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ABSTRACT 

Pfeffermann and Sverchkov (P-S 2007) considered Small Area Estimation (SAE) for the 

case where the selection of the sampled areas is informative in the sense that the area 

sampling probabilities are related to the true (unknown) area means, and the sampling of 

units within the selected areas is likewise informative with probabilities that are related to 

the values of the study variable; in both cases after conditioning on the model covariates. 

In this paper we extend this approach to the practical situation of incomplete response at 

the unit level, and where the response is not missing at random (NMAR). The proposed 

extension consists of first identifying the model holding for the observed responses and 

using the model for estimating the response probabilities, and then applying the approach 

of P-S to the observed data with the unit sampling probabilities replaced by the products 

of the sampling probabilities and the estimated response probabilities. A bootstrap 

procedure for estimating the MSE of the proposed predictors is developed. We illustrate 

our approach by a simulation study and by application to a real data set. The simulations 

also illustrate the consequences of not accounting for informative sampling and 

nonresponse.  
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1. INTRODUCTION  

 

Over the last 20 years, many articles have been published on how to account for 

informative sampling when estimating population parameters from informative 

probability samples. See Pfeffermann and Sverchkov (2009), Pfeffermann (2011) and 

Kim and Skinner (2013) for reviews and discussion. By informative sampling we mean 

that the sampling probabilities are related to the outcome variable of interest, even after 

conditioning on model covariates, such that the conditional distribution of the study 

variable given the covariates differs from the corresponding distribution in the population 

from which the sample is taken. As illustrated in the literature and also in the empirical 

study of the present article, not accounting for informative sampling and nonresponse, 

can result in large bias and root MSE (RMSE), and hence in misleading inference. 

In the last decade, several approaches have been proposed to deal with informative 

sampling in the context of small area estimation (SAE). See Pfeffermann (2013) for a 

review of methods. In particular, Pfeffermann and Sverchkov (2007) considered the case 

where the selection of the sampled areas is informative in the sense that the area sampling 

probabilities are related to the true (unknown) area means, and the sampling of units 

within the selected areas is likewise informative, with probabilities that are related to the 

values of the study variable, in both cases after conditioning on the model covariates. 

Verret et al. (2015) proposed an alternative method to account for informative sampling 

within the sampled areas. We consider the approach of Pfeffermann and Sverchkov 

(2007) later in this article, using an important result of Verret et al. (2015).  

  

A related, but definitely more complicated problem when analyzing survey data is not 

missing at random (NMAR) nonresponse. Here the problem is that no information is 

obtained from some of the sampled units, with the propensity to respond possibly 

depending on the study variable of interest, even after conditioning on known covariates. 

As is well known, response rates have dropped very drastically over the years, sometimes 

being even lower than 50%. The obvious reason why this is a much more complicated 

problem is that unlike the sampling probabilities in informative sampling, the response 

probabilities are generally unknown and cannot readily be estimated from the observed 

data since the missing data are unobserved, requiring one to assume some structure for 
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these probabilities. Because NMAR nonresponse is such a complicated problem, analysts 

often assume either explicitly or implicitly the existence of covariates known for all the 

sample elements, which explain the response probabilities in the sense that after 

conditioning on these covariates, the probability to respond no longer depends on the 

study variable, commonly known as missing at random (MAR). It is far beyond the scope 

of this article to review all the rich literature devoted to this theme. See Pfeffermann and 

Sikov (2011) and Riddles et al. (2016) for reviews and references. 

 

The primary objective of the present article is to propose a method of handling NMAR 

nonresponse in the framework of SAE. Notice that in official statistics, the sample used 

for SAE is basically the same sample used to obtain direct national or subnational 

estimates (areas or domains with large samples for which the estimates are based on only 

the data observed for them). Consequently, the reasons for nonresponse are the same in 

both cases, although the problems resulting from the nonresponse can be more severe in 

SAE because of the small sample sizes within at least some of the areas, even under full 

response. To the best of our knowledge, no article has been published considering this 

very important problem of NMAR nonresponse. To this end, we extend the approach of 

Pfeffermann and Sverchkov (2007). The proposed extension consists of identifying the 

outcome model holding for the observed responses and using this model for estimating 

the response probabilities by application of the Missing Information Principle (MIP). For 

this, we define the likelihood holding for the sample under complete response, we 

integrate out the unobserved outcomes from this likelihood over the outcome distribution 

holding for the nonrespondents, and then solve the resulting likelihood equations. Having 

estimated the response probabilities, we apply the approach of Pfeffermann and 

Sverchkov (2007) to the observed data for the respondents, with the unit sampling 

probabilities replaced by the products of the sampling probabilities and the estimated 

response probabilities.  

 

The paper is organized as follows: In Section 2 we introduce the basic notation and 

define the models holding for the responding and the non-responding sample units. In 

Section 3 we outline the basic steps of our proposed approach for estimating the response 

probabilities. Section 4 considers two alternative ways of estimating the small area means 
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once the response probabilities have been estimated, namely, the use of direct estimates 

and the use of empirical model-based estimators. Prediction MSE estimation is 

considered in Section 5, followed by a simulation study in Section 6, aimed to illustrate 

the performance of our proposed predictors in comparison to predictors that ignore the 

informative sampling process or the NMAR nonresponse mechanism. The proposed 

procedure is applied to a real data set from Israel in Section 7. We conclude with a brief 

summary in Section 8. 

 

2. NOTATION AND MODELS 

Let { ,x ; 1,..., ,  1,..., }ij ij iy i M j N= =  represent the data in a finite population of N units 

belonging to M  areas with iN  units in area i , 
1

M

ii
N N

=
= , where ijy  is the value of  

the study variable for unit j  in area i  and 
,1 ,x ( ,..., )ij ij ij Kx x =  is a vector of corresponding 

K  covariates. We assume that the covariates are known for every unit in the population. 

Suppose that the outcome values follow the generic two-level population model:  
 

                            
2

| x , ~ ( | x , ),  1,..., ,  1,...,

~ ( );  ( ) 0,  ( ) ,U

U U

ij ij i ij ij i i

U U U U

i i i i u

y u f y u i M j N

u f u E u V u 

= =

= =
                            (2.1) 

where 
U

uu  is the ith area level random effect under this model. The target is to estimate the 

area means 
1

1

, 1,...,
iN

i i ij

j

Y N y i M−

=

= = , based on  a sample obtained by the following two-

stage sampling scheme: select a sample s of m out of the M population areas with 

inclusion probabilities Pr( )i i s =  ; select a sample is  of 0in  units from selected 

area i  with probabilities | Pr( | )j i ij s i s =   . Denote by iI , ijI  the sample indicators-

1iI = if area i is selected in the first stage and 0 otherwise, 1ijI =  if unit j  of selected 

area  i  is sampled in the second stage and 0ijI =  otherwise. Let 1/i iw = , | |1 /j i j iw =  

denote the first- and second-stage sampling weights.  

 

In practice, not every unit in the sample responds.  Define the response indicator 1ijR =  

if unit ij s  responds and 0ijR =  otherwise. The sample of respondents is thus 
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{( , ) : 1, 1, 1}i ij ijR i j I I R= = = =  and the sample of nonrespondents among the sampled 

units is {( , ) : 1, 1, 0}c

i ik ikR i k I I R= = = = . We assume 
1

0
in

ijj
R  for all the sampled 

areas. The sample of respondents can thus be viewed as the result of a two-stage 

sampling process where in the first stage the sample is selected from the population with 

known inclusion probabilities, and in the second stage the sample is “self-selected” with 

unknown response probabilities (Särndal and Swensson, 1987).  

Define, ( | )U U

i i iu u E u i s= −  . Then, under the population model (2.1), the observed data 

follow the two-level ‘respondents’ model:  

| , ~ ( | , ) ( | , , ( , ) ); ~ ( | ), ( | ) 0ij ij i R ij ij i ij ij i i i iy x u f y x u f y x u i j R u f u i s E u i s=    = .  (2.2) 

The model in (2.2) is again general and all that we state at this stage is that under 

informative sampling and/or NMAR nonresponse, the population and the respondents 

models differ, ( | , ) ( | , )U

R ij ij i ij ij if y x u f y x u . 

Remark 1. The respondents’ model refers to the observed data and hence can be 

estimated and tested by standard small area estimation (SAE) methods. See Pfeffermann 

(2013) and Rao and Molina (2015) for estimation and testing procedures in SAE, with 

references. 

Let ( , )r ij ijp y x = Pr[ 1| , , , ]ij ij ij iR y x i s j s=   . If the probabilities ( , )r ij ijp y x  were 

known, the sample of respondents could be considered as a two-stage sample from the 

finite population with known selection probabilities i   and | | ( , )j i j i r ij ijp y x = . Also, if 

known, the response probabilities could be used for imputation of the missing data within 

the selected areas, by application of the relationship between the sample and sample-

complement distributions, (Sverchkov and Pfeffermann, 2004),  

            ( | , ,( , ) )c

ij ij if y x u i j R =

1

1

[ ( , ) 1] ( | , , ( , ) )

{[ ( , ) 1] | , , ( , ) }

r ij ij ij ij i

r ij ij ij i

p y x f y x u i j R

E p y x x u i j R

−

−

− 

− 
.                    (2.3) 

 

Notice that under informative NMAR nonresponse, the nonrespondents’ distribution 

differs from the respondents’ distribution ( | , , ( , ) )ij ij if y x u i j R . As stated in Remark 1, 

the latter distribution refers to the observed data and therefore can be fitted by classical 
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SAE methods, allowing in turn estimating the nonrespondents’ distribution via (2.3). In 

the following section we show how we can estimate the response probabilities. 

3. ESTIMATION OF RESPONSE PROBABILITIES 

In what follows we assume a parametric model for the response probabilities, which 

depends on an unknown vector parameter  ; ( , )r ij ijp y x = ( , ; )r ij ijp y x   

Pr[ 1| , , , ; ]ij ij ij iR y x i s j s = =   .  

 Assumption 1. ( , ; )r ij ijp y x   is differentiable with respect to  , and the response 

probabilities (but not necessarily the second stage sample sampling probabilities) are 

independent between the units; ( , , , ; ) ( , ; ) ( , ; )r ij ik ij ik r ij ij r ik ikp y y x x p y x p y x  = . 

Assumption 2. ( | , , ( , ) ) ( | , , ( , ) )c c

ik i ik ik if y O u i k R f y x u i k R =  , where O  represents 

all the observed data; |{ , , , , ( , ) ; , 1,..., ,  1,..., }ij j i i i hl iO y n i j R x h M l N =  = = . The 

assumption states that the unobserved outcomes in a sampled area are independent of the 

observed outcomes, given the area random effect and the covariates. Pfeffermann and 

Sverchkov (2007) define two general mild conditions under which the assumption holds 

(adapted to the present context of NMAR nonresponse): 

(C1) [ , | , , , ( ) , 1] [ | , , ( ) ] ( | , , 1)il ij i il ij ij il i il ij i ij ijf y y u x x i,l R R f y u x i,l R f y u x R = =  = , 

(C2) | |i( | , , , , ,( ) , 1) ( | , , 1)j i i il ij ij il ij j i ij ij ijf u y y x x i,l R R f u y x ,R  = = =  

The first condition is very mild since the outcomes in a given area are independent given 

the random effect, and the area selection probability is related to the area mean and not to 

individual deviations from the mean, such that by conditioning on the random effect the 

independence of the outcomes is preserved. The second condition also seems mild for the 

common situation in small area estimation of large true area  sizes but small samples.  

Under these assumptions, if the missing outcome values were actually observed,   could 

be estimated by solving the likelihood equations:  

                      
( , )

log ( , ; )r ij ij

i j R

p y x 




+




( ,k)

log[1 ( , ; )]
0

c

r ik ik

i R

p y x 



 −
=


 .                    (3.1) 
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In practice, the missing data are unobserved and hence the likelihood equations (3.1) are 

not operational. However, one may apply in this case the missing information principle: 

Missing Information Principle (Cepillini et al. 1955, Orchard and Woodbury, 1972): 

since no observations are available for ( , ) ci k R , solve instead, 

( , ) ( ,k)

log ( , ; ) log[1 ( , ; )]

c

r ij ij r ik ik
U

i j R i R

p y x p y x
E O

 

  

    − 
+  

    
   

 

( , )

log ( , ; )r ij ij

i j R

p y x 




= +




( , )

log[1 ( , ; )]
,( , )

c

cr ik ik
nre

i k R

p y x
E O i k R





  −
 

 
    

( , )

( , )

log ( , ; )

log[1 ( , ; )]
,u ,( , ) ,( , )

c

r ij ij

i j R

c cr ik ik
s nre i

i k R

p y x

p y x
E E O i k R O i k R














=



   − 
+    

   





 

= by (2.3) and Assumption 2,  

( , )

log ( , ; )r ij ij

i j R

p y x 






       

1

1

( , )

log[1 ( , ; )]
[ ( , ; ) 1] | , , ( , )

0
{[ ( , ; ) 1] | , , ( , ) }c

r ik ik
re r ik ik ik i

s

i k R re r ik ik ik i

p y x
E p y x x u i k R

E O
E p y x x u i k R








−

−



   −
−   

  + =
 − 
 
 
 

 . (3.2) 

In (3.2) ,E ,E ,U s re nreE E  define respectively expectations with respect to the population 

distribution, the sample distribution, the respondents’ distribution and the non-

respondents’ distribution. Notice that the internal expectations in the last expression are 

with respect to the model holding for the observed data for the respondents.  

The rationale of the MIP is simple. Ideally, we would want to use the score function 

(3.1), but since the outcomes are unknown for the nonresponding units, we replace the 

second expression, 
( ,k)

log[1 ( , ; )]

c

r ik ik

i R

p y x 



 −


  by its “best predictor”, as defined by its  
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expectation given the observed data; 
( , )

log[1 ( , ; )]
,( , )

c

cr ik ik
nre

i k R

p y x
E O i k R





  −
 

 
 . 

Orchard and Woodbury (1972) formalize this step more generally as follows: denote by 

( , ; )f O M   the joint distribution of the observed and missing data, indexed by the vector 

parameter  . If the missing data were actually observed, one could estimate   by the 

score function obtained from f . (The score (3.1) in the present case.) But since M  is 

unobserved, factorize 1 2( , ; ) ( ; ) ( | ; )f O M f O f M O  =  and estimate   from the 

marginal distribution 1f  of the observed data, and the expectation 2 ( | ; )E M O  .  

Returning to the MIP equations in (3.2), the vector parameter   is estimated by replacing 

iu   by ˆ
iu  and dropping the external expectation. In our empirical study we solved the 

resulting equations by minimizing the log-likelihood leading to them, i.e., minimizing,  

( , )

log ( , ; )r ij ij

i j R

p y x 


     

1 *

1 *

( , )

{[ ( , ; ) 1]log[1 ( , ; )] | , , ( , ) }

{[ ( , ; ) 1] | , , ( , ) }c

re r ik ik r ik ik ik i
s

i k R re r ik ik ik i

E p y x p y x x u i k R
E O

E p y x x u i k R

 



−

−



 − − 
+   −  
 .          (3.3) 

We distinguish between *  and  because by (3.2), the derivatives should only be taken 

with respect to . The minimization was thus carried out iteratively by minimizing on 

the (q+1) iteration the function, 

( 1)

( , )

log ( , ; )q

r ij ij

i j R

p y x  +



  

1 ( ) ( 1)

1 ( )

( , )

{[ ( , ; ) 1]log[1 ( , ; )] | , , ( , ) }

{[ ( , ; ) 1] | , , ( , ) }c

q q

re r ik ik r ik ik ik i
s q

i k R re r ik ik ik i

E p y x p y x x u i k R
E O

E p y x x u i k R

 



− +

−



 − − 
+   −  
     (3.4) 

with respect to ( 1)q + . The use of this procedure worked well in our empirical study, but 

other numerical procedures can possibly be considered for solving the estimating 

equations resulting from (3.2).  

 

Remark 2. When the response probabilities ( , ; )r ij ijp y x   depend on only ijx  (and  ), 

they are referred to as propensity scores, and the missing data are missing at random. 

This kind of response mechanism may hold in establishment survey settings, for example,  
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when the response propensity is related to the unit size. The estimating equations in (3.2) 

reduce in this case to the common log-likelihood equations, 

                         
( , )

log ( ; )r ij

i j R

p x 




+




( , )

log[1 ( ; )]
0,

c

r ik

i k R

p x 



 −
=


                              (3.5) 

where ( ; ) Pr(R 1| ; )r ij ij ijp x x = = . 

Remark 3: A fundamental question regarding the solution of the MIP equations (3.2) is 

the existence of a unique solution, or more generally, the identifiability of the response 

model. In a recent article, Riddles et al. (2016) proposed a similar approach to deal with 

NMAR nonresponse in the general context of sample surveys and established the 

following fundamental condition for the response model identifiability: the covariates x  

can be decomposed as 1 2x (x , x )  with 2(x ) 1dim  , such that Pr( 1| , )ij ij ijR y x=  

1Pr( 1| , )ij ij ijR y x= = . In other words, the covariates in 2x  that appear in the outcome 

model do not affect the response probabilities, given the outcome and the other 

covariates. Although not explaining the response, the variables in 2x  explain the 

variability of the outcome values and hence they provide valuable information on the 

missing values, and are therefore essential for estimating the parameters underlying the 

response mechanism.  

Variable(s) of this property may or may not exist in a general set up, but interesting 

enough, SAE models actually contain such a variable, namely, the random effects. The 

random effects play a fundamental role in SAE models so the outcome clearly depends 

on them, but it is reasonable to assume that the response probabilities do not depend on 

the random effect given the outcome value. In practice, the random effects are 

unobservable but we estimate them and then solve the equations (3.2) by conditioning on 

the estimated effects. So, it is actually the estimated random effects that play the role of 

the covariates 2x . (Other covariates that are predictive of the outcome but not of the 

response might exist as well). Clearly, the larger the absolute values of the random 

effects, the more they affect the values of the outcome values and hence also the values 

of the response probabilities. In the simulation study of Section 6 we study the effect of 

the magnitude of the variance of the random effects on the prediction of the area means.  
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Example: Mixed logistic model for outcome variable 

Suppose that the model fitted to the observed data of the respondents is the mixed 

generalized logistic model, 

  ( , )y ij ip x u = Pr( 1| , , ( , ) ; )ij ij iy x u i j R = 
0 1

0 1

exp( )

1 exp( )

ij i

ij i

x u

x u

 

 

+ +
=

+ + +
, 

i.i.d.
2~ (0, )i uu N  .   (3.6)       

Consider a generic response model, ( , ; )r ij ijp y x  = Pr[ 1| , , , ; ]ij ij ij iR y x i s j s =   .   

The components of (3.2) can be written in this case as, 

1
log[1 ( , ; )]

[ ( , ; ) 1] , ,( , )
r ij ij

re r ij ij ij i

p y x
E p y x x u i j R






−
 − 

−  = 
 

 

1
log[1 (1, ; )]

( , )[ (1, ; ) 1]
r ij

y ij i r ij

p x
p x u p x






−
 −

− +


 

1
log[1 (0, ; )]

[1 ( , )][ (0, ; ) 1]
r ij

y ij i r ij

p x
p x u p x






−
 −

− −


; 

1{[ ( , ; ) 1] | , , ( , ) }re r ij ij ij iE p y x x u i j R− −  = 1( , )[ (1, ; ) 1]y ij i r ijp x u p x − − +  

1[1 ( , )][ (0, ; ) 1]y ij i r ijp x u p x −− − . 

The random effects iu  and the logistic probabilities ( , u )y ij ip x  can be estimated by use of 

the SAS procedure PROC NLMIX.  

Remark 4. A possible criticism of our proposed approach is that it requires specifying a 

parametric model for the response as a function of the outcome and the covariates, but in 

general, the model cannot be tested by use of the observed data since the outcomes are 

missing for the nonrespondents. While this is generally true, we mention that Rivers 

(2007) and Feder and Pfeffermann (2015) define conditions under which if the true 

response model is a continuous function of the outcome and the covariates, it can be 

approximated arbitrarily close by a logistic model with polynomials of the outcome and 

the covariates, and products of them as the explanatory variables. These results suggest 

using the logistic model with polynomials and cross products of appropriate orders as the 

response model. We partly illustrate the robustness of the logistic model as an 

approximation for the true response probabilities in the simulation study of Section 6. 

Note again that unlike with the use of the standard propensity scores, which are functions 
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of only the covariates, the outcome variable is added to the covariates as an additional 

explanatory variable in the response model, thus accounting for NMAR nonresponse. 

4. PREDICTION OF SMALL AREA MEANS 

As noted earlier, once the unit level response probabilities have been estimated, the 

sample of respondents can be considered as a two-stage sample from the finite population 

with first- and second level estimated probabilities i   and | | |
ˆ( , ; )k i k i k i r ik ikp y x   = = . 

By Pfeffermann and Sverchkov (2007), the optimal small area predictor for area i  is, 

                                                     
* ( | , )i U i iY E Y O I= .                                                     (4.1) 

(Follows from the identity, 
2 2ˆ ˆ[( ) | , ) [ ( | , )] ( | , )U i i i i i i U i iE Y Y O I Y E Y O I Var Y O I− = − + , for 

any predictor 
ˆ
iY .) We estimate therefore the area means in sampled areas as, 

1

:( , ) 1,

ˆ ˆ ˆ( | , 1) [ ( | , 1)]
iN

i U i i i ij P ik i

j i j R k k R

Y E Y O I N y E y O I−

 = 

= = = + =   

1

|1

1
,( , ) 1, |

[( 1) | , ,( , ) ]

[( 1) | , ,( , ) ]

iN
re k i ik ik i

i ij s

j i j R k k R re k i ik i

E y x u i k R
N y E O

E x u i k R





−

−

−
 = 

  −  
= +  

−     
   

          1

,( , ) 1,

{[ ( , ) 1] | , , ( , ) }

{[ ( , ) 1] | , , ( , ) }

iN

re ik ik ik ik i
i ij s

j i j R k k R re ik ik ik i

E w y x y x u i k R
N y E O

E w y x x u i k R

−

 = 

  −  
= +  

−     
  ,      (4.2) 

where 1

|( , ) [ | , , ( , ) ]ik ik re k i ik ikw y x E y x i k R −=  . (The second row follows from (2.3). We 

assume 1

|[ | , , , ( , ) ]re k i ik ik iE y x u i k R −  1

|[ | , , ( , ) ]re k i ik ikE y x i k R −=  ). The external 

expectation in the last row of (4.2) is over the distribution of iu  under the sample model. 

(No nonresponse of areas). The internal expectations refer to the observed data and 

therefore can be estimated either by regression or non-parametrically. See Pfeffermann 

and Sverchkov (2007, 2009), Pfeffermann (2011) and Feder and Pfeffermann (2015) for 

examples. In Section 6.1 we describe how we estimate the expectations in the empirical 

study.  

Remark 5.  The non-responding sampled units in (4.2) are treated the same as non-

sampled units. As explained at the beginning of this section, we consider the sample of 
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respondents as a two-stage sample from the finite population with first- and second level 

estimated probabilities i   and | | |
ˆˆ ( , ; ) ( , ; )k i k i r ik ik k i r ik ikp y x p y x    = = .    

Having estimated the response probabilities, an alternative, almost direct, and in fact 

simpler predictor of the area mean in a sampled area is the (pseudo) Hajek-Brewer 

(Hajek, 1971) estimator, 

                                           
| |

,( , ) ,( , )

ˆ ( / ) / (1/ )HB

i ij j i j i

j i j R j i j R

Y y  
 

=   .                               (4.3) 

The prominent feature of this estimator is that it uses the estimated probabilities 

| |
ˆ( , ; )j i j i r ij ijp y x  = . As illustrated in the empirical study, this estimator is 

approximately design-unbiased (it is a Ratio estimator), but with larger sampling variance 

than the predictor (4.2), particularly in areas with small sample size. 

We estimate the area means of the outcomes in non-sampled areas as, 

1

1

ˆ ( | , 0) [ ( | , 0)]
iN

i U i i i U ik i

k

Y E Y O I N E y O I−

=

= = = =

1

1

1
1

[( 1) ( )]

( 1)

iN l l ik

l s
i

k l

l s

K x

N





−

− 

−
=



−

=
−





,            (4.4) 

 where ( ) ( | , ( , ) )l U lk lkK x E y x l k U=  =
[ ( , ) | , , ( , ) ]

[ ( , ) | , , ( , ) ]

re lk lk lk lk l
s

re lk lk lk l

E w y x y x x u l k R
E O

E w y x x x u l k R

 =  
 

=   
. 

See Pfeffermann and Sverchkov (2007, Section 7) for derivation of (4.4).  

Remark 6. In a recent article, Verret et al. (2015) propose to account for informative 

sampling within the areas by including the sampling weights or functions of them as 

additional explanatory variables in the model. (The authors assume that all the areas are 

sampled with full response.) However, a similar approach cannot be used to account for 

NMAR nonresponse even with good estimates of the response probabilities since it 

requires knowledge of the area means of the probabilities |k i  for every area, but the 

response probabilities ˆ ( , ; )r ik ikp y x   can only be computed for the responding units.  
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5. MSE ESTIMATION 

We propose a semi-parametric bootstrap procedure for MSE estimation. The procedure 

uses the same idea as in Sverchkov and Pfeffermann (2004). We first generate a pseudo 

population with marginal distributions of the outcome values, similar to the distributions 

of the true population values, and then select independently B samples from the pseudo 

population using the original sampling scheme and apply the same response mechanism 

as fitted to the original (true) sample. Finally, we compute the small area predictors for 

each area based on the sample of respondents. 
 

A- Generation of pseudo population 

P1. Use the observed data in order to regress the estimated area random effects and the 

area sampling weights, or functions of them, against area level variables such as iX  and 

iN   (and any other variables known at the area level), yielding the regression predictors, 

( , )i w i iw g X N=  and ˆ ( , )i u i iu g X N= . For non-sampled area k , set ˆ ( , )k w k kw g X N=  and 

ˆ ( , )k u k ku g X N= . For sampled area i , set ˆ
i iu u=  and i iw w= . Let 1/i iw = .      

P2. Generate a synthetic population with values ˆ ( , )ij y ij iy p x u= , |
ˆ1 / ( , )j i ij ijw y x = , 

( ˆ ( , )ik ikw y x  is computed as below Eq. (4.2) with iky  instead of iky ), and response 

probabilities ˆ( , ; )resp

ij r ij ijp p y x = , 1,...,i M= , 1,..., ij N= . Note that the synthetic 

population contains the same auxiliary variables as the original population and that the 

outcomes are generated from the model fitted to the responding units, but with estimated 

random effects and model coefficients.  

P3. For each area 1,...,Mi =  of size iN  in the synthetic population, sample with 

replacement iN   units with probabilities proportional to 
|1/ ( )resp

j i ijp .  

This concludes the generation of the pseudo-population.  

Remark 7. As implied by the results of Sverchkov and Pfeffermann (2004), if the model 

hyper-parameters and random effects were actually known, the marginal distributions of 

the outcomes ijy  in the pseudo-population would have been the same as the 

corresponding marginal distributions of the outcomes ijy  in the original population. In 
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practice, one can only use estimated parameters but as our simulation study shows, the 

procedure proposed in this section for MSE estimation, which relies on generating the 

pseudo population performs well even for areas with small samples. Notice in this respect 

that the model hyper-parameters are estimated from all the sampled areas, but for given 

hyper-parameter estimates, the estimates of the random effects are ‘direct’.  

B- Selection of bootstrap samples and computation of estimates 

B1. Sample independently B samples 
|( , , , )b b b b

ij ij j i iy x   , 1,...,b B= ; 1...i m= , 1... ij n= , 

from the pseudo population using the same sampling schemes as used for selecting the 

original sample, but with inclusion probabilities 
|, .i j i   

B2. For each unit in the sample initiate response with probability ˆ( , ; )b b

r ij ijp y x  , where ̂  

is the estimate obtained from the true original sample. 

B3. For each bootstrap sample b, re-estimate all the parameters of interest (means or 

totals in the present paper). 

B4. Calculate empirical MSE or other statistics of interest over the B bootstrap samples.   

As implied by the description of the proposed bootstrap method, we account for all the 

random processes underlying the population model, the informative sampling of areas 

and within the areas, and the response process.  

6. SIMULATION STUDY 

In this section we describe the results of a simulation study when applying the procedures 

proposed in Sections 3-5. In Section 7 we apply the method to a real data set. 

6.1 Simulation set-up 

The simulation study consists of the following 6 steps: 

S1- Generation of population values: generate binary covariate values with 

Pr( 1) Pr( 0) 0.5ij ijx x , and corresponding outcome values from the mixed 

logistic model,  

             
exp( 0.1 )

Pr( 1 | , ) ( , )
1 exp( 0.1 )

U

ij iU U

ij ij i y ij i U

ij i

x u
y x u p x u

x u

− − +
= = =

+ − − +
;   

2~ (0, )U

i uu N  ,    (6.1) 
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1,..,300i = , int[1000 exp{min[2.5,max(-2.5, )]/5}]U

i iN u=  . The use of this function 

truncates the area size when the random effect is too small or too large.   

 

We consider four different variances, 2 1u ,  2 0.25u , 2 0.1u  and 2 0.01u  so as 

to study the effect of the magnitude of the variance on the performance of alternative 

estimators (see below).  

Group the areas randomly into 3 sets,  

G1={i=1,..,100}, G2={i=101,..,200}, G3={i=201,..,300}.  

S2- Sample selection: select 50 areas from each group by systematic probability 

proportional to size (PPS) sampling with the area sizes, iN , as the size variable. Notice 

that this implies an informative sampling of the areas since the size iN  depends on the 

random effect 
U

iu . Select 20 units from each selected area in G1, 40 units from each 

selected area in G2 and 60 units from each selected area in G3 using systematic PPS 

sampling, with the size variable defined as, 5 3ij ij ijz x y= + + . This sampling scheme 

implies informative sampling of units within the selected areas since the size ijz  depends 

on the outcome ijy .  

S3- Response mechanism: obtain response from unit j  in sampled area i  with 

probability, 

                                               
0 1 2

0 1 2

exp( )
( , , )

1 exp( )

ij ij

r ij ij

ij ij

γ γ x γ y
p y x

γ γ x γ y


+ +
=

+ + +
,                        (6.2) 

where 0 = 0γ , 1 -0.5γ = , 2 2γ = . The nonresponse is NMAR since the response 

probability depends on the outcome. With these response probabilities the response rates 

are about 60%. We considered also a case where the response probabilities were 

generated from a different logistic model (Eq. 6.8 below). For this case the response rate 

was only 46%. 

S4- Fitting of respondent’ model: estimate, ˆˆ ( , ) Pr( 1| , , ( , ) )y ij i ij ij ip x u y x u i j R= =   by 

fitting the mixed logistic model,  
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                              ( , )y ij ip x u =
0 1

0 1

exp( )

1 exp( )

ij i

ij i

x u

x u

 

 

+ +

+ + +
;  

2(0, )i uu N  ,                    (6.3) 

using PROC NLMIX in SAS with default options. Notice that the model (6.3) is not the 

true respondents’ model under the population model (6.1), the informative sampling 

scheme described above and the response model (6.2).  

S5. Estimation of response probabilities: assume,
0 1 2

0 1 2

exp( )
( , , )

1 exp( )

ij ij

r ij ij

ij ij

x y
p y x

x y

  


  

+ +
=

+ + +
, 

compute the expectations in (3.2) under the estimated model ˆ ˆ( , )y ij ip x u  in (6.3) and solve 

the resulting equations to estimate  , using the procedure described in Section 3. 

S6- Prediction of area means: first estimate ( , )ij ijw y x  1

|[ | , , ( , ) ]re j i ij ijE y x i j R −=   as 

follows: By definition, 1

|[ | , , ( , ) ]re j i ij ijE y x i j R −  1 1

|( , ) [ | , , ( , ) ]r ij ij re j i ij ijp y x E y x i j R− −=  , 

where |

1

/ (1 / )
iN

i
j i i ij ij ij i

j i

n
n z z z Z

N


=

= =  and 
1

1 iN

i ijj
i

Z z
N =

=   is the ith  area mean, which is 

viewed as a constant, assuming that the true area size is large. Let *

|
i

ij j i

i

N
z

n
= . In the 

present simulation study we fit the model *

ijz 0g ( , )ij ij y ij x ij ijy x y x    = = + + + , but 

other models can be fit, depending on the available data. Notice that g ( , )ij ijy x  refers to 

the sample data before response and therefore the response weights 1 ˆ( , ; )r ij ijp y x −  have to 

be used for estimating this model via weighted regression. Alternatively, one can fit the 

model for 1

|
ˆ( , ; )r ij ij j ip y x  −  as a function of  ( , )ij ijy x , using the observed data (without 

weighting).  

Estimate ˆ ( , )ij ijw y x  as,  

               1

|
ˆ ˆ( , ) [ | , , ( , ) ]ij ij re j i ij ijw y x E y x i j R −=  =

1

1

ˆ
ˆg ( , ) ( , ; )i

ij ij r ij ij

i

n
y x p y x

N
 

−

− 
 
 

.       (6.4) 

Next, compute the ratios of the estimated expectations 

                            
ˆ[( ( , ) 1) | , , ( , ) ]

( , )
ˆ[( ( , ) 1) | , , ( , ) ]

re ik ik ik ik i
ik i

re ik ik ik i

E w y x y x u i k R
Ra x u

E w y x x u i k R

− 
=

− 
                         (6.5) 
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for estimating the conditional expectation of the missing outcomes in sampled areas. (The 

expectations in the ratio are computed similarly to the computation of the expectations in 

the example of section 3).  

Finally, substitute (6.5) in (3.2) and estimate the mean outcome of sampled areas by 

substituting ˆ
iu  for iu  and dropping the external expectation operator over the distribution 

of the random effects. 

Remark 8. To save space, we only consider the prediction of the mean outcome in 

sampled areas, which are subject to NMAR nonresponse. The estimation of the means of 

non-sampled areas is the same as in Pfeffermann and Sverchkov (2007) and is illustrated 

in the simulation study of that paper. 

Repeat Steps S1-S6 independently 500 times. The values ijx  of the covariate are 

generated only once and held fixed for all the simulations. 

Predictors considered: compute the following predictors for each simulation.  

1.  
1

,( , ) 1,

ˆ ˆ{ ( , )}
iN

ign

i i ij y ij i

j i j R k k R

Y N y p x u−

 = 

= +   with ˆ ˆ( , ) ( , )y ij i y ij ip x u p x u= ;  this estimator 

ignores the sampling and response process and “assumes” that the population distribution 

holds also for the respondents. 

2. , 1 1

| |

,( , ) ,( , )

ˆ /HB MCAR

i j i ij j i

j i j R j i j R

Y y − −

 

=   ; this is the familiar Hajek-Brewer (Hajek, 1971)  

estimator that “assumes” that the nonresponse is completely at random.  

3. 
,( , ) ,( , )

ˆ ˆ ˆ( ) / ( )MAR

i ij ij ij

j i j R j i j R

Y w x y w x
 

=   ; 1

|
ˆˆ ( ) [ ( , )]ij j i ijw x p x  −= ; this estimator accounts 

for the response process but assumes that the nonresponse is MAR, and hence the 

response probabilities are estimated by assuming the propensity scores model   

0 1

0 1

exp( )
Pr( 1| ; ) ( , )

1 exp( )

ij

ij ij r ij

ij

x
R x p x

x

 
 

 

+
= = =

+ +
. The parameter 0 1( , )   = is estimated 

by solving the likelihood equations
( , )

log ( ; )r ij

i j R

p x 




+




( , )

log[1 ( ; )]
0

c

r ij

i j R

p x 



 −
=


 .  
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4. 
| |

,( , ) ,( , )

ˆ ( / ) / (1/ )HB

i ij j i j i

j i j R j i j R

Y y  
 

=   ; already defined in (4.3). Accounts for NMAR 

nonresponse.   

5. 
1

,( , ) 1,

ˆ ˆ[ ]
iN

new

i i ij ij

j i j R k k R

Y N y Ra−

 = 

= +  ; proposed empirical model-dependent predictor 

obtained from (4.2). The ratios ˆ
ijRa  are obtained from (6.5) by substituting ˆ

iu  for iu .  

The last two estimators are of prime interest as they account for both the informative 

sampling and NMAR nonresponse. 

Statistics considered for assessment of performance of predictors and root MSE estimates  

1- Prediction of area means: Let 1(0)irD =  if area i is sampled (not sampled) on the  r-th 

simulation. Denote by irY  the true area mean of area i on the r-th simulation and let 
ˆ
irY  

represent any of the five predictors defined above, 1,...,500r = . 

                     

500

1

500

1

ˆ( )ir ir irr
i

irr

D Y Y
Bias

D

=

=

−
=



  ; 

500 2

1

500

1

ˆ( )ir ir irr
i

irr

D Y Y
RMSE

D

=

=

−
=



.                 (6.6) 

2- Estimation of Root MSE (RMSE): Because of running time limitations, for estimation 

of the RMSE we only considered the first 100 simulations and generated only 50 

bootstrap samples for each simulation. Let 1(0)irbD =  if area i is sampled (not sampled) 

in the b-th bootstrap sample on the r-th simulation. Denote by iprY  the pseudo area mean 

of area i on the r-th simulation and let ˆ new

irbY represent the corresponding new predictor.  

    
100

,

1

1 ˆ
100

Boot Boot

i i r

r

RMSE MSE
=

=  ; 

50 2

1
, 50

1

ˆ( )
ˆ

new

irb irb iprBoot b
i r

irbb

D Y Y
MSE

D

=

=

−
=



.              (6.7) 

In any given application, one would obviously generate many more bootstrap samples but 

notice that we report summary statistics over the 100 simulations, so we actually report 

the results obtained over 100 iB  bootstrap samples, where iB  is the number of times 

that area i  has been sampled. 

6.2 Results for the case of “large” random effects (
2

= 1uσ )  

In this section we consider the case of relatively “large” random effects.  
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Table 1. Estimation of response model coefficients  

                            
0 0γ =  1 = -0.5γ  2 = 2γ  

Bias 0.006 0.003 0.037 

Std 0.055 0.045 0.174 

 

Although the estimators of all three coefficients are biased, the biases are relatively very 

small and so are the standard deviations (Std). The small biases have negligible effect on 

the estimation of the true response probabilities. The mean of the true response 

probabilities over the 500 simulations turned out to be 0.625, and the mean of the 

corresponding estimated probabilities is 0.624. The mean over the 500 simulations of the 

standard deviations of the differences between the true and the corresponding estimated 

probabilities is 0.012. 

The figures that follow illustrate the performance of the procedure at the area level. To 

make the figures clearer, we ordered the areas in each of the three groups according to 

their size, iN ,  and we show the results for every 5th area.  

Figure 1. Bias of predictors by area, 500 simulations 

 

The conclusions from Figure 1 are clear-cut. The proposed model-dependent predictor 

ˆ new

iY  is virtually unbiased for each of the areas. The Hajek-Brewer estimator is also 

nearly unbiased, except in the areas with the small sample sizes. (Despite using estimated 

probabilities, it is a ratio-type estimator). The other three predictors, which ignore the 
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informative response process are biased, with particularly large bias of the predictor 
ˆ ign

iY  

that ignores both the informative sampling and the response.  

Figure 2. RMSE of predictors by area, 500 simulations    

 

 
 

The RMSE of our proposed predictor, ˆ new

iY  is uniformly the smallest, with the Hajek-

Brewer estimator being second in order. The RMSE of ˆ ign

iY  is dominated by its large bias 

and hence its large value. The  RMSE of  all the  predictors decrease as the  sample sizes 

increase, due to decrease in the variance.  

Figure 3. Estimation of RMSE of ˆ new

iY by area    

 

 

Figure 3 indicates good performance of the bootstrap RMSE estimates in terms of bias. 
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Next we illustrate the robustness of the model assumed for the response probabilities, 

discussed in Remark 4. For this, we repeated the same simulation study but with a 

different true response model, 

                                              
exp( .5 )

( , , )
1 exp( .5 )

ij ij

ij ij

ij ij

x y
p y x

x y


−
=

+ −
.                                       (6.8)            

(Compare with (5.2)). However, we fit the response model 
 

 0 1 2

0 1 2

exp( )
( , , )

1 exp( )

ij ij

r ij ij

ij ij

x y
p y x

x y

  


  

+ +
=

+ + +
 (same as before. We did not add the cross product 

ij ijx y  to the model because it would make the true response model a special case and we 

want to illustrate the robustness of the working response model. Notice also that X  and 

Y are binary, so that there is no point of adding polynomials of these variables.) 

In this case there is nothing to compare the estimated response model coefficients with, 

but we can still compare the true response probabilities with the estimated probabilities. 

The mean of the true response probabilities over the 500 simulations is now 0.457 and the 

mean of the estimated probabilities is 0.456. The mean over the 500 simulations of the 

standard deviations of the differences between the true and the corresponding estimated 

probabilities is 0.06. Thus, even though the response model is strongly misspecified, the 

estimation of the response probabilities is still unbiased, although with greater variability. 

(The mean of the standard deviations was 0.012 when estimating the correct response 

model.) As shown in the next three figures, the prediction of the true area means is 

likewise reliable and much better than when ignoring the NMAR response process. 

Figure 4. Bias of predictors by area, response model misspecified, 500 simulations 
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Figure 4 exhibits a similar picture to Figure 1, with the new and the Hajek-Brewer 

predictors being now slightly biased. The other three predictors are more biased, but the 

bias is considerably smaller than in Figure 1, as obtained when estimating the correct 

response model. The different magnitudes of the bias of the three predictors in Figures 1 

and 4 is explained by the fact that since the response model is different in the two cases, 

so is the respondents’ distribution, resulting in different distributions of the estimators 

that ignore the informative sampling or nonresponse. Thus, Figures 1 and 4 are not really 

comparable. 

Figure 5. RMSE of predictors by area, response model misspecified, 500 simulations 

 
 

The RMSEs of the proposed- and the Hajek-Brewer predictors change only slightly when 

misspecifying the model of the response probabilities. The RMSEs of the other three 

predictors are smaller under the misspecified model, due to the decrease in the bias.   

Figure 6. Estimation of RMSE of ˆ new

iY by area, response model misspecified 
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Figure 6 indicates a negative bias of the RMSE estimators in the areas with small sample 

sizes, which decreases in absolute value as the sample size increases.  

All in all, this part of the simulation study supports the discussion in Remark 4 regarding 

the robustness of the proposed procedure with a logistic response model to possible 

misspecifications of this model.  

6.3  Results for “medium size” random effects (
2

= 0.25uσ )  

In this section we consider the case where the random effects are of much lower 

magnitude, as defined by their variance. The results in this section are again based on 500 

simulations. 

Table 2. Estimation of response model coefficients 

 
0 0 =  1 0.5 = −  2 2 =  

Bias -0.093 0.042 0.288 

Std 0.102 0.063 0.308 

 

As expected, the bias of all the three estimators are now larger, and so are the standard 

deviations, but the biases are still relatively small and as illustrated below, have little 

effect on the estimation of the response probabilities. The mean of the true response 

probabilities over the 500 simulations is in this case 0.623 and the mean of the estimated 

response probabilities is 0.617. The mean over the 500 simulations of the standard 

deviations of the differences between the true and the corresponding estimated 

probabilities is 0.029 (compared to 0.012 when 
2 1u = ). Notice that decreasing the 

variance of the random effects does not make the response probabilities and sample 

selection probabilities less informative. For example, for 
2 1u = , the average of the 

response probabilities was found to be 0.625, with average standard deviation of 0.220. 

(We first computed the average and standard deviation for each simulation and then 

averaged them over the 500 simulations.) The corresponding figures for the within area 

sample selection probabilities are 0.0196 and 0.00557. For 
2 0.25u = , the average of the 

response probabilities was found to be  0.623 with average standard deviation of 0.221. 
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The corresponding figures for the within area sample selection probabilities are 0.0196 

and 0.00572.  

As in Section 6.2, the figures that follow illustrate the performance of the various 

predictors at the area level.  

Figure 7. Bias of predictors by area, 500 simulations 

 

 

Figure 8. RMSE of predictors by area, 500 simulations  
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Figure 9. Estimation of RMSE of ˆ new

iY by area  

 

 

The general conclusion from Table 2 and Figures 6-9 is that the proposed procedure (the 

predictors 
ˆ HB

iY  and ˆ new

iY ) works well in removing the bias resulting from informative 

sampling and NMAR nonresponse, also with the much smaller variance of 
2 0.25u = .  

Remark 9. We repeated the simulation study also for the case 
2 0.1u =  and the two 

predictors 
ˆ HB

iY  and ˆ new

iY still perform much better than the other three predictors 

considered, although they now have a somewhat larger bias and RMSE. However, this is 

no longer the case when 
2 0.01u = , in which case all the five predictors perform badly 

because of failure to estimate properly the response probabilities, in line with the 

discussion in Remark 3.  This implies an interesting contrast because in SAE models, one 

usually attempts to include in the model as many covariates as possible, so as to reduce 

the unexplained variations represented by the random effects (small 
2

u ). However, if no 

other covariates 2x  that explain the outcome variable but not the response exist, then it is 

important that the variance 
2

u  of the random effects is not too small, thus allowing to 

estimate the response probabilities and remove the bias induced by NMAR nonresponse.  
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7. PREDICTION OF NUMBER OF MARRIED PEOPLE IN SMALL STATISTICAL 

AREAS IN ISRAEL 

7.1 Motivation and Background 

Israel has a fairly accurate population register. In fact, at the country level, the register is 

almost perfect, because of accurate records of births, deaths and immigrants. The only 

real problem, shared by other countries, is the enumeration of emigrants, as it is hard to 

define emigrants and count them. However, population counts are required for small 

domains, as defined by 'statistical areas', with an average size of about 3,000 persons. For 

these small domains, the population register is much less accurate, with an average 

enumeration error of about 13 percent and a 95th percentile of 40 percent. The main 

reason for the inaccuracy of the register at the statistical area level is that people moving 

in or out an area are often slow to report their change of address. This occurs mostly 

among young adults who tend to change addresses more frequently because of change of 

jobs, school catchment areas of their children, and/or differences in house values, rental 

prices and municipal tax rates between geographic regions. 

To deal with this problem, the Israel Central Bureau of Statistics (ICBS) conducted in 

2008 an integrated (dual system) census, which consisted of the population register, 

corrected by estimates obtained from two coverage samples for each statistical area: an 

area sample of addresses for estimating the register undercount (people living in the area 

but not registered there), and a telephone sample of people registered in the area for 

estimating the register overcount (people registered falsely as living in the area). Denote, 

iN - true number of people living in area i , 

iK - number of people registered as living in area i , 

i,L|Rp - proportion of people living in area i  among those registered in the area 

i,R|Lp - proportion of people registered to area i  among those living in the area. 

Then,  

                             
, |

, | , |

, |

i L R

i i R L i i L R i i

i R L

p
N p K p Κ

p
   = = .                                       (7.1) 

Thus, iN  is estimated from the two samples as,   
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, |

, |

ˆ
ˆ

ˆ

i L R

i i

i R L

p
Κ

p
 =  ,                                                        (7.2) 

where , |
ˆ
i R LP  and , |

ˆ
i L RP  are the corresponding design-based estimators from the two 

samples. The design variance of ˆ
i  can be approximated by Taylor linearization as,  

            

2

, ,2

, |2 4

, | , |

ˆ ˆ( ) [ ( )]
ˆ ˆ( | ) ( )

ˆ ˆ[ ( )] [ ( )]

i L|R i L|R

i i i i R L

i R L i R L

Var p E p
Var N K K Var p

E p E p

 
= +  

  

.                      (7.3)                       

In what follows we restrict to the overcount survey. Prior to the phone calls, a letter was 

sent to all the sampled members notifying them of the survey and asking them to respond 

to the phone interview. Nonetheless, there is a high rate of nonresponse in this survey, 

with an average response rate of about 0.75 and standard deviation between areas of 

about 0.14. Moreover, it is quite obvious that the nonresponse is NMAR because the 

nonrespondents are more likely to be the persons not registered correctly (living in 

another area) and hence not getting the notice letter in the first place. 

The sampling design used in each statistical area is systematic sampling after ordering the 

frame by age. Notice that this sampling scheme is noninformative since all the sampling 

units in a given area have the same sampling probability. The target is to estimate the 

total number of persons registered as living in the area and actually living there. Ideally, 

we would have wanted to show how our proposed procedure performs in reducing the 

bias of the naïve estimates, which ignore the nonresponse altogether. However, we have 

no information on the true target numbers of people registered correctly, so that analyzing 

this data set would not allow us to draw any conclusions. Consequently, we show below 

the performance of the various predictors when predicting the number of married people 

registered as living in the area, which is known to be correlated with correct registration. 

The true counts are known for every area from the population register from which the 

sample is taken.  

Let 1ijy  if person j  registered as living in area i  is married and 0ijy  otherwise. Let 

ijx   denote the age of person ( , )i j  and define 1 1ijX   if 25ijx  , 1 0ijX otherwise; 

2 1ijX  if 40ijx  , 2 0ijX  otherwise. The following logistic models have been 
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assumed for the outcomes observed for the responding units, and for the response 

probabilities, after removing from the data set persons aged 16 or less, which are all 

singles. These persons have been added back when computing the final estimates. 

             (x , )y ij ip u =
0 1 1 2 2

0 1 1 2 2

exp( )

1 exp( )

ij ij i

ij ij i

X X u

X X u

  

  

+ + +

+ + + +
;  

2(0, )i uu N  ,                     (7.4) 

                              
0 1 1 2 2 3

0 1 1 2 2 3

exp( )
( , x ; )

1 exp( )

ij ij ij

r ij ij

ij ij ij

X X y
p y

X X y

   


   

+ + +
=

+ + + +
.                          (7.5) 

Denote by iR  the subsample of responding persons in the sample of persons registered as 

residing in area i . We computed for every area i  the following predictors of the number 

of married people, iM , among the iK  persons registered as living in the area. 

,
ˆ ( / 1)

i i

i MCR i ij

j R j R

M K y
 

=    ; assumes MCAR nonresponse 

0 1 1 2 2
,

01, 1 1 2 2

ˆ ˆ ˆ ˆexp( )ˆ
ˆ ˆ ˆ ˆ1 exp( )

i

i

i

ik ik i
i MR ij

j R ik i

N

k k R k i

X X u
M y

X X u

  

   =

 + + +
= +  + + + + 

 ; assumes MAR nonresponse  

 
1

1

ˆ ( ,x ; )

ˆ
ˆ ( ,x ; )

i

i

ij r ij ij

j RHB

i i

r ij ij

j R

y p y

M K
p y





−



−





= 




; Hajek-Brewer estimator with estimated probabilities. 

1,

ˆ ˆ
i

i i

N
new

i ij ik

j R k k R

M y Ra
 = 

= +  ; proposed predictor. See Section 6.1. 

 

7.2 Results 
 

We consider separately areas of size 100iN , (A=565 areas, with an average size of 75 

persons), and areas of size 100 200iN , (A=370 areas, with an average size of 132 

persons) the small population areas. The mean number of responding units in the first 

group of areas is 63.48, with standard deviation of 27.92. The corresponding figures in 

the second group are 128.67 and 24.7. Denote by ˆ( )i i iE M M  the prediction error, 

where ˆ
iM  represents any of the 4 predictors. Table 3 contains the following summary 

statistics for the four predictors over all the areas in each of the two groups. 
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1

/
A

Err ii
Bias E A  ;  2 0.5

1
( / )

A

Err ii
RMSE E A .                           (7.6) 

Table 3. Bias and RMSE of prediction errors over all the areas in each group 

 

Predictors 
,

ˆ
i MCARM  ,

ˆ
i MARM  ,

ˆ
i HBM  ,

ˆ
i NEWM  

Small  

areas 
ErrBias  2.95 2.25 0.88 0.79 

ErrRMSE  4.45 3.26 3.28 2.18 

Larger 

areas 
ErrBias  4.50 3.32 0.68 0.67 

ErrRMSE  5.86 4.52 4.02 3.05 

 

Small areas ( 100iN ) -  0 1 2
ˆ ˆ ˆ ˆ0.56, 0.67, 0.23, 0.22y X X   = = = = , ˆ 2 = 0.29uσ  

True mean number of married people= 24.40; standard deviation (between areas)= 13.25 
 

 Larger areas ( 100 200i< N ) - 0 1 2
ˆ ˆ ˆ ˆ0.78, 0.95, 0.08, 0.25y X X   = = = = , ˆ 2 = 0.49uσ    

True mean number of married people= 51.68; standard deviation (between areas)= 11.13 
 

The results in Table 3 indicate very clearly that the two predictors that account for 

NMAR nonresponse perform much better than the other two predictors. Among the two, 

the proposed predictor, ,
ˆ

i NEWM  has a smaller RMSE, as is the case also in the simulation 

study (Figures 2, 5 and 8). Notice the relatively large values of the coefficients ˆ
y  in the 

two response models, indicating a high degree of informativeness of the nonresponse. 

Also notice how the bias of the two predictors is reduced, as the estimated variance of the 

random effects increases from 
2ˆ = 0.29uσ  to 

2ˆ = 0.49uσ . 

8. SUMMARY 

In this article we propose a general approach for small area estimation under informative 

sampling of areas and within areas, and NMAR nonresponse within the selected areas. 

The approach consists of identifying a model holding for the observed data with non-

negligible random effects (as is usually the case with small area models), and using this 

model for estimating the response probabilities by application of the Missing Information 

Principle. The use of this principle assumes a parametric model for the response 

probabilities as a function of the covariates and the outcome, but we review theoretical 

results justifying the use of a logistic model with appropriate powers and interactions of 
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the outcome and the covariates as a good approximation to the true response mechanism. 

Once the response probabilities are estimated, we consider them as known and follow the 

approach of Pfeffermann and Sverchkov (2007) for estimating the area means under 

informative sampling (assuming full response). We propose a bootstrap method for 

estimating the RMSE of the resulting predictors. WE also consider the much simpler 

Hajek-Brewer estimator as obtained by substituting the unknown response probabilities 

by their estimators. A simulation study shows good performance of the proposed 

approach and illustrates its robustness to misspecification of the response model. 

Application of the approach to a real data set further supports the use of this approach. 

The empirical study in this article considers the case where the models fitted for the 

responding units and the response probabilities are logistic, but the theoretical derivations 

of our proposed approach assume general models for the observed data and the response 

mechanism. Thus, we encourage researchers of SAE to apply the procedure to other 

models fitted to the observed data, with possibly different sampling schemes and models 

assumed for the response probabilities.  

As in Pfeffermann and Sverchkov (2007), the proposed methodology of the present 

article is under the frequentist approach. As is well known, there exists a vast literature 

on SAE under a full Hierarchical or empirical Bayes setting. Thus, an important 

intriguing challenge for future research would be to apply the proposed methodology in a 

Bayesian setup, with appropriate prior distributions for the models’ hyper-parameters. 

See Pfeffermann et al. (2006) for application of the Bayesian approach for two-level 

modelling under informative sampling of first and second level units. 
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