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Abstract

If heterogeneous slopes are ignored in exponential panel models, fixed effects Poisson may

not estimate any quantity of interest. Existing estimation methods often involve treating only

a small subset of the slopes as “random effects” and integrating from the likelihood, increasing

computational difficulty. I propose a test to detect slope heterogeneity that, unlike the tradi-

tional approach, does not amount to testing for information matrix equality. Additionally, I

present a correlated random coefficients approach to identification which allows for estimation

of the coefficient means and average partial effects. I test these proposed methods using a Monte

Carlo experiment and apply them to the patent-R&D relationship for U.S. manufacturing firms.

Keywords: Fixed effects Poisson model; Panel data; Quasi-conditional maximum likelihood; Random

coefficients
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1 Introduction

The fixed effects Poisson (FEP) estimator, also known as the multinomial quasi conditional max-

imum likelihood estimator (QCMLE), is an attractive choice for modeling nonnegative responses

whose conditional means contain an unobserved individual effect that may be correlated with the

explanatory variables. Unlike other conditional-ML estimators, notably the FE logit, FEP does

not require assuming a full distribution or conditional independence (Wooldridge, 1999). This

paper considers the exponential conditional mean, which is logically consistent for nonnegative

dependent variables and has the feature that coefficients on the regressors can be interpreted as

semi-elasticities.

The focus of this paper is an extension to the unobserved effects exponential model that allows

for additional heterogeneity in the form of random coefficients. While several previous studies

have considered conditional Poisson random variables in this setting, less insight exists into how to

proceed for other nonnegative or non-count variables, or even what the consequences are of ignoring

the heterogeneity. In the linear unobserved effects model with strictly exogenous regressors and

random coefficients, for instance, it is straightforward to show that fixed effects OLS is consistent

for the means of the coefficients so long as they are mean-independent of the time-demeaned

regressors. This is not necessarily true for nonlinear models, as this paper shows for the exponential

case. Moreover, it is unknown whether other quantities of interest, like average partial effects

(APE), can be consistently estimated while ignoring coefficient heterogeneity. Furthermore, much

of the literature assumes all sources of heterogeneity are independent of covariates, which can cause

inconsistent estimation of coefficient means as well as type II errors in tests for random coefficients

These potential complications motivate testing for neglected heterogeneity. An LM test in the

style of Chesher (1984), however, is likely to reject when the Poisson distribution is misspecified or

when conditional independence fails. Therefore, I extend this methodology specifically to the FEP

setting, deriving a simple test that is applicable to broader types of data. One novel contribution

of this paper is to treat random coefficients and the traditional multiplicative effect separately.1

This is particularly important for testing, as one may want to test for slope heterogeneity without

taking a stand on the dependence between the multiplicative effect and the explanatory variables.

1The multiplicative effect can also be expressed as a random intercept inside the exponential conditional mean
function.
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Furthermore, I propose a method for parametrically identifying the means of random coefficients

that leads to estimators that are computationally simple related to existing approaches to random

coefficients in this model. I also provide estimators of average partial effects. In an application

to the patent R&D relationship among U.S. manufacturing firms, I find that the classical LM

test strongly rejects the null of constant slopes. However, a test that restricts attention to the

conditional mean function (as I propose), fails to reject the null of constant slopes. Accordingly,

fitting parametric models of heterogeneous slopes tends to offer insignificant estimates.

The rest of this paper is organized as follows: Section 2 gives an overview of the existing

literature, Section 3 reviews the FEP model and the classical test for the Fixed Effects Poisson

case, before proposing this paper’s theoretical contributions. Section 4 contains a Monte Carlo

experiment for the methods proposed, while Section 5 describes the empirical application. Section

6 consists of a brief conclusion and direction for future research.

2 Literature Review

Applying Andersen’s (1970) conditional ML methodology, Hausman, Hall, and Griliches (1984) de-

veloped the FEP estimator for count data that allows arbitrary dependence between the unobserved

effect and the regressors. They implemented their techniques to analyze the patent-R&D relation-

ship in the U.S. manufacturing industry. Wooldridge (1999), showed that correct specification of

the conditional mean and strict exogeneity of the regressors (conditional on the unobserved effect)

were sufficient for consistency of FEP, broadening its application as a quasi-CMLE. Cameron and

Trivedi (2013) considered the panel unobserved effects Poisson model with random coefficients in

a “random effects” setting where all heterogeneity were assumed to be normally distributed and

independent of the regressors. They concluded that “unlike for the linear model, the conditional

mean for the random slopes model differs from that for the pooled and random effects models,

making model comparison and interpretation more difficult.”

Lagrange multiplier (LM) statistics are attractive in testing for coefficient heterogeneity because

they use parameter estimates from a restricted model which can be simpler to estimate. In this

case, the restricted model is FEP, for which built-in procedures exist in Stata and other programs.

Moreover, LM tests are valid for null values on the boundary of the parameter space, unlike Wald
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tests, which is important because parameters (i.e. variances) associated with random coefficients

should be nonnegative (Wooldridge, 2010). Random coefficients are an example of neglected het-

erogeneity that Chesher (1984) derived a test for in the ML setting. Chesher, as well as Lee and

Chesher (1986), developed methodology for deriving test statistics in this and other settings where

scores are identically zero under the parameter restriction. Greene and MacKenzie (2015) applied

this methodology to random effects probit MLE. Hahn, Newey, and Smith (2014) extend Chesher’s

to moment condition estimators like Generalized Method of Moments (GMM). Hahn, Moon, and

Snider (2015) allow for dependence between the heterogeneity and covariates when testing the

likelihood setting, though they also find that tests that treat the heterogeneity and regressors as

mean and second-moment independent still have power under alternatives where this is not true. A

common feature of tests for neglected heterogeneity in the likelihood setting is that they have the

interpretation of being either for information matrix (IM) equality or for overdispersion, making

them less attractive for settings where researchers do not want to fully specify a distribution. I

derive a test for slope heterogeneity in exponential models that does not have this drawback.

Generalizations of the Poisson distribution that allow for heterogeneity are, naturally, aimed at

analyzing counts like health outcomes. A Poisson-normal mixture model like the one described by

Cameron and Trivedi is one of the “Generalized linear latent and mixed models” studied by Rabe-

Hesketh and Skrondal (2004).2 The likelihood function consists of a multi-dimensional integral that

must be numerically approximated, limiting its application to models where only a small number

of coefficients are believed to be random. The authors used full MLE with adaptive Gaussian

quadrature to estimate a model of seizure counts for 236 subjects of (randomly assigned) epilepsy

treatment trial, where both the intercept and the coefficient on a variable for time of visit were

allowed to be vary by individual. Such an approach might be possible in a correlated random effects

(CRE) setting, but computational difficulty increases substantially as more coefficients are allowed

to be random.

Wang, Cockburn, and Puterman (1998)) allow dependence between the heterogeneity and ex-

planatory variables in the Poisson setting, assuming a parametric form for the dependence as well

as a particular distribution for the heterogeneity. With the patent-R&D relationship in mind, they

2Jochmann and León-González (2004) also propose semiparametric Bayesian approach where a subset of coeffi-
cients are allowed to be random effects.
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propose a mixed-Poisson regression approach which assumes that the coefficients follow a discrete

distribution with finite support, modeling the probability mass at each point as multinomial logit.

Their method involves using economic intuition or selection criteria to select the number of sup-

port points. Moreover, they suggest using a continuous model for the coefficients if model selection

criteria indicate four or more points of support.

My paper complements previous studies by proposing a method to flexibly allow continuous

random slopes in exponential panel models while not limiting analysis to counts or fully specifying

the joint distribution of the responses. One benefit of my approach is that as with FEP, I can allow

an unrestricted relationship between the explanatory variables and the multiplicative effect.

3 Theory

The standard fixed effects Poisson model with an exponential mean function assumes:

E(yit|xi, ci) = E(yit|xit, ci) = ci exp(xitβ0) (1)

for i = 1, . . . , N ; t = 1, . . . , T . In this expression, xit is a 1×K vector of time-varying explanatory

variables, ci is unobserved heterogeneity, and β0 is a K × 1 unknown vector of coefficients.3 Eq. 1

implicitly assumes that xit is strictly exogenous. Hausman, Hall, and Griliches (1984) showed that

if conditional on xi = {xi1, . . . ,xiT } and ci, the yit are independently distributed as Poisson with

mean given by Eq. 1, then conditioning on ni ≡
∑T

t=1 yit results in the multinomial distribution

for {yi1, . . . , yiT }.

The multinomial log-likelihood is

`Mi (β) =

T∑
t=1

yit log [pt(xi,β)] , (2)

where

pt(xi,β) ≡ exp(xitβ)∑T
r=1 exp(xirβ)

. (3)

The feature that ci enters conditional mean function multiplicatively means it cancels out of

3Wooldridge (1999) considered conditional mean functions of the form cim(xi,β0) of which m(xi,β0) =
exp(xitβ0) is a special case.
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pt(xi,β) and therefore `i(β), meaning dependence between ci and xi may remain unrestricted.

This structure also has the consequence that coefficients on time-constant regressors are not iden-

tified because these terms also cancel. This model is particularly attractive because as shown by

Wooldridge (1999), β0 maximizes the expected value of Eq. 2 as long as Eq. 1 is true. Therefore,

under additional regularity conditions, FEP consistently estimates β0 with N growing and T fixed.

Notably, consistency does not require a distribution assumption for the responses and allows them

to be arbitrarily serially correlated (Wooldridge, 1999).

3.1 The fixed effects Poisson model with coefficient heterogeneity

Eq. 1 is generally untrue, however, if the coefficients in the conditional mean function vary by

individual i, as in the following:

E(yit|xi, ci, bi) = E(yit|xit, ci, bi) = ci exp(xitbi), (4)

where now bi is a K × 1 vector of unobserved random variables such that E(bi) = β0 . Defining

di ≡ bi − β0 , the conditional mean in Eq. 4 is equivalent to ci exp(xitβ0 + xitdi), meaning one

interpretation of the heterogeneity is unobserved interactions in the index of the mean function.

There is a more practical, economic interpretation as well. Assuming element j is not functionally

related to any other elements of xit, then

∂ log [E(yit|xi, ci, bi)]
∂xitj

= bij , (5)

so the model implies semi-elasticities of the conditional mean of yit that vary by individual. If

xitj is the log of another variable, as in some applications, then the bij are individually-varying

elasticities.

An immediate consequence is that the heterogeneity likely causes specification error if we want

to use FEP assuming Eq. 1. To see this, suppose for concreteness that di is continuous, and write

its PDF conditional on xi and ci as f(�;ψ0), where ψ0 is an unknown parameter that is nonzero

only if the coefficients are random. It follows under Eq. 4 and the Law of Iterated Expectations
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(LIE) that

E(yit|xi, ci) = ci exp [xitβ0 + gt(xi,xit, ci;ψ0)] , (6)

where

gt(xi,xit, ci;ψ0) = log {E [exp(xitdi)|xi, ci]} = log

{∫∫
RK

exp(xitdi)f(di|xi, ci) ddi

}
, (7)

assuming the expectation exists. The exponential function now contains an unknown term that is

generally nonzero and varies over time.4 Depending on what we are willing to assume about the

dependence between bi and xi, we may not be able to distinguish between coefficients that are ran-

dom and a more flexible functional form. The consequence of ignoring the coefficient heterogeneity

is that now Eq. 1 is not correct, and so FEP of yit on xit can no longer be shown to be gener-

ally consistent for β0 . This is true even under ideal conditions like independence between bi and

{xi, ci} In fact, simulation evidence from Section 4 suggests that substantial bias and inconsistency

for FEP in this case. This is to contrast with the linear unobserved effects model with random

coefficients, in which Fixed Effects OLS is consistent for the means of the coefficients so long as

the coefficients are mean independent of the time-demeaned regressors (Wooldridge, 2010). In this

case, the random coefficients cause a certain form of system heteroskedasticity in the idiosyncratic

errors that is handled completely with robust inference.

The key contributions of this paper follow from focusing attention on gt(xi, ci;ψ0) in the condi-

tional mean function instead of modeling the entire conditional distribution of {yi1, . . . , yiT } . As the

next subsections describe, testing using the full conditional likelihood is likely to be over-sensitive.

On the other hand, a parametric assumption for D(bi|ci,xi) yields a simple estimation strategy

and has some robustness properties in terms of testing.

3.2 Testing under full distributional assumptions

If the yit are count data and researchers are willing to take full distributional assumptions seriously,

the approach of Chesher (1984) provides a simple LM test. The slopes are not allowed to depend

on the covariates or ci under the alternative, which avoids having to specify a particular joint

4If gt(xi, ci;ψ0) were time-constant, then it would also cancel from pt(xi,β,ψ) and FEP would be consistent, but
there is no reason to think this should be the case with time-varying xit.
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distribution for bi and xi. However, lack of power may be an issue in alternatives where bi depends

on xi. Findings of Hahn, Moon and Snider (2015), however, suggest that this could be less of a

concern in nonlinear models. The following statements formalize the assumptions:

yit|(xi, ci, bi) ∼ Poisson [ci exp(xitbi)] , i = 1, . . . , N ; t = 1, . . . , T, (8)

{yi1, . . . , yiT } are independent conditional on {xi, ci, bi} (9)

bi = β0 + Λ0ui,where ui|(xi, ci) ∼ F (0, IK), (10)

where IK is the K ×K identity matrix.

From Chesher (1984), assuming Eq. 10 does not assume a particular distribution for bi, but

specifies that they follow a “location-scale generalization of the class of spherical distributions”

described by Kelker (1970). Denote the PDF of ui as f().

It follows that

yi|(ni,xi, ci, bi) ∼Multinomial(ni, p1(xi, bi), . . . , pT (xi, bi)), (11)

where

pt(xi, bi) ≡
exp(xitbi)∑T
r=1 exp(xirbi)

. (12)

Therefore, the log-likelihood for an observation i, integrating out the random part of the slopes, is

`i(β,Λ) = log

{∫∫
RK

ni!∏T
t=1 yit!

T∏
t=1

[pt(xi, bi)
yit ] f(ui) dui

}
, (13)

where the integral is of K dimensions.

An LM test of H0 : Λ0 = 0 is attractive because in this case, bi = β0 , and so the restricted

model can be estimated using FEP. It also turns out that the restricted score does not depend on

the unknown PDF f().

However, the parameterization of this model causes a complication in deriving the restricted
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scores, as described by Chesher (1984) and Lee and Chesher (1986) for a more general class of

models. It turns out the score of the unrestricted model evaluated at the parameter restriction is

identically zero.5 Chesher (1984) proposed re-parameterizing the scale assumption and restricting

the correlation among the heterogeneity allowed under the alternative.6

Λ0 = diag
{√

λ1,0 , . . . ,
√
λK,0

}
(14)

Allowing no covariance between coefficients may affect power under alternatives in which this

does not hold, but at the same time, information about the covariances is only relevant if there

is evidence that the variances are nonzero.7 Under Eq. 14, the restricted score has the 0/0 form,

but the limits follow from L’Hopital’s rule. The algebraic details are collected in the appendix.

Collecting the λj in the K × 1 vector λ, the restricted score is:

si(β,0) ≡ lim
λ↓0

{
∇θ`(β,λ)′

}
=

N∑
i=1



∑T
t=1 yit [∇βpt(xi,β)′/pt(xi,β)]

1
2a1(xi,β)

...

1
2aK(xi,β)


, (15)

where aj(xi,β) is the (j, j)th element of

A(xi,β)

≡
T∑
t=1

∇2
β`
M
it (β) +

(
T∑
t=1

∇β`Mit (β)

)′( T∑
t=1

∇β`Mit (β)

)
. (16)

In this last expression, `Mit is the multinomial log-likelihood for observation i in period t.

The outer product of the score version of the LM statistic is then N times the uncentered R-

squared from the regression of 1 on s̃′i, where for each observation i, s̃i is the appropriate summand

in right hand side of Eq. 15 evaluated at β̃FEP . The advantage to this approach is its relative

simplicity. The unrestricted model may be even computationally infeasible to estimate, but a test

of the null hypothesis of constant coefficients is relatively easy to implement.

5See the appendix for the derivation.
6Chesher’s solution would be to assume Λ0 =

√
λ0IK

7The relevant alternative, strictly speaking, should be that at least one λj,0 ≥ 0, but for simplicity, the two-sided
alternative is treated here, as in Chesher (1984). See Gu (2016) for an approach to the one-sided test.
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The downside of this approach concerns robustness to failure of Eq. 8 or Eq. 9. Chesher (1984)

notes that statistics derived using this approach resemble White’s (1982) information matrix test

for general model misspecification, as E [A(xi,β)] = 0 if the conditional multinomial distribution

is correct. This means coefficient heterogeneity cannot be distinguished from failures of the model’s

other assumptions, such as the Poisson distribution or conditional independence.

3.3 Testing under weaker assumptions

In the previous section, I showed the classical test applicable to conditionally independent Poisson

dependent variables. While the statistic is simple to calculate, the test is likely to reject in cases

where the Poisson or conditional independence assumption fail regardless of the presence of random

coefficients. This is similar to the case of a linear model where the presence random slopes (that

are assumed to be independent of covariates) is indistinguishable from a certain form of system

heteroskedasticity. In this section, I extend Chesher’s approach to testing for neglected heterogene-

ity to the FEP setting where only the conditional mean of yit is assumed to be correctly specified.

I show that an LM test of exclusion restrictions on squared regressors is valid when the coefficients

are allowed to belong to a location-scale family under the alternative.

As before, assume:

E(yit|xi, ci, bi) = E(yit|xit, ci, bi) = ci exp(xitbi) (17)

and

bi = β0 + Λ0ui,where ui|(xi, ci) ∼ F (0, IK), (18)

where again the CDF F () and the corresponding PDF f() are left unspecified.

Similar to before, these conditions imply:

E(yit|xi, ci) = ci exp [xitβ0 +mt(xi,Λ0)] , (19)

where

mt(xi,Λ0) = log {E [exp(xitΛ0ui)|xi, ci]} = log

{∫∫
RK

exp(xitΛ0ui)f(ui) dui

}
. (20)
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It is easy to see that mt(xi,0) = 0. In the multivariate normal case, mt(xi,Λ0) = 1
2xitΩ0x

′
it,

where Ω0 = Λ0Λ
′
0
. Rejecting H0 : Λ0 = 0 provides evidence against the null of constant coeffi-

cients.

I follow Chesher’s derivation of the LM statistic as before, but unlike other methods, I only

integrate ui out of the conditional mean function, not the entire likelihood or score. The unrestricted

quasi log-likelihood is multinomial with the augmented conditional mean function.8

`i(β,Λ) =
T∑
t=1

yit log [pt(xi,β,Λ)] , (21)

where

pt(xi,β,Λ) ≡ exp (xitβ +mt(xi,Λ))∑T
r=1 exp (xirβ +mt(xi,Λ))

. (22)

The first K elements of the unrestricted score evaluated at Λ = 0 are just the usual FEP scores.

The gradient with respect to Λ evaluated at Λ = 0, however, presents a similar problem as before.

I make the same re-parameterization as before, shown in Eq. 14, restricting the coefficients to be

uncorrelated with each other under the alternative. The restricted scores have a 0/0 form and are

evaluated using L’Hopital’s Rule. The details are collected in the appendix. The score evaluated

at the parameter restriction is:

si(β,0) =



∑T
t=1 yit [∇βpt(xi,β,0)′/pt(xi,β,0)]

1
2

∑T
t=1 yit

[∑T
r=1 exp(xirβ)

(
x2
it1 − x2

ir1

)]
/
∑T

r=1 exp(xirβ)

...

1
2

∑T
t=1 yit

[∑T
r=1 exp(xirβ)

(
x2
itK − x2

irK

)]
/
∑T

r=1 exp(xirβ)


. (23)

The lastK elements are equal to 1
2 times the restricted scores for testing an exclusion of

{
x2
it1, . . . x

2
itK

}
from the FEP model. As the next subsection illustrates, these correspond to exclusion restrictions

one would test when the slopes are assumed to have conditional normal distributions under the

alternative hypothesis, though normality was not used in the derivation of this test.

In the exponential case, we cannot distinguish random coefficients from the presence of quadrat-

ics in E(yit|xit, ci). As an empirical matter, however, this test takes no stand on the (conditional)

8Note that in general, this would not be the true log-likelihood function even if the dependent variables were
conditional Poisson.
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distribution, overdispersion, or serial correlation of yit, so it may offer some advantages to the

approach in Section 3.2. For example, if a researcher rejects the null using the test based on Eq.

15, but fails to reject based on Eq. 23, then he or she can proceed in estimating the model based

on Eq. 1 with some peace of mind.

3.4 A correlated random coefficients approach to testing and estimation

When one wishes to allow more than one or two slopes to be random, “random effects” type

estimation based on integrating out the heterogeneity is computationally difficult and may not be

robust to misspecification of the response variable’s distribution. A straightforward alternative,

which is applicable not only to counts but also to other nonnegative responses, is to make a

parametric, distributional assumption for bi that allows us to derive E [exp(xitdi)|xi, ci]. Here, I

assume correlated random coefficients (CRC) and (conditional) multivariate normality:

bi = α0 + Γ0x̄
′
i + di,

di|(xi, ci) ∼ Normal(0,Ω0), (24)

where x̄i =
∑T

t=1 xit, α0 is an unknown K × 1 vector, and Γ0 is an unknown K × K matrix.

This assumption states that the dependence between xi and the mean of bi is captured entirely

through the time averages of xit, and is the application of Mundlak (1978) to the current setup.

Alternatively, one could allow the mean of bi to depend on xi in the style of Chamberlain (1980). If

Γ0 = 0, then Eq. 24 amounts to a stronger version of Eq. 10 where then α0 = β0 . Note that Eq. 24

only requires multivariate normality of the coefficients conditional on xi; their unconditional distri-

bution may not be normal, though logically speaking it should be continuous and have unbounded

support. As in FEP, the relationship between xi and ci is left completely unrestricted. Eq. 24 also

implies bi and ci are independent, conditional on xi. This is less restrictive for testing purposes

because bi is constant under the null, but it could affect power under alternatives where the two

are dependent. The two sources of heterogeneity are still allowed, through xi, to be correlated

unconditionally. Allowing for conditional dependence between ci and bi requires some additional

structure, but APE are still identified, as shown in Appendix B.

Under Eq.’s 4 and 24, it follows from properties of the lognormal distribution and the LIE that
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E(yit|xi, ci) =E(yit|xit, x̄i, ci)

=ci exp

(
xitα0 + xitΓ0x̄

′
i +

1

2
xitΩ0x

′
it

)

=ci exp

xitα0 + (x̄i ⊗ xit)vec(Γ0) +
1

2

 K∑
j=1

ωjx
2
itj + 2

K−1∑
j=1

K∑
h6=j

ρjhxitjxith


≡ci exp

(
xitα0 + (x̄i ⊗ xit)γ0 +

1

2
x̌itω0

)
, (25)

where γ0 = vec(Γ0), x̌it = (x2
it1, . . . x

2
itK , xit1xit2, xit1xit3 . . . xit,K−1xitK),

ω0 ≡ (ω1, . . . ωK , 2ρ12, 2ρ13 . . . , 2ρK−1,K)′, ωj = V ar(bj), and ρjh = Cov(bj , bh).

Eq. 25, along with regularity conditions, implies that FEP of yit on xit, x̄i ⊗ xit, x2
it1, . . . x

2
itK ,

and xit1xit2, . . . xit,K−1xitK will consistently estimate α0 , γ0 , and ω0 without assuming a distribu-

tion for yit and while allowing arbitrary serial correlation (Wooldridge, 1999).

Following estimation of Eq. 25, the unconditional means of the bi are easy to estimate using

the following implication of the LIE:

β0 ≡ E(bi) = α0 + Γ0µ
′
x̄, (26)

where µx̄ = E(x̄i).

Using the lognormal distribution in the FEP setting in this way is novel, to my knowledge. It

also offers the advantage of still allowing one source of heterogeneity to be correlated with xi in

an unrestricted fashion.9 This procedure is easy to implement, as the FEP estimator is available

in software packages like Stata, though practitioners should be careful to calculate cluster-robust

standard errors to account for serial correlation and misspecification of the multinomial distribution.

Another important note is if one believes that time constant variables zi belong in the model and

they also have random coefficients that are correlated with the coefficients on the xit, then the

augmented FEP regression should also include interactions between zi and xit as these are not

9A similar result appeared in Cameron and Trivedi (2013) for the case where bi|xi, ci ∼ Normal(β0 ,Ω0) and
ci|(xi, bi) ∼ lognormal(0, σ2

c ) as a way of illustrating how random coefficients change E(yit|xi).
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absorbed by ci when conditioning on ni.

This model nests the traditional case of constant coefficients, which occurs when γ0 = 0 and

ω0 = 0). Rejection of the null that γ0 = 0 is perhaps most convincing evidence of that slopes

vary by individual. Therefore, the primary contribution of this approach to random coefficients is

to suggest the inclusion of interactions between time-varying regressors and time averages to see if

more flexibility is necessary.

If there is no evidence that slopes are correlated with the x̄i, then one should carefully consider

how to interpret inference on ω0 . Statistically significant estimates may just indicate that squares

and cross-products of xit belong in the FEP regression. Clearly if the cross-products are significant

while the squares are not, or if the coefficients on squared terms are negative and significant, then

the random coefficient framework does not make sense, though the results may still have yielded

useful insight into the what functions of the explanatory variables should be included in the analysis.

Finally, under this approach, binary variables and some nonlinearities prevent separate identi-

fication of elements of the structural parameter α0 and elements of the coefficient variance matrix

Ω0 . For example, for a binary element k of xit, FEP only identifies αk+ 1
2ωk. Likewise, if one allows

covariance between ci and bi, then α0 is not separately identified from this covariance. This is a

drawback if the structural parameters are of primary interest, but it does not matter for estimating

APE, as I show in Section 3.6 for the case of binary regressors.

3.5 Adding second moment assumptions

While under our assumptions, FEP is consistent under correct specification of the conditional

mean in Eq. 25, it may be possible to achieve greater efficiency by adding assumptions about the

conditional second moment of yi. Another reason may be to separately identify the parameters

relating to binary variables.

I assume a variance function that is proportional to the conditional mean.

V ar [yit|xi, ci, bi] = σ0ci exp(xitbi) (27)

Additionally, the following CRE assumption implies conditional mean and variance functions
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that do not depend on ci.

log(ci)|xi, bi ∼ Normal(ψ1 + x̄iξ1, σ
2
a) (28)

Under assumptions 4, 24, 27, and 28, it follows from the properties of the lognormal distribution,

the LIE, and the Law of Total Variance that

E(yit|xi) = E(yit|xit, x̄i) = exp

[
h(xit, x̄i,θ0) +

1

2
v(xit, τ0)

]
(29)

and

V ar(yit|xi) =V ar(yit|xit, x̄i)

=σ0 exp

[
h(xit, x̄i,θ0) +

1

2
v(xit, τ0)

]
+ exp [2h(xit, x̄i,θ0) + v(xit, τ0)] {exp [v(xit, τ0)]− 1} , (30)

where θ ≡ (ψ1, ξ
′
1,α

′,γ ′)′, τ = (ω′
0
, σ2

a)
′, h(xit, x̄i,θ0) ≡ ψ1 + x̄iξ1 + xitα0 + (x̄i ⊗ xit)γ0 , and

v(xit, τ0) ≡ x̌itω0 + σ2
a.

Estimation of θ0 and τ0 can then proceed using pooled normal QMLE, specifying the mean

and variance functions as above. As the normal distribution is a member of the quadratic expo-

nential family, this procedure is consistent without the normal distribution being true (Gourieroux,

Monfort, and Trognon, 1984) Once again, inference should be made cluster-robust to account for

serial correlation and the true distribution being non-normal. Estimation of β0 can then proceed

as before, and coefficients on binary or quadratic variables are now identified off of the nonlinearity

in Eq. 30.

Normal QMLE in this case is straightforward to program in software like Stata using built-in

maximum likelihood functions, and it had good finite sample properties in simulations run for this

paper. Some researchers may wish to specify a conditional covariance structure for yi as a way to

get more efficiency. If so, one option is to assume

Cov [yit, yir|xi, ci, bi] = 0, t 6= r. (31)
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Equation 31 does not allow serial correlation when conditioning on xi, ci, bi, but the presence

of the time-constant heterogeneity ensures that the responses will be serially correlated when con-

ditioning on xi only. Under Eq.’s 4, 24, 27, 31, and 28,

Cov(yit, yir|xi) =

exp

[
h(xit, x̄i,θ0) + h(xir, x̄i,θ0) +

1

2
(v(xit, τ0) + v(xir, τ0))

]
×
{

exp(xitΩ0x
′
ir + σ2

a)− 1
}
. (32)

3.6 Estimating average partial effects

Even though the coefficients in Eq. 4 have direct interpretations as semi-elasticities, it may still be

desirable to estimate partial effects and APEs, perhaps to compare estimates between competing

nonlinear models. Moreover, this sections shows that the average partial effects for a binary variable

depend only on αk+ 1
2ωk, meaning that even though we cannot separately identify αk and ωk without

second moment assumptions, we can still estimate average partial effects.

Let x = {x1,x2, . . . ,xT }, c, and b = {b1, b2 . . . , bK} denote fixed values of the variables. The

partial effect of a continuous xtj on the conditional mean of yt is defined as10

∂E(yt|xt, c, b)
∂xtj

= ci exp(xtb)bj . (33)

For a binary xtk, the partial effect is defined as the discrete difference in the conditional mean

of yt at each level of the binary variable.

E(yt|xt6k, xtk = 1, c, b)− E(yt|xt6k, xtk = 0, c, b)

=c exp(xt6kb 6k + bk)− c exp(xt6kb6k). (34)

In this and expressions to follow, the subscript 6 k signifies that xtk, x̄k, or their associated coefficients

have been omitted from the vector or matrix.

Of course, direct study is infeasible as we do not observe c or b. Therefore, this section focuses

10Assuming xtbi is linear in xt.
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on ways to average out the heterogeneity. I consider two choices as to how to proceed. The first

is to maintain assumptions 24, 27, and 28 and take derivatives and differences of E(yit|xi) directly

using Eq. 29, as is often shown in Wooldridge (2010). I leave these derivations for the appendix.

The second option is to estimate an Average Structural Function (ASF), as proposed by Blundell

and Powell (2003),. Loosely speaking, x̄ proxies for unobserved heterogeneity and is averaged out

before taking derivatives and differences. One advantage of using the ASF is that it turns out we

do not need to observe or restrict ci to average it out.

Estimation of the Average Structural Function

The ASF is defined as:

ASF (xt) ≡ Evi [ci exp(xtbi)] , (35)

where again, xt is a fixed argument. Under Eq. 24, the L.I.E. implies

ASF (xt) = Eci,x̄

[
ci exp

(
xtα0 + (x̄i ⊗ xt)γ0 +

1

2
x̌tω0

)]
, (36)

where the difference from Eq. 25 is that xt is a fixed argument, and the expectation is with

respect to the distribution of (ci, x̄i).

Passing the derivative through the expectation, the APE for continuous xtj is:

δj(xt) =Ex̄

exp

(
xtα0 + (x̄i ⊗ xt)γ0 +

1

2
x̌tω0

)αj + x̄iγ
′
j + ωjxtj +

K∑
h6=j

ρjhxth

 , (37)

where γj is the jth row and γj is the jth column of Γ0 . For a binary xtk, the APE is:

δk(xt) =

Eci,x̄

ci exp

xt6kα6k + xt6kΓ6kx̄6k + xt6kx̄ikγ
k
6k + αk + x̄iγ

′
k +

1

2
x̌ 6kω 6k +

1

2
ωk +

K∑
h6=k

ρkhxth


− Eci,x̄

[
ci exp

(
xt6kα 6k + xt6kΓ 6kx̄ 6k + xt6kx̄ikγ

k
6k +

1

2
x̌6kω 6k

)]
(38)

Since the αk and ωk enter Eq. 38 as the linear combination αk + 1
2ωk, they do not need to be

separately identified. To estimate the APE, choose the fixed value xt, replace the expectations
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with the sample average operator over i, and insert FEP parameter estimates. Finally, a proxy

exists for ci that is sufficient for averaging it from the APE. It corresponds to the Poisson QMLE

when treating the ci as parameters to estimate, and is given in Eq. 39.

ĉi ≡
∑T

t=1 yit∑T
t=1 exp

(
xitα̂+ (x̄i ⊗ xit)γ̂ + 1

2 x̌itω̂
) (39)

It is well-known that Poisson QMLE that treats ci as parameters is not only consistent, but

equivalent to FEP. Martin (2017) shows that even with T fixed, sample averages where ci enters

multiplicatively (as in Eq.’s 36, 37, and 38) can be consistently estimated with ĉi standing in for ci.

If researchers are interested in a single APE, Eq.’s 37 and 38 might be averaged again across the

distribution of x+ it. Standard errors are available via the delta method, but the panel bootstrap

may also be convenient. Finally, it is easy to see that if assuming that bi is independent of xi

(conditional on ci), estimation simplifies considerably, as terms depending on x̄i drop out. In this

case, if the target statistic is a single APE, the simplest method is to use the direct approach and

average once over sample version of ci exp(xitβ + 1
2xitΩx

′
it).

4 Monte Carlo

4.1 Comparing estimation methods

To illustrate the impact of ignoring random coefficients in the FEP setting, I simulate the per-

formance of the different estimators in both the ideal case of constant coefficients and in the case

where the coefficients vary by individual. I employed the following data generating process:

yit|(xi,wi, ci, bi1, bi2) ∼ Poisson [ci exp(bi1xit + bi2wit)] , (40)

log(ci) ∼ Normal(0, 1/16) (41)

xit = log(ci) + .5xi,t−1 + vit, t > 1

xi1 = log(ci)i + vi1, vit ∼ N(0, 1/2) (42)
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wit = 1 [xit + hit > 0] , hit ∼ N(0, 1/2) (43)

bi1
bi2

 ∼ Normal

β1

β2

 ,

ω2
1 ρ

ρ ω2
2


 (44)

For the above draws, i = 1, . . . , 1000 and t = 1, . . . , 10. The case where ω2
1, ω2

2, and ρ all equal

zero corresponds to the constant coefficient case. For these simulations, the bij are generated to

be independent of {xi,wi}, and this assumption is maintained in estimation. The bij are also

generated to be independent of each other (ρ = 0) but this is not assumed in estimation.

In the following tables, FEP refers to the estimator that ignores the random coefficients. FEP2

refers to the estimator that adds the square of x and an interaction between x and w. Since this

model’s assumptions does not separately identify β2 and ω2
2 , the estimated coefficient on w is

compared to β2 + 1
2ω

2
2. NQML refers to the normal QML estimator that also assumes Eq.’s 27

and 28.11 I set ω1 = ω2 = ω but do not assume equal variance in estimation. In each case, one

thousand replications were used.

11APE estimates from NQML also plugged in ĉi.
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Table 1: Finite Sample Properties of Slope Estimators: β1 = 1, β2 = −1

β̂1 β̂2
̂β2 + 1

2ω
2
2

FEP FEP2 NQML FEP NQML FEP2
ω Mean SD Mean SD Mean SD Mean SD Mean SD Mean SD Truth

0.00 1.00 0.02 1.00 0.03 1.00 0.02 -1.00 0.03 -1.00 0.04 -1.00 0.04 -1.00
0.05 1.00 0.02 1.00 0.03 1.00 0.02 -1.00 0.03 -1.00 0.04 -1.00 0.04 -1.00
0.10 1.01 0.02 1.00 0.03 1.00 0.02 -1.00 0.03 -1.00 0.04 -0.99 0.04 -1.00
0.15 1.02 0.02 1.00 0.03 1.00 0.03 -0.99 0.03 -1.00 0.04 -0.99 0.04 -0.99
0.20 1.03 0.02 1.00 0.03 1.00 0.03 -0.99 0.03 -1.00 0.04 -0.98 0.04 -0.98
0.25 1.05 0.03 1.00 0.03 1.00 0.03 -0.98 0.03 -1.00 0.04 -0.97 0.04 -0.97
0.30 1.07 0.03 1.00 0.03 1.00 0.03 -0.98 0.04 -1.00 0.04 -0.96 0.04 -0.96
0.35 1.10 0.04 1.00 0.04 1.00 0.04 -0.97 0.04 -0.99 0.05 -0.94 0.04 -0.94
0.40 1.14 0.06 1.00 0.04 1.00 0.04 -0.96 0.05 -0.99 0.05 -0.93 0.05 -0.92
0.45 1.18 0.07 1.00 0.04 0.99 0.05 -0.96 0.07 -0.99 0.05 -0.91 0.05 -0.90
0.50 1.23 0.09 1.00 0.04 0.99 0.05 -0.95 0.08 -0.98 0.06 -0.89 0.05 -0.88

Table 2: Finite Sample Properties of APE Estimators: β1 = 1, β2 = −1

Est. APE of x Est. APE of w
FEP FEP2 NQML FEP FEP2 NQML

ω Truth Mean SD Mean SD Mean SD Truth Mean SD Mean SD Mean SD

0.00 0.88 0.88 0.03 0.88 0.03 0.88 0.03 -1.12 -1.12 0.06 -1.12 0.08 -1.12 0.07
0.05 0.88 0.88 0.03 0.88 0.03 0.88 0.03 -1.12 -1.12 0.06 -1.12 0.08 -1.12 0.07
0.10 0.90 0.89 0.03 0.89 0.03 0.89 0.03 -1.13 -1.13 0.06 -1.13 0.09 -1.13 0.08
0.15 0.91 0.92 0.04 0.92 0.04 0.92 0.04 -1.14 -1.15 0.07 -1.14 0.10 -1.14 0.08
0.20 0.95 0.95 0.04 0.95 0.04 0.95 0.04 -1.15 -1.17 0.07 -1.15 0.10 -1.15 0.08
0.25 0.98 0.99 0.05 0.99 0.05 0.99 0.05 -1.16 -1.19 0.09 -1.17 0.12 -1.16 0.10
0.30 1.04 1.04 0.07 1.04 0.06 1.03 0.06 -1.19 -1.23 0.11 -1.19 0.16 -1.18 0.11
0.35 1.11 1.11 0.09 1.11 0.08 1.10 0.09 -1.22 -1.27 0.14 -1.22 0.20 -1.20 0.13
0.40 1.20 1.21 0.15 1.21 0.13 1.20 0.14 -1.26 -1.35 0.22 -1.26 0.29 -1.23 0.16
0.45 1.32 1.32 0.22 1.33 0.21 1.31 0.23 -1.30 -1.43 0.34 -1.30 0.47 -1.26 0.24
0.50 1.49 1.49 0.47 1.50 0.49 1.48 0.48 -1.36 -1.57 0.86 -1.35 0.60 -1.29 0.26

20



It appears from Table 1 that the standard deviation of the coefficients is positively related to

the finite sample bias (in magnitude) in FEP slope estimates. This is not surprising given that Eq.

1 fails for ω > 0. This is despite the fact that the coefficients are independent of the covariates

and each other, a case in which random coefficients would not cause a problem in linear models.

In contrast, the augmented FEP and the NQML estimators show much smaller bias at all levels of

ω, with the exception of the FEP2 coefficient on w, which, as expected, appears to show small bias

for β2 + 1
2ω

2.

The APEs are estimated using the FEP, FEP2 or NQML parameter estimates and averaging

once over {xit, ĉi}. Table 2 suggests that this approach to estimating APEs has small bias for the

FEP2 and NQML case, despite using estimates of incidental parameters. For FEP, bias in the APE

of the binary variable increases as ω increases. Surprisingly, this is not the case for the continuous

variable. Even though the simulation suggests a large bias in the FEP estimate of β1. This warrants

further investigation as it suggests there many be circumstances in which researchers can ignore

random coefficients if all they care about is APEs of continuous variables, though it could also be

an artifact of this data generating process.

4.2 Testing when coefficients are not normal

Section 3 shows that for slope heterogeneity in a location-scale family of spherical distributions

(where the heterogeneity are independent of each other), an LM test for coefficient heterogeneity is

equivalent to testing the coefficients on squares of the covariates, which suggests that the hetero-

geneity need not be normal for the approach of this paper to work well. To explore this, I generate

the responses using random coefficients of different distributions.

bij2 = 1 + ω
(

(uj2 − 0.5)/
√

1/12
)
, uj2 ∼ U(0, 1) (45)

bij3 = 1 + ω
(

(uj3 − 4)/
√

8
)
, uj3 ∼ χ2

4 (46)

bij4 = 1 + ω
(
uj4/

√
5/3
)
, uj4 ∼ t5 (47)
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bij5 = 1 + ω (uj5 − 1) , uj5 ∼ Exponential (1) (48)

bij6 ∼ Gamma (1/ω2, ω2) (49)

These draws are made separately for j = 1, 2, and for simplicity, Cov(bi1h, bi2h) = 0 for each

h. Each coefficient’s data generating process ensures that it has a mean of 1 and variance of ω2.

Each of the first five coefficients falls into a location-scale family as they consist of a standardized

random variable multiplied by ω to result in a variance of ω2 and shifted to have a mean of one.

The gamma coefficients, in contrast, are not drawn from a location-scale family, but are directly

specified to have a mean of 1 and variance of ω2.

Given the issue identifying parameters associated with binary regressors in the FEP2 setting, I

generate the responses to depend on continuous regressors only, where each xitj is generated as in

Eq. 42.

yit|(xi1,xi2, ci, bi1h, bi2h) ∼ Poisson [ci exp(bi1hxit1 + bi2hxit2)] (50)

After generating the data, β1, β2, ω2
1, ω2

2, and ρ were estimated using FEP of yt on xt1, xt2,

x2
t1, x2

t2, and xt1xt2. A Wald test for significance was then performed on x2
t1, x2

t2, and xt1xt2.12

The results of Section 3.3 suggest that this test should perform well for the first five coefficient

types, and I conjecture that it performs well for the Gamma coefficients as well. When testing for

random slopes, is important to use a FE procedure if one is concerned that the multiplicative effect

ci is correlated with the explanatory variables. Otherwise, the omitted variable problem is likely to

cause the test to be over-sized. In fact, in a simulation where Random Effects Poisson was used on

the same set of covariates, a Wald test rejected the null of constant slopes in 88% of replications

when the true slopes were nonrandom.

Table 3 shows that as expected, rejection probabilities increase with ω when the coefficients are

normal, and are quite high when ω is large. What is interesting is that there does not seem to be

much change in either size or finite sample power when the coefficients are not normal, even when

the coefficients are not drawn from a location-scale family.

12The Wald and LM tests are asymptotically equivalent in this case (Wooldridge, 2010).
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Table 3: Testing when bi is not normal

Empirical Rejection Probability (Null value 0.05)
ω Normal Uniform* Chi2* t5* Exp.* Gamma
0.00 0.069 0.069 0.069 0.069 0.069 0.069
0.05 0.108 0.115 0.112 0.108 0.121 0.132
0.10 0.186 0.212 0.159 0.196 0.16 0.178
0.15 0.308 0.359 0.287 0.302 0.303 0.334
0.20 0.468 0.531 0.439 0.408 0.404 0.472
0.25 0.640 0.691 0.543 0.579 0.553 0.625
0.30 0.785 0.796 0.689 0.693 0.652 0.741
0.35 0.881 0.887 0.796 0.804 0.757 0.817
0.40 0.914 0.948 0.860 0.852 0.814 0.868
0.45 0.931 0.965 0.897 0.897 0.876 0.892
0.50 0.970 0.979 0.904 0.919 0.876 0.923

5 Empirical application: the Patent-R&D relationship

There is a long history of economic inquiry into the relationship between a firm’s research and

development (R&D) expenditures and the number of patents for which it applies in a given year.

Patent applications are viewed in the literature as an indicator of additions to the knowledge stock

of a firm (Pakes and Griliches, 1980). Pakes and Griliches (1980) were among the first to focus on

firm effects as a source of potential endogeneity in analyzing U.S. manufacturing firms. Hausman,

Hall, and Griliches (1984) and Hall, Griliches, and Housman (1986) also look to firm effects to

account for significant over-dispersion in the distribution of patent counts. In addition to FEP,

Negative Binomial models are also common as a way to introduce more dispersion. Nonlinear

count models are not only attractive for logical reasons, but also because datasets can contain a

nontrivial proportion of observations with zero patents. These observations must be eliminated

or transformed in some ad hoc manner before estimating a linear log-log model (Hall, Griliches,

and Hausman, 1986). Such observations seem to be more common in more recent datasets as well.

While only 8% of observations were zero in Hall, Hausman, and Griliches 1968-1975 panel of 121

firms, 16.5% were zero in Gurmu and Perez-Sebastian’s 1982-1992 panel of 391 firms (Gurmu and

Pérez-Sebastián, 2008).

A common finding in the literature is that distributed lag models that do not account for

any firm heterogeneity tend to have a U-shaped lag profile, and that after accounting for firm

heterogeneity, only contemporaneous R & D expenditure tends to be significant (Hall, Griliches,
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and Hausman, 1986). In a cross-sectional analysis of the pharmaceutical industry, Wang, Cockburn,

and Puterman (1998) use a Poisson model and allow for heterogeneity in both the multiplicative

effect and coefficients. While the mixing distribution is allowed to depend on the regressors, they

assume that the vector of heterogeneity has finite support, which in their analysis consisted of three

or fewer points. This framework may be less palatable in studies with broader industry coverage.

5.1 Description of the data and CRC model

This paper’s contribution is to look at an updated panel and consider a new specification motivated

by random coefficients. The population of interest is publicly-traded U.S. manufacturing firms in

existence from 1996 to 2003. The patent data come from the United States Patent and Trade-

mark Office by way of the National Bureau of Economic Research’s Patent Data Project (PDP)

and includes data through 2006. As patents are not recorded in the USPTO database until they

are granted, the panel is truncated in 2003 to diminish the effect of the time-lag between appli-

cation and granting.13 Financial information on publicly-traded firms comes from the Compustat

database, accessed through Wharton Research Data Services (WRDS) in September 2016. Hall,

Jaffe, and Trajtenberg (2001) and Bessen (2009) thoroughly describe the patent data as well as

matching information for the Compustat database. Matching patents to firms is not a trivial given

nonstandard naming in USPTO records, among other issues.

I mainly follow Bound, et. al (1982) and Hall, Griliches, and Hausman (1986) in assembling the

panel dataset. The initial sample from the Compustat database consists of 3,126 firms in the U.S.

manufacturing industry that were in existence in the year 2000. Following the literature, I require

that data exist for patents and R&D expenditures for each year from 1996 to 2003, and that R&D

expenditures be strictly positive since I take logs. I also eliminate firms that show large jumps in

either gross capital or employment in a year. In the end, my sample consists of 848 firms over the

period 1996-2003. I describe the selectivity of my sample in Tables 4 and 5. The tables show that

although the sample covers only about a quarter of U.S. manufacturing firms in 2000, it covers

nearly 70% of R&D expenditures. Coverage is generally poorer for smaller firms and higher for

larger firms both in terms of net sales and R&D. Sample coverage is comparable to Hall, Griliches,

13The average lag over applications made in 1990-92 was 1.76 years, with 96.1% of patents granted in three years
or less.
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and Hausman (1986) in terms of net sales, though they achieve 90% coverage of total R&D.

Table 4: Distribution of Net Sales in 2000

Number in 2000 cross-section Number in Sample Coverage
Net Sales All Pos. R&D All Pos. R&D

Less than $1M 332 207 49 0.15 0.24
$1M-10M 439 335 115 0.26 0.34
$10M-100M 900 672 242 0.27 0.36
$100M-1B 986 588 244 0.25 0.41
$1B-10B 402 271 157 0.39 0.58
More than $10B 67 52 41 0.61 0.79

Total 3,126 2,125 848 0.27 0.40

Table 5: R& D Expenditures in 2000

Firm R&D (2000 USD) 2000 Cross-section Sample Coverage

Less than $1M 170.15 55.32 0.33
$1M-10M 3695.48 1492.38 0.40
$10M-100M 21621.47 8765.10 0.41
$100M-1B 38160.81 25075.92 0.66
$1B-10B 67084.16 54007.14 0.81

Total 130732.08 89395.85 0.68

Table 6 shows summary statistics for the key variables over the sample of 848.14 Consistent

with the literature, this shows the distribution of patents to be right-skewed and over-dispersed

with a thick right tail. Also noteworthy is that compared to previous studies, my sample contains

a much higher proportion of zeros than previous studies. Compared to either Hall, Griliches, and

Hausman (1986) or Gurmu and Perez-Sebastian (2008), the median number of patents is lower,

and the maximum number of patents is higher in this sample.

Table 6: Summary of Key Variables in 2000

Variable Mean St.Dev. Min 1st Q. Med. 3rd Q. Max

Net Sales (Millions of USD) 2506.28 12980.46 0.00 15.77 118.73 877.54 206083.00
R&D (Millions of USD) 105.42 490.95 0.01 2.22 7.53 31.71 6800.00
Patents 30.47 141.85 0.00 0.00 2.00 7.00 1811.00
Fraction with zero patents 0.35 0.48 – – – – –
Fraction in scientific sector 0.55 0.50 – – – – –

All dollars amounts are real 2000 USD.

The scientific sector is defined to include the drug, computer, electronic component, and scientific instrument industries.

I apply the exponential model introduced in Section 3 to patent counts where the regressors of

14Note that firms with zero patents in all years drop from the multinomial log-likelihood.
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interest are the logs of current R&D and up to three lags. I include year dummies, but assume

their coefficients are constant.

E [patentsit| log(Ri1), . . . , log(RiT ), δt, ci, bi] = ci exp

(
τ∑
s=0

bi,s log(Ri,t−s) + δt

)
, (51)

where Rit is real R&D expenditures by firm i in year t. The CRC assumption is:

bi|(log(Ri,t−0), . . . , log(Ri,t−τ ), δt, ci) ∼ Normal(α+ γ ′log(R)i,Ω), (52)

where log(R)i = T−1
∑T

t=1 log(Rit) is a scalar. Section 3 implies that FEP of patents on current

and lagged log(R) terms, interactions between log(R) and the log(R) terms, and squares and cross-

products of the log(R) terms will be consistent under these assumptions.

5.2 Estimation and testing under the null of constant coefficients

Table 7 presents results from the six different specifications that assume constant coefficients. For

all but columns (3) and (4), the dependent variable is the number of patents. Columns (1) and

(2) contains Poisson QMLE estimates where firm heterogeneity is ignored. Column (3) contains

estimates from FE OLS where the dependent, variable is the log of patents. For this column only,

zero patent counts are changed to 1, with a dummy variable added following Hall, Griliches, and

Hausman (1986). Columns (5) and (6) contain FEP estimates.

Consistent with the previous findings, these estimates imply that correlation between patents

and current-period R&D is strongest relative to lag effects, and that the total elasticity of patents

with respect to R&D that is less than unity. I also find the estimated elasticities fall once I account

for firm effects. For the Poisson specification, the total elasticity falls from 0.82 to 0.32 in the one-

lag model and from 0.82 to 0.15 in the three-lag model. The three-lag FEP specification implies an

elasticity with respect to current R&D that is less than half of those estimated in previous studies

(i.e. Hausman, Hall, and Griliches (1984) estimate elasticities of 0.35 and 0.43 in no-lag and five-lag

models, respectively).15

15The choice of three lags may seem somewhat arbitrary. Shorter-lag models tend to show truncation bias of the
sort described by Hall, Griliches, and Hausman (1986), while longer models tended to be imprecisely estimated.
However, get very similar in magnitude results to Gurmu and Perez-Sebastian (2008) when I replicate their four-lag
FEP model over 1982-1992, so it is possible that the nature of the patent-R&D relationship for large firms changed
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Table 7: Results for traditional estimators

(1) (2) (3) (4) (5) (6)
VARIABLES PQML 1 PQML 2 FEOLS 1 FEOLS 2 FEP 1 FEP 2

log(R0) 0.819*** 0.423** 0.113*** 0.0476** 0.318*** 0.161***
(0.0441) (0.191) (0.0198) (0.0205) (0.0682) (0.0560)

log(R−1) 0.234*** 0.00784 0.0158
(0.0637) (0.0192) (0.0378)

log(R−2) 0.0845 0.00777 -0.0250
(0.108) (0.0180) (0.0710)

log(R−3) 0.0826 -0.00789 -0.00236
(0.203) (0.0204) (0.0546)

Dum. for zero pat. -0.543*** -0.442***
(0.0261) (0.0301)

Constant -0.211 -0.228 1.091*** 1.268***
(0.211) (0.214) (0.0440) (0.0765)

Sum of log(R) coeff.
0.819*** 0.824*** 0.113*** 0.055 0.318*** 0.1495
(0.0441) (0.045) (0.0198) (0.034) (0.0682) (0.1096)

Observations 6,784 4,240 6,784 4,240 5,968 3,510
Number of firms 848 848 848 848 746 702
R-squared 0.157 0.137

Clustered standard errors in parentheses. Year dummies included in all specifications.

*** p<0.01, ** p<0.05, * p<0.1

Table 8: LM tests of neglected slope heterogeneity

Panel A: FEP 1 (No lag model)
χ2 d.f. p value

Chesher 9.440 1 0.0021
QML 2.411 1 0.1205

Panel B: FEP 2 (Three lag model)
χ2 d.f. p value

Chesher 36.621 4 2.16e-07
QML 7.585 4 0.1080
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Table 8 displays the results of LM tests for neglected slope heterogeneity applied to the no-lag

and the three-lag models following FEP estimation. The label “Chesher” denotes the test statistic

derived under full distributional assumptions, while “QML” refers to the test statistic proposed

in this paper. As previously discussed, Chesher’s test amounts to testing diagonal elements of

the information matrix. In both models, this test strongly rejects the null of constant coefficients.

However, as previously discussed, failure of the conditional Poisson assumption and neglected serial

correlation would lead to information matrix inequality without causing inconsistency in FEP. The

test I propose for the QMLE setting restricts attention to the conditional mean function, which I

show in Section 3.3 to be equivalent to testing the significance of squared regressors. In both the

no-lag and three-lag models, we fail to reject the null of constant coefficients at the 10% level.

5.3 Estimating the CRC model

Section 3 and Section 5 imply that neglected slope heterogeneity could be a source of inconsistency

in the FEP estimates reported in the previous subsection. While the prosed LM tests fail to reject

the null of constant coefficients, I illustrate the proposed CRC estimation procedure by presenting

results in Table 9. Models CRCFEP1 through CRCFEP 5 vary the lag length and assumptions

about the covariance matrix of the random slopes. In columns (1) and (3), I impose that the bi are

deterministic linear functions of log(R)i, while in column (4), I impose that Ω is diagonal. I allow

covariance between the random slopes in column (5).

As expected from the previous subsection, these data do not provide strong evidence of slope

heterogeneity. In the no-lag models, none of the additional terms is statistically significant. The

evidence is more mixed in the three-lag models. In column (3), the estimates of γ are jointly

marginally significant (p = 0.08), with the interaction involving the second lag of log(R) negative

and significant at the 5% level. In column (4), while log(R) and its lags are jointly significant, none

of the interactions and squares are individually significant. Neither the set of interactions or the set

of squares is jointly significant in column (4). In column (5), the entire set of added heterogeneity

terms (the interactions, squares, and cross-products) are jointly marginally significant (p = 0.08).

However, the terms associated with Ω and γ are each jointly insignificant. Therefore, while there

may be marginal evidence of heterogeneity, I cannot parse it into its components. Multicollinearity

in the intervening decade.
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Table 9: Results for CRC FEP estimators

(1) (2) (3) (4) (5)
VARIABLES CRCFEP 1 CRCFEP 2 CRCFEP 3 CRCFEP 4 CRCFEP 5

log(R0) 0.538*** 0.548*** 0.115 0.152 0.160
(0.144) (0.151) (0.141) (0.133) (0.141)

log(R−1) 0.0736 0.0604 0.111
(0.0892) (0.0951) (0.0887)

log(R−2) 0.444** 0.423*** 0.360***
(0.173) (0.148) (0.121)

log(R−3) -0.0384 -0.00633 0.0205
(0.149) (0.142) (0.125)

log(R0)× log(R0) -0.0394 0.165 0.00850 -0.182 -0.215
(0.0285) (0.183) (0.0248) (0.224) (0.251)

log(R−1)× log(R0) -0.0103 -0.118 0.0177
(0.0167) (0.195) (0.294)

log(R−2)× log(R0) -0.0844** -0.556** -0.167
(0.0368) (0.258) (0.313)

log(R−3)× log(R0) 0.00672 -0.0775 -0.236
(0.0284) (0.159) (0.262)

[log(R0)]2 -0.102 0.0915 0.0921
(0.0892) (0.108) (0.118)

[log(R−1)]2 0.0569 0.102
(0.0978) (0.108)

[log(R−2)]2 0.234** 0.309**
(0.118) (0.147)

[log(R−3)]2 0.0404 0.117
(0.0735) (0.0854)

log(R0)× log(R−1) -0.0986
(0.141)

log(R0)× log(R−2) -0.0120
(0.177)

log(R0)× log(R−3) 0.144
(0.176)

log(R−1)× log(R−2) -0.255
(0.183)

log(R−1)× log(R−3) 0.123
(0.129)

log(R−2)× log(R−3) -0.266**
(0.118)

Observations 5,968 5,968 3,510 3,510 3,510
Number of pdpco 746 746 702 702 702

Clustered standard errors in parentheses. Year dummies included in all specifications.

*** p<0.01, ** p<0.05, * p<0.1
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Table 10: CRCFEP 3 estimated elasticities

Parameter Estimate S.E. p value 95% C.I.

β̂0 0.134 0.093 0.149 -0.048 0.315

β̂−1 0.051 0.057 0.379 -0.062 0.163

β̂−2 0.257 0.098 0.009 0.064 0.449

β̂−3 -0.023 0.092 0.800 -0.205 0.158

β̂0 + β̂−1 + β̂−2 + β̂−3 0.417 0.127 0.001 0.169 0.666

β̂−τ = α̂τ+1 + γ̂τ+1log(R). Clustered S.E.’s ignore sampling error of log(R)

is likely playing a role in reducing the precision of the individual estimates. log(R) is highly

correlated with its lags (ρ > 0.9), its time average (ρ = 0.98), the interactions with log(R)i

(ρ > 0.8), and its current and lagged squares (ρ > 0.8).

As implied by Eq. 52, the estimator for the average elasticity with respect to Rt−s is given by

β̂−s = α̂s+1 + γ̂s+1log(R), (53)

where log(R) = (NT )−1
∑N

i=1

∑T
t=1 log(Rit). Model CRCFEP 3 (column 3 of 9) show slight evi-

dence that the slopes depend the mean of log(R) if this relationship is restricted to be deterministic.

For illustration, I estimate the mean elasticities for this model and present them in Table 10.16

At face value, this implied lag profile for the average elasticity is different from that previously

observed in the literature, where typically the contemporaneous elasticity accounts for most of

the total and the lags are much smaller in magnitude and often statistically insignificant. Model

(3) estimates imply, however, that the highest estimated average elasticity is with respect to the

second lag of log(R), at 0.26 with a standard error of 0.098. Meanwhile, the contemporaneous

and other lags are insignificantly different from zero. At face value, this seems to imply a delay

in the benefit to R&D expenditures. However, given the multicollinearity between the log(R) and

log(R)× (log(R) terms, the finding is suspect. Furthermore, the results do not appear to be robust

to changes in the estimation sample. If I construct a panel over 1994-2001, for instance, neither

the lag-structure result or the finding of heterogeneous slopes hold. It may be that there is still

a sample selection problem caused by not observing any patent applications made through 2003

16The mean elasticities derived from columns (4) and (5) are statistically insignificantly different from zero.
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if the were not granted before 2006. Moreover, the estimates are somewhat sensitive to including

additional moment conditions as proposed in Wooldridge (1999).

Overall, the permutations of the CRC model considered here do not offer convincing evidence

of slope heterogeneity, which is not surprising given the LM test in the previous subsection failed

to reject the null of constant slopes. This contrasts starkly with the classical LM test, which rejects

strongly in favor of coefficient heterogeneity. Given weakness of evidence for a more flexible condi-

tional mean function, it seems plausible that the classical LM test is picking up some other feature

of the data like conditional serial dependence or higher moments that differ from the Poisson’s.

6 Conclusion

FEP analysis of count or other nonnegative response variables cannot generally be justified in

the presence of heterogeneous slopes and may not lead to estimation of any quantity of interest.

Given this, I extend Chesher’s (1984) testing framework to the FEP setting and show that an LM

test for neglected heterogeneity amounts to adding squares of regressors to the set of covariates.

This procedure is more widely applicable than classical tests. Simulation evidence also suggests

robustness to this approach when coefficients are neither normal nor belong to a location-scale

family.

Identification via a correlated random coefficients assumption leads to FEP on a more flexible

mean function as an estimation method. Under a proportional variance assumption and CRE

assumption for the scalar, multiplicative effect, normal QMLE is another technique which may have

advantages in cases of binary or time-constant regressors. Each of these options feasibly allows for

higher dimensional random coefficients than estimators based on likelihoods with integrals, while

also allowing for dependence between the heterogeneity and the regressors.

Application of the proposed test to the U.S. manufacturing industry shows little evidence of

slope heterogeneity when restricting attention to the conditional mean function, in contrast to

the classical test, which rejects strongly. Accordingly, estimates of the CRC model corresponding

to the slope heterogeneity tend to be jointly insignificant, with the exception of when the slopes

are assumed to be deterministic functions of the covariates, in which case the added terms are

marginally significant. One immediate avenue for future research is to extend this type of correlated
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random coefficients model to cases where the regressors are not strictly exogenous, either because

of feedback, contemporaneous endogeneity, or sample selection, as a way to explore robustness of

these findings.
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A Derivations of test statistics

Derivations from Section 3.2

From section 3.2, the score of Eq. 13 evaluated at Λ = 0 is identically zero. Assuming we can pass

the derivative through the integral, we can work out the following:

∇Λ`i(β,Λ) =

∫∫
RK hit

[∏T
t=1 pt(xi, bi)

yit
] [∑T

t=1 yitu
′
i ⊗ qt(xi, , bi)

]
f(ui) dui∫∫

RK f(yi|xi,ui, ci, ni)f(ui) dui
(54)

where hit = ni!∏T
t=1 yit!

, qt(xi, bi) = ∇bipt(xi, bi)/pt(xi, bi). Evaluating at Λ = 0, and pulling the

terms that do not depend on ui out of the integrals, we have:

∇Λ`i(β,Λ)
∣∣∣
Λ=0

=
hit

[∏T
t=1 pt(xi,β)yit

] [∑T
t=1 yit

∫∫
RK u

′
i ⊗ qt(xi,β)f(ui) dui

]
hit

[∏T
t=1 pt(xi,β)yit

] ∫∫
RK f(ui) dui

(55)

=
T∑
t=1

yitE
[
u′i ⊗ qt(xi, bi)

]
(56)

= 0.

The second equality uses that
∫∫

RK f(ui) dui = 1, while the third follows from independence of xit

and ui, as well as E(ui) = 0.

Following the re-parameterization shown in Eq. 14, stacking the λj into K×1 vector λ, defining

let θ ≡ (β′,λ′)′, and following similar steps as before, we have:

∂`i(β,λ)

∂λj

∣∣∣
λ=0

=

{
1

2
√
λj

[
T∑
t=1

yitqtj(xi,β)

]∫∫
RK

uijf(ui) dui

}
λj=0

(57)

where qtj() is the jth element of qt(), The above has 0/0 form since E(ui) = 0.

Using L’Hopital’s rule, the limit, of ∂`i(β,λ)
∂λj

as each element of λ approaches zero from above
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is:

1

2
√
λj

∫∫
RK hit [

∏
t pt(xi, bi)

yit ]
{∑

t yitrtj(xi, bi) + [
∑

t yitqtj(xi, bi)]
2
}
u2
ijf(ui) dui

2

(
1

2
√
λj

)∫∫
RK hit [

∏
t pt(xi, bi)

yit ] f(ui) dui

, (58)

where rtj() is the (j, j)th element of ∇biqt(xi, bi). The 1

2
√
λj

terms cancel, as do the hit the

product terms when we evaluate at λ = 0 (bi = β0). Then using
∫∫

RK f(ui) dui = 1 and∫∫
RK u

2
ijf(ui) dui = E(u2

ij) = 1, we get the last K elements of Eq. 15.

Derivations from Section 3.3

As before, the restricted score of Eq. 21 is identically zero.

∇Λ`i(β,Λ) =

T∑
t=1

yit

[
∇Λpt(xi,β,Λ)

pt(xi,β,Λ)

]

=

T∑
t=1

yit

∑T
r=1 exp(xirβ +mr(xi,Λ)) [∇λmt(xi,Λ)−∇λmr(xi,Λ)]∑T

r=1 exp(xirβ +mr(xi,Λ))
, (59)

∇λmt(xi,Λ) =

∫∫
RK exp (xitΛui) (u′i ⊗ xit)f(ui) dui∫∫

RK exp(xitΛ0ui)f(ui) dui
. (60)

The complication arises because

∇λmt(xi,Λ)
∣∣∣
Λ=0

=

∫∫
RK (u′i ⊗ xit)f(ui) dui∫∫

RK f(ui) dui
= 0, (61)

which implies

∇Λ`i(β,Λ)
∣∣∣
Λ=0

= 0. (62)

After the re-parameterization, for each of the λj , we have:

∇λjmt(xi,Λ) =

{∫∫
RK

exp(xitΛ0ui)f(ui) dui

}−1
∫∫

RK exp (xitΛui)xitjuijf(ui) dui

2
√
λj

. (63)

When evaluated at λ = 0, the second factor of Eq. 63 has the form 0/0.
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Using L’Hopital’s rule, as each λj approaches zero from above, we have:

lim
λ↓0

[∫∫
RK exp (xitΛui)xitjuijf(ui) dui

2
√
λj

]
= lim
λ↓0

 1

2
√
λj

∫∫
RK exp (xitΛui)x

2
itju

2
ijf(ui) dui

2( 1

2
√
λj

)


=
x2
itj

∫∫
RK u

2
ijf(ui) dui

2

=
1

2
x2
itj (64)

Plugging these limits in into the expression for ∇Λ`i(β,0), we get Eq. 23.

B APE when intercept and slope heterogeneity are conditionally

dependent

Here I sketch a model that, in contrast to the CRC model presented in Section 3, allows covariance

between the random intercept and random slopes conditional on the covariates. For notational

simplicity, I consider the case where the mean of the bi does not depend on xi, and suppress

the “0” subscripts indicating true population values. 17. Defining vi = ln(ci), write the entire

(K + 1)-vector of heterogeneity as

vi
bi

 =

g1(xi) + ai

β + di

 , (65)

and assume ai
di

 |xi ∼ Normal
0,

 ωa ω′ba

ωba Ω


 . (66)

It follows that:

E(yit|xi) = exp

(
g1(xi) +

1

2
ωa

)
exp

(
xit [β + ωba] +

1

2
xitΩx

′
it

)
(67)

= wi exp

(
xit [β + ωba] +

1

2
xitΩx

′
it

)
, (68)

17Introducing the conditional covariance comes at the cost of modeling the conditional distribution of ci, but its
conditional mean, at least, is still fully general
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where wi ≡ exp
(
g1(xi) + 1

2ωa
)
. It is immediately clear that FEP of yit on xit and (xit ⊗ xit) does

not require assuming the form of g1(), but precludes separate estimation of β and ωba unless we

assume cov(a, b) = 0. However, APE are still identified, as they depend only on the sum β + ωba.

For example, given a fixed value of the regressors xt, the APE of a continuous variable xtj is

∂E(yit|xt)
∂xtj

= wi exp

(
xt [β + ωba] +

1

2
xtΩx

′
t

)[βj + ωbaj ] + ωj +
K∑
h6=j

ωjhxth

 (69)

where ωjh = cov(bj , bh), and ωbaj = cov(bj , a). I emphasize with square brackets the fact that this

quantity depends only on the sum β + ωba. Applying Martin (2017), estimation of the ASF or a

single APE can proceed as discussed in Section 3.

C Derivations of APEs using the direct approach

The direct approach consists of taking derivatives and differences of Eq. 29 directly. Note that

since these expressions do not first average out x̄, the entire history of x is now a fixed argument.

For a continuous variable xtj the APE is:

δj(x) =
∂E(yt|x)

∂xtj

= exp

(
h(xt, x̄,θ0) +

1

2
v(xt, τ0)

)ξj/T + αj + x̄γ ′j +
1

T
xtγ

j + ωjxtj +

K∑
h6=j

ρjhxth

 , (70)

where γj is the jth row and γj is the jth column of Γ0 .

Define z(xt, x̄,θ, τ ) = h(xt, x̄,θ) + 1
2v(xt, τ ). Then we have for a binary xtk,

δk(x) =E
(
yt|x 6k, {xsk}Ts6=t , xtk = 1

)
− E

(
yt|x 6k, {xsk}Ts6=t , xtk = 0

)
= exp

z(xt6k, x̄ 6k,θ 6k, τ 6k) + ξj x̄
(1)
tk + αk + x̄ 6kγ

′
k 6k + γkkx̄

(1)
tk + xt6kx̄

(1)
tk γ

k
6k +

1

2
ωk +

K∑
h6=k

ρkhxth


− exp

(
z(xt6k, x̄6k,θ6k, τ6k) + ξj x̄

(0)
tk + xt6kx̄

(0)
tk γ

k
6k

)
, (71)

where γkk is the kth diagonal element of Γ0 , x̄
(1)
tk ≡

1
T

(
1 +

∑T
s6=t xsk

)
, and x̄

(0)
tk ≡

1
T

∑T
s6=t xsk.
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Whichever approach is chosen, one can then estimate δj(xt) or δk(xt) by inserting the estimated

parameters, replacing expectations over the distribution of x̄ with averages over i, and plugging

in interesting values of x. Many researchers will average over the distribution of x to get a single

number. Asymptotic variances can be computed either via the delta method or using the panel

bootstrap.
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