝑒𝑠, and the proposed CES estimate, �̃�𝑞,𝑡

𝑐𝑒𝑠 for all quarters 

for five years.  Seasonal factors are estimated using PROC x12 in SAS.  Since we are estimating 20 

targets, the mean squared error of the unadjusted CES estimate and the benchmarked estimate are 

given by       

𝑀𝑆𝐸(�̂�𝑞,𝑡
𝑐𝑒𝑠) =

1

1000 × 4 × 5
∑ ∑ ∑ [𝑙𝑛 (�̂�𝑞,𝑡

𝑐𝑒𝑠,(𝑠)
) − 𝑙𝑛(𝑟𝑞,𝑡

𝑡𝑟𝑢𝑒−𝑐𝑒𝑠)]
2

1000

𝑠=1

4

𝑞=1

5

𝑡=1

 

(40)                                          

 

𝑀𝑆𝐸(�̃�𝑞,𝑡
𝑐𝑒𝑠) =

1

1000 × 4 × 5
∑ ∑ ∑ [𝑙𝑛 (�̃�𝑞,𝑡

𝑐𝑒𝑠,(𝑠)
) − 𝑙𝑛(𝑟𝑞,𝑡

𝑡𝑟𝑢𝑒−𝑐𝑒𝑠)]
2

1000

𝑠=1

4

𝑞=1

5

𝑡=1

 

where (𝑠) indicates the simulation number. 

Our simulation results are summarized in Figures 2, 3, and 4.  First consider curve labelled “RMSE of the 

original estimate.”  Noting that the root mean squared error (RMSE) is graphed on the vertical axis and 

𝜎𝑐𝑒𝑠
2  on the horizontal, we see that as expected, the RMSE of the CES estimate increases with 𝜎𝑐𝑒𝑠

2 .   

The remaining curves in Figure 2 illustrate the performance of the proposed benchmark estimator.  Each 

of these curves is associated with a different value of 𝑝.  Rightward movement along any of these curves 

is associated with a higher RMSE.  This is, of course, expected since for a given 𝑝, a higher 𝜎𝑐𝑒𝑠
2  also 

means a higher 𝜎𝑞𝑐𝑒𝑤
2 .  Now consider the effect of variations in 𝑝, recalling that for a given 𝜎𝑐𝑒𝑠

2 , a lower 

p is associated with a lower value of 𝜎𝑞𝑐𝑒𝑤
2 .  The lowest curve in the figure is that corresponding to a 

value of 𝑝 equal to 0.  This curve lies well below that corresponding to the original CES estimate: when 𝑝 

(and therefore 𝜎𝑞𝑐𝑒𝑤
2 ) is 0, the RMSE of the proposed benchmark estimate is always less than that of the 

original CES estimate for any given value of 𝜎𝑐𝑒𝑠
2 .   

As 𝑝 increases the associated RMSE curve moves up indicating a degradation in the performance of the 

proposed benchmark estimator.  However, for plausible values of 𝑝, the proposed estimator still yields a 

substantial performance gain.  This gain is eliminated entirely only when 𝑝 is close to 1.  As indicated by 

the uppermost curve in the figure, when 𝑝 = 1 (so that 𝜎𝑞𝑐𝑒𝑤
2 = 𝜎𝑐𝑒𝑠

2  ), the RMSE of the benchmark 

estimate exceeds that of the original CES estimate.  This is what we would expect because of the error in 

the benchmark estimate induced by error in the estimation of the seasonal factors. 

Figure 3 shows the effect of an increase in 𝜎𝑐𝑒𝑠
2  on the MSE of the CES estimate and the MSE of the 

estimated seasonal factors.   As we already knew to be the case, the MSE of the CES estimate increases 

one for one with the increase in 𝜎𝑐𝑒𝑠
2 .  The MSE of the seasonal factors also increases with the increase 

in 𝜎𝑐𝑒𝑠
2 , but at a much slower rate (note that the slope of orange curve is well below 1).  While not 

pictured, the same is true for the relationship between the MSE of the QCEW seasonal factors and 

𝜎𝑞𝑐𝑒𝑤
2 .  Recall from Figure 2 that for a plausible value of 𝑝, the RMSE of the proposed estimator is 

http://oeus.sp.bls.gov/DivisionofCurrentEmploymentStatistics/Teams/CESBenchmarkGoalTeam/Shared%20Documents/figures%202%20to%206%20Dey%20and%20Loewenstein.pdf
http://oeus.sp.bls.gov/DivisionofCurrentEmploymentStatistics/Teams/CESBenchmarkGoalTeam/Shared%20Documents/figures%202%20to%206%20Dey%20and%20Loewenstein.pdf
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smaller than that of the simple CES estimator for any value of 𝜎𝑐𝑒𝑠
2 , as indicated by the fact that the 

RMSE curve for the proposed estimator lies entirely below that for the CES estimator.  This result makes 

sense in light of our finding in Figure 2 that increases in 𝜎𝑐𝑒𝑠
2  and 𝜎𝑞𝑐𝑒𝑤

2  cause the mean squared errors in 

the estimated seasonal factors to increase, but at a slower rate.   

We obtain an even stronger result in Figure 4, which shows the performance of the proposed estimator 

relative to that of the CES estimator.  As in the Figures 2 and 3, we plot 𝜎𝑐𝑒𝑠
2  on the horizontal axis in 

Figure 4.  On the vertical axis, we now plot 𝑀𝑆𝐸(�̃�𝑞,𝑡
𝑐𝑒𝑠)/𝑀𝑆𝐸(�̂�𝑞,𝑡

𝑐𝑒𝑠), the ratio of the mean squared error 

of the proposed estimator to the mean squared error of the CES.  Each curve in the figure corresponds 

to a different value of 𝑝.  As expected, the lower is 𝑝, the lower is the corresponding curve in the figure, 

reflecting the fact that for a given value of 𝜎𝑐𝑒𝑠
2 , the performance gain of the benchmark estimator 

increases as 𝜎𝑞𝑐𝑒𝑤
2  falls.  Less predictable is the fact that the curves in Figure 4 are all (nearly) straight 

lines with slope equal to 0.  This tells us that the ratio of the mean squared error of the proposed 

estimator to the mean squared error of the CES depends only on 𝑝 and not on 𝜎𝑐𝑒𝑠
2 .  An increase in 𝜎𝑐𝑒𝑠

2  

accompanied by an increase in 𝜎𝑞𝑐𝑒𝑤
2  so as to maintain a constant 𝑝 causes the mean squared errors of 

the proposed estimator and the CES estimator to increase by the same proportion.  Note that this 

means that the arithmetic difference between the two mean squared errors increases (as shown by the 

distance between the curves in Figure 2). 

At the risk of belaboring the obvious, it may be worth explicitly tracing out the effect of increasing 𝜎𝑐𝑒𝑠
2  

holding 𝜎𝑞𝑐𝑒𝑤
2  constant.  When 𝜎𝑞𝑐𝑒𝑤

2  is held constant, an increase in 𝜎𝑐𝑒𝑠
2  implies a fall in 𝑝.  In both 

Figures 2 and 4, this would be represented by both a drop to a lower curve and a movement to the right.  

We therefore have the unambiguous result that for a given precision of the QCEW, other things the 

same, the less precise is the CES estimator, the greater is both the relative and absolute gain offered by 

the proposed benchmark estimator.  

Seasonally adjusted estimates are often of greater analytical interest than non-seasonally adjusted one.  

Figures 5 summarizes the performance of the proposed estimator after when it is seasonally adjusted.  

The curves in Figure 5 have the same general shape as those in Figure 2 and those in Figure 6 have the 

same shape as those in Figure 2. 

One last point.  Our simulation analysis has assumed that the seasonal patterns of the CES and the 

QCEW are constant over time.  If seasonal patterns change over time, the seasonal factors will be more 

difficult to estimate.  Greater errors in the seasonal factors will reduce the performance of the 

benchmarked non-seasonally adjusted CES estimate relative to that of the non-benchmarked non-

seasonally adjusted CES estimate.  However, it is not clear what happens to the performance of the 

benchmarked seasonally adjusted CES estimate relative to that of the non-benchmarked seasonally 

adjusted CES estimate since both of these estimates will be less precise.  We plan to analyze this in 

future work. 

Conclusion 

Rather than the annual benchmarking procedure that is currently in place for national estimates, we 

propose benchmarking seasonally adjusted CES estimates to the seasonally adjusted QCEW every 

quarter.  The proposed estimator performs well when applied to the National all employee series.  The 

http://oeus.sp.bls.gov/DivisionofCurrentEmploymentStatistics/Teams/CESBenchmarkGoalTeam/Shared%20Documents/figures%202%20to%206%20Dey%20and%20Loewenstein.pdf
http://oeus.sp.bls.gov/DivisionofCurrentEmploymentStatistics/Teams/CESBenchmarkGoalTeam/Shared%20Documents/figures%202%20to%206%20Dey%20and%20Loewenstein.pdf
http://oeus.sp.bls.gov/DivisionofCurrentEmploymentStatistics/Teams/CESBenchmarkGoalTeam/Shared%20Documents/figures%202%20to%206%20Dey%20and%20Loewenstein.pdf
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gain to more frequent updating is especially large when monthly CES error are positively correlated, as 

was the case at the beginning of the Great Recession. 

The results of our simulation exercise apply equally to any series, be it total or industry, or national or 

local.  We used the simulation exercise to compare the performance of the proposed quarterly 

benchmarking estimate with the initial CES estimate.  The results demonstrate that even controlling for 

a loss of precision in the estimation of seasonal factors, the greater the variance of the CES estimate, the 

greater is both the relative and absolute gain provided by the proposed quarterly benchmarking 

procedure.  The CES industry and area estimates have a greater variance than the National all employee 

series.  One can therefore reasonably argue that there is an even stronger case for applying the 

proposed quarterly benchmarking procedure to the industry and area estimates.   

As noted above, our simulation analysis has made the simplifying assumption that the seasonal patterns 

of the CES and the QCEW are constant over time.  We plan to relax this assumption in future work. 

Finally, the discussion in this paper has focused more on the national CES estimates than the state and 

area estimates.  However, the methodology can be applied to state and area estimates in addition to 

national estimates.  As noted in the introduction, state and metropolitan area estimates are currently 

benchmarked annually by replacing sample-based estimates with all available months of population 

data.  An undesirable feature of the resulting hybrid series is the confounding of QCEW and CES 

seasonality.  Difficulties remain when seasonally adjusting the hybrid series.   

As originally noted by Berger and Phillips (1993), it is best to seasonally adjust the QCEW and CES 

components of the hybrid series separately.  However, as discussed by Scott, Stamas, Sullivan and 

Chester (1994) and Phillips and Wang (2015), a problem arises at the seam where the QCEW data end 

and the CES data begin because differences in the seasonal factors at the seam will affect the growth 

rate of the hybrid series at the seam point.  However, our proposed methodology produces a series that 

has CES seasonality throughout.15  Seasonally adjusting this series is therefore straightforward. 16  

 

   

 

 

 

 

 

                                                           
15 In fact, the benchmarked quarterly growth rates are essentially the QCEW growth rates with the CES seasonality. 
16 Of course, a second advantage of our proposed methodology is that QCEW estimates are incorporated sooner.   
As outlined on their webpage, the Federal Reserve Bank of Dallas incorporates the QCEW information as soon as 
the QCEW data are available, but like the current BLS procedure, does so by producing a hybrid series.  In a recent 
paper, Walstrum (2015) examines the effect of applying this early benchmarking procedure to update the CES 
employment estimates for the five states in the Seventh Federal Reserve District. 
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Date QCEW value

Original CES 

estimate

Revised 

estimate as 

of April

Revised 

estimate as 

of July

Revised 

estimate as 

of October

Revised 

estimate as 

of January 

(never 

published)

Mar-09 108,250,800 109,124,676 109,179,508 108,977,936 108,893,811 108,365,917

Mar-10 105,535,500 106,097,960 105,951,628 105,626,170 105,679,140 105,570,462

Mar-11 107,565,200 107,194,505 107,355,770 107,415,776 107,415,776 107,467,022

Mar-12 110,009,400 109,777,090 109,604,541 110,096,767 109,795,585 110,155,060

Mar-13 112,699,400 112,152,430 112,265,409 112,076,221 111,923,700 112,427,355

Mar-14 114,907,500 114,940,754 115,001,394 114,969,354 114,991,067 114,855,962

Mar-15 117,717,000 117,925,267 118,033,062 117,982,639 118,048,168 117,688,749

Date

Original CES 

estimate

Revised 

estimate as 

of April

Revised 

estimate as 

of July

Revised 

estimate as 

of October

Revised 

estimate as 

of January 

(never 

published)

Mar-09 873,876 928,708 727,136 643,011 115,117

Mar-10 562,460 416,128 90,670 143,640 34,962

Mar-11 370,695 209,430 149,424 149,424 98,178

Mar-12 232,310 404,859 87,367 213,815 145,660

Mar-13 546,970 433,991 623,179 775,700 272,045

Mar-14 33,254 93,894 61,854 83,567 51,538

Mar-15 208,267 316,062 265,639 331,168 28,251

Table 1. Analysis of proposed employment estimates and revisions

Employment estimates

Absolute difference between QCEW and estimate
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Figure 1. Monthly error under assumption that wedged estimates are truth
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Figure 2. Performance measures of original and proposed CES estimators 

Proposed CES estimate (p = 1)
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Figure 3. Performance of CES seasonal factor estimates and original CES estimates

MSE of original CES estimate

MSE of estimated CES seasonal factors
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Figure 4. Ratio of MSE of proposed estimate (varies by p) to MSE of original estimate

p = 1

p = 0.5

p = 0.1

p = 0.01

p = 0



0.000000

0.010000

0.020000

0.030000

0.040000

0.050000

0.060000

0.070000

0.00000 0.00050 0.00100 0.00150 0.00200 0.00250 0.00300 0.00350 0.00400 0.00450

R
o

o
t 

m
ea

n
 s

q
u

ar
e 

er
ro

r 
(R

M
SE

)

Variance of idiosyncratic CES error

Figure 5. Peformance measures of original and proposed CES-SA estimators
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Figure 6. Ratio of MSE of proposed SA estimate (varies by p) to MSE of original SA estimate
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