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Suppose a vector autoregressive moving-average model is estimated for m observed variables of primary interest for an appli-
cation and n–m observed secondary variables to aid in the application. An application indicates the variables of primary interest
but usually only broadly suggests secondary variables that may or may not be useful. Often, one has many potential sec-
ondary variables to choose from but is unsure which ones to include in or exclude from the application. The article proposes
a method called weighted-covariance factor decomposition (WCFD), comparable to Stock and Watson’s method here called
principle-components factor decomposition (PCFD), for reducing the secondary variables to fewer factors to obtain a parsi-
monious estimated model that is more effective in an application. The WCFD method is illustrated in the article by forecasting
quarterly observed U.S. real GDP at monthly intervals using monthly observed four coincident and eight leading indicators
from the Conference Board (http://www.conference-board.org). The results show that root mean-squared errors of GDP fore-
casts of PCFD-factor models are 0.9–11.3% higher than those of WCFD-factor models especially as estimation-forecasting
periods pass from the pre-2007 Great Moderation through the 2007–2009 Great Recession to the 2009–2016 Slow Recovery.

Received 30 June 2018; Revised 15 August 2019; Accepted 15 August 2019

Keywords: principal-components-type decomposition of multivariate time-series models.

JEL. C33; C53.

1. INTRODUCTION

Parsimony means minimizing the number of estimated parameters of a model while maintaining its fit of data.
Parsimony is desired because, being subject to less sampling variability, parsimonious models are expected to be
more effective in applications. Because variables bring estimated parameters into a model, minimizing the number
variables in a model furthers its parsimony. Suppose a vector autoregressive moving-average (VARMA) model is
estimated to forecast a few (m) variables of primary interest using many (n–m) secondary variables to aid in the
forecasting. An application indicates the variables of primary interest but usually only broadly suggests secondary
variables that may or may not be useful in the application. Often, one has many potential secondary variables to
choose from but is unsure which ones to include in or exclude from the application. To further parsimony, somehow
the number of secondary variables need to be minimized. Stock and Watson (2002a,b) proposed a method based
on standard principal components analysis (PCA) for replacing possibly many secondary variables with fewer
‘factors’.

We call Stock and Watson’s method principal-components factor decomposition (PCFD), which has the fol-
lowing steps: (i) uses eigenvectors of the sample contemporaneous covariance matrix of secondary variables to
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linearly transform them to factors; (ii) based on experience and experimentation (including using information cri-
teria), decides which factors are significant; (iii) estimates an AR equation of primary variables and significant
factors; and (iv) uses the estimated AR equation to forecast the primary variables.

By eigenvalue decomposing the sample contemporaneous covariance matrix of secondary variables, PCFD uses
no lagged sample correlations (no dynamic sample information) among secondary variables and no contempora-
neous or lagged sample correlations between primary and secondary variables to compute factors. PCFD could
include dynamic sample information by including covariances of lagged secondary variables in the covariance
matrix to be decomposed, but, whether the variables are significantly serially correlated or not, the added covari-
ances are likely to be redundant and to degrade the decomposition and lead to poorer results, as reported by Stock
and Watson (2002b). PCFD accounts only for variations of secondary variables in its factorization, so that it may
put the ‘noise’ of irrelevant secondary variables into factors and resulting forecasts because it ignores correlations
between primary and secondary variables.

The article develops a corresponding method called weighted covariance factor decomposition (WCFD) that
corrects these disadvantages and illustrates the method with U.S. data on quarterly observed real GDP as the single
primary variable and monthly observed four coincident and eight leading indicators as the secondary variables.
By contrast with PCFD, by eigenvalue decomposing an estimated covariance matrix of forecast errors of primary
variables (at some chosen number of forecast periods ahead), WCFD can use all significant sample correlations (all
significant dynamic sample information) in terms of an initial estimated VARMA model to compute factors. By
eigenvalue decomposing the ‘weighted covariance’ matrix of forecast errors of primary variables, WCFD accounts
for correlations between primary and secondary variables in its factorization. These advantages are borne out in the
application in the article that reports root mean-squared errors of PFCD-based forecasts being up to 11.3% higher
than those of WCFD-based forecasts. We have not seen in the statistics and econometrics literatures any similar
PCA-like decompositions based on weighted covariances, although an online search of ‘weighted covariance PCA’
returns numerous articles in various fields of science. For example, Delchambre (2015) develops and illustrates a
modified standard PCA based on weighted covariances motivated by the same aim of down-weighting irrelevant
or less-relevant observations to minimize the impact of noise.

Corresponding to PCFD, WCFD has the following steps: (i) estimates an initial VARMA model of primary and
secondary variables; (ii) uses the initial model to compute factors that account for variations in primary variables;
(iii) based on experience and experimentation (including using information criteria), decides which factors are
significant; (iv) estimates a smaller VARMA model of primary variables and significant factors; and (v) forecasts
primary variables using the second estimated model.

Hotelling (1933) developed PCA to its modern form (Anderson, 1984, ch. 11). Let {Ck}∞k=0 denote popula-

tion autocovariance matrices of a vector of variables in yt and their k-period lags in yt− k and let Ĉk denote a
sample-based estimate of Ck. Like classical PCA, Stock and Watson’s (2002a,b) PCFD also uses only Ĉ0 to pro-
duce factors. By contrast, by using Fourier-transformed {Ĉk}K

k=0 for a finite K, Forni and Reichlin (1998) and Forni
et al. (2000) use dynamic sample information to produce factors. The present article uses the dynamic sample
information {Ĉk}K

k=0 in the form of an initially estimated VARMA model to produce factors.
Earlier maximum likelihood estimates (MLE) of dynamic factor models (Sargent and Sims, 1977; Geweke and

Singleton, 1981) were restricted to small models with few variables and parameters, because MLE is demanding
computationally. By the end of the 1990s, despite large reductions in computing costs, interest shifted to applying
PCA to hundreds of observed financial and macroeconomic variables to produce small dynamic factor models
(Forni and Reichlin, 1998; Forni et al., 2000; Stock and Watson, 2002a,b).

More recently, Bernanke et al. (2005) introduced factor-augmented VAR (FAVAR) models, which have been
extended to factor-augmented VARMA (FAVARMA) models (Dufour and Stevanovic, 2013). FAVARMA models
are basically sums of unobserved VARMA terms with some terms being considered ‘dynamic factors’, so that
FAVARMA models are basically VARMA models with particular functional restrictions on parameters. In the
present application, we initially estimated both VAR and VARMA models with zero and functional restrictions,
but gave up on them and do not report their results, because they fit the mixed-frequency data (MFD) poorly
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970 P. A. ZADROZNY AND B. CHEN

Table I. Normalized root mean-squared errors of GDP forecasts

Normalized root mean-squared errors (NRMSE) – 1–24 months ahead

#vars/model R
2

of GDP BIC 1 2 3 6 12 18 24 Average 1–24 Rank

‘Early’ estimation-forecasting period: January 1959–December 1995 and January 1996–December 2007 (444 and 144 months)

1/AR2 0.081 −6734 0.960 0.960 0.960 0.961 0.994 1.004 1.006 0.991 7
5/VAR2 0.677 1098 0.746 0.763 0.959 0.994 0.993 1.001 1.002 0.966 2
5/PCF3/VAR2 0.507 9498 0.803 0.799 0.917 0.989 1.000 1.000 1.000 0.975 3
5/WCF2/VAR4 0.596 −601 0.740 0.749 0.883 0.968 0.969 0.999 1.012 0.954 1
13/VAR1 0.546 4425 0.901 0.936 1.024 0.979 0.994 1.000 1.006 0.985 5
13/PCF3/VAR2 0.340 11,407 0.849 0.868 0.971 1.003 1.005 1.005 1.005 0.991 6
13/WCF2/VAR4 0.513 −1566 0.858 0.842 1.009 1.030 0.991 0.997 1.002 0.982 4

‘Middle’ estimation-forecasting period: January 1959–December 2007 and January 2008–June 2018 (588 and 126 months)

1/AR2 0.098 −8927 1.029 1.029 1.029 1.120 1.209 1.223 1.227 1.179 6
5/VAR2 0.486 1506 0.724 0.864 0.793 0.991 1.115 1.132 1.136 1.053 2
5/PCF3/VAR2 0.472 12,358 0.834 0.925 0.977 1.187 1.227 1.228 1.228 1.177 5
5/WCF2/VAR3 0.451 −1440 0.799 0.872 0.864 1.037 1.150 1.174 1.182 1.099 4
13/VAR1 0.503 5792 0.699 0.752 0.801 0.995 1.119 1.135 1.137 1.045 1
13/PCF3/VAR2 0.285 14,983 0.868 0.998 1.134 1.220 1.228 1.228 1.228 1.197 7
13/WCF2/VAR2 0.425 −1555 0.699 0.765 0.851 1.008 1.141 1.168 1.179 1.075 3

‘Late’ estimation-forecasting period: January 1959–December 2009 and January 2010–June 2018 (612 and 102 months)

1/AR2 0.117 −9269 1.192 1.192 1.192 1.193 1.193 1.193 1.193 1.193 6
5/VAR2 0.637 1330 1.096 1.097 1.099 1.137 1.155 1.166 1.160 1.154 3
5/PCF3/VAR1 0.255 2568 1.188 1.170 1.174 1.176 1.176 1.176 1.176 1.176 5
5/WCF2/VAR2 0.419 −1116 1.116 1.095 1.068 1.070 1.168 1.162 1.108 1.131 1
13/VAR1 0.545 5730 1.114 1.138 1.144 1.162 1.151 1.172 1.159 1.154 4
13/PCF3/VAR2 0.206 14,674 1.217 1.172 1.222 1.195 1.193 1.193 1.193 1.195 7
13/WCF2/VAR2 0.441 −1504 1.098 1.094 1.067 1.075 1.180 1.167 1.034 1.139 2

Overall average NRMSE and rank

#vars/model 1/AR2 5/VAR2 5/PCF3 5/WCF2 13/VAR1 13/PCF3 13/WCF2
Overall average NRMSE 1.121 1.058 1.109 1.061 1.061 1.128 1.065
Overall rank 6 1 5 2 2 7 4

and produced poor forecasts. Therefore, all reported results of the application in Table I are for unrestricted VAR
models.

Although the literature cited above and the present application are based on sampling estimation methods,
dynamic factor models have been estimated using Bayesian methods (Otrok and Whiteman, 1998; Kim and Nelson,
1999; Aguilar and West, 2000). The statistics literature has also considered dynamic factor models under the
rubrics canonical analysis (Box and Tiao, 1977) and reduced rank regression (Ahn and Reinsel, 1988; Deistler
and Hamman, 2005).

PCA and PCFD is strictly meaningful only if C0 exists, if the data generating process is stationary, so that Ĉ0

converges stochastically to C0 as the number of sample periods goes to infinity. PCA/PCFD can be computed more
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accurately if Ĉ0 is positive definite, which occurs in practice if the data have more sample periods (T) than vari-
ables (n) and no variables exactly satisfy linear equations. Additional assumptions have often been made in terms
of the approximate factor model (AFM), so that PCA/PCFD provides consistent estimates of AFM parameters,
principally bounds on eigenvalues as T and n go to infinity (Bai and Ng, 2002; Stock and Watson, 2002a,b; Doz
et al., 2012). Because the present article conducts no asymptotic analysis, T and n are assumed to be finite and
fixed.

The article illustrates WCFD by forecasting U.S. quarterly-observed real GDP at monthly intervals using
monthly-observed four coincident and eight leading indicators as secondary variables. Although WCFD has
nothing per se to do with MFD, using MFD makes the application more realistic, challenging, and interesting.
Following Zadrozny (1990) and Mittnik and Zadrozny (2004), Kalman-filtering-based MLE is used in the appli-
cation to estimate VAR models with the MFD. Computational constraints still limit how many VAR parameters
MLE can successfully estimate, although in the application using a FORTRAN program we were able to success-
fully estimate up to 260 VAR parameters in about 30 minutes, starting with setting all parameter values to 0.01 or
0.001. When this did not work, when the program did not converge in an acceptable amount of time or stopped
at unreasonable parameter values, significant additional time was spent retrying the estimation from other, largely
randomly selected, neighboring starting parameter values until convergence or near convergence at reasonable
parameter values was achieved. These difficulties with MLE are considerably greater when using MFD than when
using single-frequency data.

An alternative extended Yule–Walker method (Chen and Zadrozny, 1998) for estimating a VAR model
with MFD computes as easily and quickly as any linear estimation method but was not used because it has
not yet been tested thoroughly enough. Also, by optimizing over disturbance covariances as well as over
VAR coefficients, MLE tends to get closer to minimal Kullback–Leibler information (KLI), hence, to the
true data generating process (Bowden, 1973). For these reasons, all models in the application were estimated
using MLE.

WCFD also provides a purely data-based and economic-theory-free variance decomposition of a model,
although this aspect is not pursued here. Sims (1980a,b) advocated computing variance decompositions of esti-
mated VAR models to judge explanatory power of one variable over another. Initially, Sims advocated variance
decompositions based on Cholesky decomposition, which is a purely numerical method. Following Cooley and
Leroy’s (1985) critique, Bernanke (1986), Sims (1986), and most others now mostly base variance decomposi-
tions on structural identifications. Being based on a presumably well-fitting initial estimated model, yet being
economic-theory-free, WCFD could be used as an exploratory data-based variance decomposition, prior to a more
conclusive structural decomposition. The WCFD decomposition matrix R is the counterpart of the Cholesky and
structural decomposition matrices in this literature.

The article proceeds as follows. Section 2 explains the WCFD decomposition. Section 3 discusses deciding
which WCFD factors are significant. Section 4 reviews the PCFD decomposition and factorization steps and
explains the WCFD factorization step. Section 5 applies PCFD and WCFD to U.S. data from 1959 to 2018 to fore-
cast quarterly-observed real GDP at monthly intervals using monthly-observed four coincident and eight leading
indicators and evaluates the forecast accuracies. Section 6 concludes by summarizing the article and discussing
estimating an initial ‘diagonal’ VARMA model when too many variables result in too many estimated parameters
in a ‘non-diagonal’ VARMA model. Appendix A discusses two closely related methods for computing the WCFD
decomposition.

2. WCFD DECOMPOSITION

In what follows all quantities are real except possibly complex AR and MA characteristic roots. Let yt denote
an n × 1 vector of stationary sample-mean-adjusted variables observed in periods t = 1,… , T, presumed to be
generated by a stationary VARMA model:

yt = A1yt−1 + · · · + Apyt−p + 𝜉t + B1𝜉t−1 + · · · + Bq𝜉t−q, (2.1)

J. Time Ser. Anal. 40: 968–986 (2019) Published 2019. This article is a U.S. Government wileyonlinelibrary.com/journal/jtsa
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972 P. A. ZADROZNY AND B. CHEN

where 𝜉t is an n× 1 vector of unobserved innovations, distributed normally, identically, independently, with zero
means and positive definite covariance matrix Σ𝜉 or 𝜉t ∼NIID(0n× 1,Σ𝜉), where 0n× 1 denotes the n × 1 zero vec-
tor. Partition yt = (yT

1t, y
T
2t)

T, where y1t contains m primary variables, y2t contains n–m secondary variables, and
superscript T denotes transposition.

Model (2.1) is stated more concisely in terms of lag operator L as A(L)yt = B(L)𝜉t, where
A(L) = In −A1L− · · · −ApLp, B(L) = In +B1L+ · · · +BqLq, and In denotes the n× n identity matrix. Often, some or
all elements of reduced-form parameter matrices Ai, Bi, and Σ𝜉 are restricted to zero or in terms of fewer structural
parameters. To compute WCFD, we need to know only the values of the reduced-form parameters and do not need
to know any structural restrictions on them.

We define AR and MA characteristic roots as follows. Model (2.1) is stationary if and only if the absolute
characteristic AR roots are <1, namely, if and only if det[In𝜆

p −A1𝜆
p− 1 − · · · −Ap− 1𝜆−Ap] = 0 implies | 𝜆 | < 1,

where det[⋅] denotes the determinant of a square matrix. Model (2.1) is invertible if and only if the absolute
characteristic MA roots are <1, namely, if and only if det[In𝜆

q −B1𝜆
q− 1 − · · · −Bq− 1𝜆−Bq] = 0 implies | 𝜆 | < 1.

Zadrozny (2016) stated assumptions, including those above, and proved that under them a VARMA model is
locally identified with single- or MFD.

If model (2.1) is stationary, then, it has a unique Wold infinite moving-average representation,

yt = Ψ(L)𝜉t =

( ∞∑
j=0

ΨjL
j

)
𝜉t =

∞∑
j=0

Ψj𝜉t−j, (2.2)

where Ψ(L) = A(L)−1B(L). Whether or not the model is stationary, the finite sequence {Ψj}J
j=0 can be computed by

iterating on

Ψj =
min(j,p)∑
𝓁=1

A𝓁Ψj−𝓁 + Bj, (2.3)

for j= 1,… , J, starting withΨ0 = In, such that Bj = 0 for j> q. WCFD uses Wold decomposition (2.2) to decompose
Σ𝜉 as RRT = Σ𝜉 , such that the columns of R account for variations of primary variables in a PCA-like fashion.

In exactly or nearly non-stationary models, especially when the forecasting horizon h is large, the WCFD
decomposition could ‘latch’ onto the largest exactly or nearly non-stationary AR root (the latter defined, say, by
0.99< | 𝜆i | < 1) and account for nearly 100% of the weighted covariances with one factor, a result that is not use-
ful when it masks significant subdominant cycles of a model. In such cases, we could filter out exactly or nearly
nonstationary AR roots before computing WCFD. Let {𝜆i}𝜐i=1 denote the 𝜐 exactly or nearly nonstationary AR
roots of model (2.1). We would filter Wold representation (2.2) using 𝜆(L) = (1− 𝜆1L)… (1− 𝜆𝜐), would obtain
ỹt = Ψ̃(L)𝜉t, where ỹt = 𝜆(L)yt and Ψ̃(L) = 𝜆(L)Ψ(L), and would compute the WCFD decomposition using Ψ̃(L).

For a given forecast horizon h≥ 1, let 𝜂ht = yt+ h −Etyt+ h denote the n× 1 vector of errors from forecasting yt+ h

in period t. In terms of innovations, forecast errors are

𝜂ℎ𝑡 =
h−1∑
j=0

Ψj𝜉t+h−j, (2.4)

and have covariance matrix

Γh = E𝜂ℎ𝑡𝜂
T
ℎ𝑡
=

h−1∑
j=0

ΨjΣ𝜉ΨT
j . (2.5)

We define WCFD in terms of weighted covariances of forecast errors of primary variables in y1t. The pri-
mary variables are mapped from all variables as y1t = Wyt, where W is a specified m× n weighting matrix and
1≤m = rank(W)≤ n. Then, v = E𝜂T

ℎ𝑡
Ω𝜂ℎ𝑡 = 𝑡𝑟[ΩΓh] is the expected weighted h-period-ahead squared forecast

wileyonlinelibrary.com/journal/jtsa Published 2019. This article is a U.S. Government J. Time Ser. Anal. 40: 968–986 (2019)
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error of the primary variables, where Ω= WTW represents the weights as an n× n symmetric positive semi-definite
matrix and tr[⋅] denotes the trace of a matrix. Using equation (2.5),

v = 𝑡𝑟

[
Ω

h−1∑
j=0

ΨjΣ𝜉ΨT
j

]
. (2.6)

The following three examples illustrate different weighting matrices:

2.1. Selecting Portfolio Value as Primary

Let y1t = value of a portfolio, y2t = (n− 1)× 1 vector of portfolio elements, and W = (0, w2, … , wn) = 1× n vector
of portfolio weights, such that a portfolio weight is positive or negative depending on whether its portfolio element
is an asset or a liability. Portfolio value y1t is the single primary variable and portfolio elements are secondary
variables. Other secondary variables can be added to y2t.

2.2. Selecting J of n Variables as Primary

Let {ij}J
j=1 ⊂ {1, … , n} index a subset of J of n variables selected as primary variables and let eij

= (0,… , 0,

1, 0,… , 0)T be the n× 1 vector with 1 in position ij and zeros elsewhere. Stack row-form eT
ij
, for j = 1,… , J, on

top of each other in any order and obtain the J× n weighting matrix W that selects the J variables from yt as the
primary variables in y1t.

2.3. Setting WCFD Equivalent to PCFD

If W = In, the initial VARMA model is stationary, and forecast horizon h is large (strictly, h =∞), then, v = sum of
equally weighted variances of all variables in yt and WCFD is equivalent to PCFD, except for numerical differences
due to different computations.

WCFD produces the n× n decomposition matrix R that satisfies RRT = Σ𝜉 and broadly corresponds to a
factor-loading matrix in PCA/PCFD. For ri = column i of R, (2.6) can be written equivalently as v =

∑n
i=0 vi, where

vi = rT
i 𝑄𝑟i (2.7)

is the portion of the weighted h-step-ahead forecast-error variance, v, accounted for by the ith uncorrelated dis-
turbance, 𝜀it, and Q =

∑h−1
j=0 ΨT

j ΩΨ
T
j . Q is symmetric positive semi-definite, but may be non-positive definite even

for large h. If so, a computed WCFD decomposition may be inaccurate, but can be made accurate by making Q
positive definite by adding 𝛿In to it, where 𝛿 is a small positive number.

We define the WCFD decomposition recursively. LetΣ1 =Σ𝜉 , X1 = 0n× 1, and, for i= 2,… , n− 1,Σi = Σ𝜉−XiX
T
i ,

Xi = [r1, … , ri− 1], and Yi = [ri+ 1, … , rn], a matrix of slack variables that ensures that rir
T
i +YiY

T
i = Σi holds. For

i = 1,… , n− 1, we want to maximize vi = rT
i 𝑄𝑟i, with respect to ri and Yi, so that rir

T
i + YiY

T
i = Σi holds and, for

i = n, we want XnXT
n + rnrT

n = Σ𝜉 to hold.
First, given Σ1 =Σ𝜉 and Q, we maximize v1 with respect to r1 and Y1, subject to r1rT

1 +Y1YT
1 = Σ1, by eliminating

Y1 from first-order conditions (FOC; see Appendix A) and solving for r1 and v1. Then, given X2 = r1 and Σ2 =
Σ𝜉 − X2XT

2 , we maximize v2 with respect to r2 and Y2, subject to r2rT
2 + Y2YT

2 = Σ2, by eliminating Y2 from
the FOC and solving for r2 and v2. Continuing like this, we determine Xn = [r1, … , rn− 1]. Finally, given Xn and
Σn = Σ𝜉 − XnXT

n , we determine rn such that rnrT
n = Σn and RRT = Σ𝜉 hold for R = [r1, … , rn].

We assume that (i) Σ𝜉 is positive definite; (ii) 1≤m = rank(W)≤ n; and, (iii) the positive eigenvalues of Q are
distinct. Q is symmetric positive semi-definite by construction and non-null by assumption (ii). Then, it follows

J. Time Ser. Anal. 40: 968–986 (2019) Published 2019. This article is a U.S. Government wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12506 work and is in the public domain in the USA.



974 P. A. ZADROZNY AND B. CHEN

from the discussion in Appendix A that the significant part of the WCFD decomposition, associated with the signif-
icantly positive eigenvalues of Σ𝜉Q, exists and is unique. In practice, assumptions (i) and (iii) hold when variables
are not subject to linear restrictions. The details for computing the WCFD decomposition are in Appendix A.

3. SIGNIFICANT WCFD FACTORS

Because each PCFD and WCFD factor has an associated eigenvalue, deciding which PCFD and WCFD factors are
significant amounts to deciding which PCFD and WCFD eigenvalues are significantly different from zero. This
section first considers a stochastic test for this decision and, then, reduces it to the simpler non-stochastic test that
is used in the application.

First, consider the following variant of Anderson’s (1984, ch. 11, pp. 473–5) test for significance of the largest
PCA eigenvalues based on first-order normal approximation. For given tolerance 𝜌∈ (0, 1), let Hk denote the
hypothesis that the largest eigenvalues vi ofΣ𝜉Q, for i= 1, … , k, account for at least 1− 𝜌 of weighted covariances,
so that Hk is true if and only if

𝛿k = 𝜌
Tv = −𝜌

k∑
i=1

vi + (1 − 𝜌)
n∑

i=k+1

vi ≤ 0, (3.1)

where 𝜌 = (−𝜌, … ,−𝜌, 1 − 𝜌, … , 1 − 𝜌)T and v = (v1, … , vn)T are n× 1 vectors.
Consider the following testing sequence. Start with 𝓁 = 1 and test H𝓁 = H1. If H1 is accepted (strictly, not

rejected), accept k = 1 as the number of significant largest eigenvalues of Σ𝜉Q and associated factors; otherwise,
test H𝓁 = H2. If H2 is accepted, accept k = 2 as the number of significant largest eigenvalues and associated
factors; otherwise, continue like this until possibly reaching 𝓁 = n− 1. If Hn− 1 is accepted, accept k = n− 1 as
the number of significant largest eigenvalues and associated factors; otherwise, accept k = n as the number of
significant largest eigenvalues and associated factors. Because vi ≥ 0 and

∑n
i=1 vi = 1, the testing sequence is

always conclusive.
WCFD maps 𝜙 to v nonlinearly and differentiably as v = v(𝜙), where vector 𝜙 collects parameters of the initial

VARMA model. If 𝜙 is certain, for example, because it was chosen for a hypothetical model, then, Hk is accepted
if and only if 𝛿k ≤ 0. However, generally, 𝜙 is estimated and uncertain, so that 𝛿k inherits sampling variability
from estimated parameters, so that Hk should be tested stochastically. This can be done by expanding 𝛿k ≤ 0 to a
stochastic statement similar to Anderson’s (1984, ch. 11, pp. 473–5) asymptotic test for the number of significant
largest PCA eigenvalues, as follows.

If VARMA model (2.1) is stationary and invertible and additional assumptions hold (Hosoya and Taniguchi,

1982),
√

T(𝜙 − 𝜙0) ∼ AN(0, S0), where a hat (^) denotes an estimated value, subscript zero denotes a true value,
and ∼AN denotes an asymptotic normal distribution as the number of sample periods, T, goes to infinity. Under

further assumptions (Serfling, 1980, pp. 122–4),
√

T(v̂ − v0) ∼ AN(0,∇v̂S0∇v̂
T
), where ∇v̂ denotes the Jacobian

matrix of first-partial derivatives of v(𝜙) evaluated at 𝜙. Then, because 𝜌 is constant,√
T(𝛿k − 𝛿k0

) ∼ AN(0, 𝜎2
𝛿k
), (3.2)

where 𝜎2
𝛿k

= 𝜌
T∇v̂Ŝ∇v̂

T
𝜌, Ŝ estimates S0 such that plimT→∞Ŝ = S0, and ∇v̂ and 𝜎2

𝛿k
can be computed using the

matrix-differentiation method in Mittnik and Zadrozny (1993) and Chen and Zadrozny (2003, Appendix A).
Using (3.1) and following standard sampling-theory testing, let 𝛼 ∈ (0, 1) denote a chosen significance level and

let c𝛼 denote a critical value defined by Prob[z≤ c𝛼] = 1− 𝛼, where z∼N(0, 1). Then, for given k, 𝜌, and 𝛼, Hk is
accepted if and only if

𝜏k =
𝛿k

𝜎𝛿k

≤ c𝛼. (3.3)
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Test (3.3) could mislead if 𝛿k is not asymptotically normally distributed. For such cases, Onatski’s (2009, 2010)
non-normal eigenvalue distributions or Bai and Ng (2002) and Bai’s (2003) information criteria could be used. The
present application ignores uncertainty about 𝛿k and decides non-stochastically on the significant largest eigenval-
ues and associated factors, based on experience and experimentation (including using information criteria), as did
Stock and Watson (2002b). When ignoring the uncertainty about 𝛿k, c𝛼 = 0 and test (3.3) reduces to 𝛿k ≤ 0. The
uncertainty can be ignored in the forecasting application because any choice of significant factors can and should
be reviewed in terms of forecast accuracy.

In PCFD and WCFD, for a given tolerance 𝜌, using test (3.3) stochastically or nonstochastically, one chooses
as significant the smallest number of largest eigenvalues and associated factors that, respectively, account for at
least 1− 𝜌 of the sum of variances of secondary variables and at least 1− 𝜌 of the sum of weighted covariances
of forecast errors of primary variables. In a particular application, experimentation can determine which value of
𝜌 leads to the best choice of significant factors with the best results. In the present application, experimentation
showed that 𝜌 = .10 led to the best choice of significant factors, 3 in PCFD and 2 in WCFD.

4. PCFD AND WCFD FACTORIZATIONS

For simplicity, this section proceeds with one primary variable in y1t. The generalization to m primary variables
is straightforward but notationally more tedious. With one primary variable, weighting matrix W is a 1× n row
vector and significant-factor vector f1t is an k× 1 column vector; with m> 1 primary variables, W and f1t are m× n
and k×m matrices.

The PCFD factorization is obtained as follows. Suppose that the eigenvalues of the sample covariance matrix
of the n− 1 secondary variables in y2t are distinct, so that the (n− 1)× (n− 1) matrix M of the eigenvectors is
orthogonal. Then, the n− 1 PCFD factors in ft = (𝜑1, t,… , 𝜑n− 1, t)

T are defined and computed by

ft = MTy2t. (4.1)

Partition ft = (f T
1t , f

T
2t)

T , where f1t = (𝜑1, t, … ,𝜑k, t)
T and f2t = (𝜑k+ 1, t,…, 𝜑n− 1, t)

T, respectively, contain k
significant and n – k − 1 insignificant factors, and, correspondingly, partition M = [M1, M2] = [(n− 1)× k,
(n− 1)× (n− k− 1)], so that (4.1) has the regression form

y2t = M1f1t + ut, (4.2)

where, for M1 = (n− 1)× k matrix of regression coefficients, f1t = k× 1 vector of regressors, and
ut = M2f2t = (n− 1)× 1 vector of regression errors. Because f1t and ut are orthogonal and, therefore, uncorrelated,
regression (4.2) satisfies this basic regression assumption.

The WCFD equation corresponding to (4.2) is obtained as follows. The WCFD decomposition of an initial
VARMA model produces the n× n non-singular decomposition matrix R whose inverse maps the model’s inno-
vations to uncorrelated disturbances, 𝜀t = (𝜀1t, … , 𝜀nt)

T = R−1𝜉t = R−1(𝜉1t, …, 𝜉nt)
T, for t = 1, … , T. The initial

VARMA model is presumably stationary and has the Wold representation (2.2). Using R𝜀t−j =
∑n

i=1 ri𝜀i,t−j, where
R = [r1, …, rn], the Wold representation can be written as yt =

∑n
i=1 𝜑i,t, where 𝜑i,t =

∑∞
j=0 Ψjri𝜀i,t−j, so that

primary y1t = Wyt has the k-significant-factor representation

y1t =
k∑

i=1

𝜑1,i,t + ũt, (4.3)

where, for i= 1,… , k, 𝜑1,i,t =
∑∞

j=1 WΨjri𝜀i,t−j = ith significant WCFD factor and ũt =
∑n

i=k+1 𝜑1,i,t =
sum of insignificant WCFD factors. The k-significant-factor representation (4.3) has the regression form

y1t = M̃1 f̃1t + ũt (4.4)
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corresponding to (4.2), where M̃1 = (𝜎2
1 , … , 𝜎2

k ) = 1 × k vector of regression coefficients, 𝜎2
i = E(𝜑1,i,t)2,

f̃1t = (�̃�1,1,t, … , �̃�1,k,t)T = k × 1, vector of regressors, �̃�1,i,t = 𝜑1,i,t∕𝜎2
i , and ũt = regression error. Because f̃1t

and ũt are uncorrelated, because 𝜀is and 𝜀jt are uncorrelated for i≠ j and s≠ t, regression (4.4) satisfies this basic
regression assumption.

WCFD factors are computed for an initial estimated VARMA model and data in the following four steps:

Step 1: Innovations cannot be computed for a sample period if any data in the period are missing. In the applica-
tion, missing data occur because models are estimated using monthly quarterly MFD and because outlying
observations are treated as missing. The missing data were filled in by applying Kalman smoothers (Ander-
son and Moore, 1979) based on initial (estimated) models. The monthly indicators also have missing data
due to outliers that also need to be filled in by smoothing before either PCFD or WCFD factors can be
computed. Stock and Watson (2002b) similarly suggested filling in missing data in PCFD by using the
expectation-maximization (EM) algorithm (Dempster et al., 1977).

Step 2: If no data are missing in any period or once any missing data have been filled in, then, except for some
initial periods, innovations can be computed by iterating on definition (2.1) of a VARMA model. Some
initial innovations cannot be computed in this way because the data start in period t = 1. In the application,
this problem is solved by applying a Kalman filter (Anderson and Moore, 1979) based on an initial VAR
model. Specifically, for each sample period t = 1, … , T, the filter computes yt | t− 1 = forecast of yt made
in period t− 1, whereupon the innovation in period t is estimated as 𝜉t = ŷt − yt|t−1, where ŷt denotes either
observed yt or its smoothed estimate. Both Kalman smoothers and filters were initialized in the application
by setting initial state vectors to zero and their covariance matrices to unconditional covariance matrices
implied by the initial VAR models.

Step 3: For a full set of innovations, 𝜉t, for t = 1,… , T, with no missing values, uncorrelated disturbances are
computed as 𝜀t = R−1𝜉t, where R = WCFD decomposition matrix.

Step 4: Wold coefficient matrices of a model, Ψj, are computed by iterating on (2.3), starting with Ψ0 = In. For the
ith WCFD factor,𝜑1,i,t =

∑∞
j=1 WΨjri𝜀i,t−j, to be computed approximately, its infinite sum must be truncated.

Because the Wold coefficient matrices of stationary VARMA models decline exponentially to zero as j
increases, for every stationary model there is some J at which the sum of WCFD-factor terms beyond J can
be considered negligible and ignored. The truncated J-term approximate ith WCFD factor is

𝜑
(J)
1,i,t =

J∑
j=1

WΨjri𝜀i,t−j. (4.5)

To compute 𝜑
(J)
1,i,t using truncation (4.5), starting from period t = 1, requires getting around not having presample

values of 𝜀i,t. One option is to assume that presample 𝜀i,t are equal to their zero means; another, used in the
application, is to compute and use 𝜑

(J)
1,i,t only for t≥ J+ 1, so that truncation (4.5) doesn’t include any presample

values of 𝜀i,t.
The four computational steps appear accurate in the application. First, the Kalman-smoothed GDP estimates

replicate observed GDP to within 8–9 decimal digits, that is, have ‘single precision’ accuracy. Second, because
the largest absolute AR root of any estimated model is about 0.85, for the J = 50 used in the application, elements
of the approximation-error matrices, 𝜑1,i,t −𝜑

(50)
1,i,t , for i = 1, … , k, are all about ±0.0001, that is, have ‘semi-single

precision’ accuracy. Finally, significant-factor threshold 𝜌 = 0.10, used in the application for a final choice of
k = 2 significant WCFD factors in every case, suggests that ordinary least squares (OLS) estimates of regression
(4.4) should yield R2 of GDP≅ 0.90. However, except in one case, OLS estimates of regression (4.4) yielded R2 of
GDP≅ 0.99, with very high t statistics of estimated coefficients up to about 50. Oddly, the best-fitting factor model,
5/WCF2/VAR4 (see Table I), had the lowest R2 of GDP≅ 0.50 of regression (4.4), perhaps because its WCFD
decomposition was the least accurate to only about three decimal digits, whereas the other WCFD decompositions
were accurate to about 13–14 decimal digits, that is, close to double-precision accuracy.
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5. APPLICATION TO FORECASTING QUARTERLY GDP AT MONTHLY INTERVALS

5.1. Data Sources

Quarterly observed U.S. real GDP data from March 1959 to June 2018 obtained from the Bureau of Economic
Analysis (BEA) are the latest comprehensive revision produced by the Bureau, released in August 2018. Monthly
observed U.S. coincident and leading indicators from January 1959 to June 2018 were obtained from the Confer-
ence Board (2018): four coincident indicators, (i) number of employees on non-agricultural payrolls, (ii) personal
income less transfer payments, (iii) index of industrial production, and (iv) manufacturing and trade sales; and,
eight leading indicators, (v) average weekly hours worked in manufacturing, (vi) average weekly initial claims for
unemployment insurance benefits, (vii) manufacturer’s new orders of consumer goods and materials, (viii) manu-
facturer’s new orders of non-defence capital goods excluding aircraft, (ix) new permits for building private housing
units, (x) Standard and Poor’s index of 500 stock prices, (xi) Conference Board’s index of consumer expectations,
and (xii) interest rate spread (interest on 3-month Treasury bills minus interest on 1-year Treasury notes).

5.2. Data Transformations

Before being used in estimation the data were (i) naturally logged (except the interest rate spread because it
has negative values), (ii) first-differenced at their sampling intervals (GDP quarterly; indicators monthly), (iii)
standardized (sample means subtracted then divided by sample standard deviations), and (iv) normalized (outliers
more than 3.5 standard deviations from zero treated as missing values). Figures 1 and 2 graph the data for the whole
sample period in log forms (except the interest rate spread) and differenced-log forms (except the interest rate
spread that is differenced without logging). (Figure 1 includes the Conference Board’s coincident index, because
an even number of graphs displays better.) Each graphed series was standardized using sample means and sample
standard deviations of the whole sample period.

The data were transformed by logging and differencing to make them more stationary and easier to estimate
models with. Standardization simplified estimation by eliminating the need to estimate constant terms and made
MLE computations easier by scaling all variables similarly. The graphs show the differenced data as more sta-
tionary than the undifferenced data, having no trends and with more uniform variations, except for some turbulent
periods.

The graphed data were left unnormalized to show outliers. A hallmark of constant-parameter VAR models is
their ability to account for noise-perturbed trigonometric cycles. Therefore, the data used for estimation were
normalized so that outliers would not distort an estimated model’s ability to account for the trigonometric cycles,
but the data used for forecasting were left unnormalized to make the forecasting more realistic.

5.3. Three Estimation-Forecasting Periods

In the past 20 years, the U.S. economy went from what has been called the ‘Great Moderation’ to the ‘Great Reces-
sion’ (dated December 2007–June 2009 by the National Bureau of Economic Research), including a financial crisis
(peaking in September 2008), to the recent ‘Slow Recovery’ (2009–2016), to a resumption of trend-level growth
(2017–2019). The data used in the application cover January 1959–June 2018. To capture three distinct snapshots
of a GDP forecaster’s real-time experience of going from the Great Moderation to the present, the model estima-
tion and forecasting in the application was carried out separately for each of three estimation-forecasting periods:
an ‘early’ period in which models were estimated for January 1959–December 1995 and forecasts were made for
January 1996–December 2007; a ‘middle’ period in which models were estimated for January 1959–December
2007 and forecasts were made for January 2008–June 2018 and, a ‘late’ period in which models were estimated
for January 1959–December 2009 and forecasts were made for January 2010–June 2018. The three vertical lines
in the graphs in Figures 1 and 2 are positioned at December 1995, December 2007, and December 2009, at the
ends of the estimation periods in the three estimation-forecasting periods. It is common to evaluate a forecasting
method ‘recursively’, meaning advancing estimation and forecasting period by period. Although doing this can
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Figure 1. U.S. quarterly real GDP, monthly four coincident indicators and index of coincident indicators, January 1959–June
2018 (a) Natural logs and (b) differences of natural logs

be expected to lead to more accurate forecasts, here this was not done because it would mask the distinct results
obtained for the three estimation-forecasting periods.

5.4. Identification of Univariate AR and VAR Models with MFD

Under additional assumptions on parameters, beyond those made below (2.1), Zadrozny (2016) proved analytically
that high-frequency VARMA models are locally identified (uniquely determined) with high-low frequency data,
in particular, monthly VARMA models are locally identified with monthly-quarterly data. Local identification can
also be checked numerically by checking the negativity of eigenvalues of the Hessian matrix of second-partial
derivatives of the likelihood function evaluated at MLEs. The numerical method showed that all estimated monthly

wileyonlinelibrary.com/journal/jtsa Published 2019. This article is a U.S. Government J. Time Ser. Anal. 40: 968–986 (2019)
work and is in the public domain in the USA. DOI: 10.1111/jtsa.12506



WEIGHTED-COVARIANCE FACTOR DECOMPOSITION OF VARMA MODELS 979

Figure 2. U.S. quarterly real GDP and monthly eight leading indicators, January 1959–June 2018. (a) Natural logs, except
interest rate spread and (b) differences of natural logs, except unlogged differences of interest rate spread

models here were locally identified, including monthly univariate AR(2) models of GDP estimated using only
quarterly GDP data.

5.5. GDP as Stock or Flow

GDP would be considered a ‘continuous-time stock’ if it were observed as the value of a continuous-time gener-
ating process at a moment 𝜏 and a ‘continuous-time flow’ if it were observed as an integral of the process. If a unit
of continuous time measures one month, then, g(m)

t = ∫
t

𝜏=t−1 g(𝜏)d𝜏 = quantity of continuously generated GDP in
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the month ending at moment t and g(q)
t = ∫

t

𝜏=t−3 g(𝜏)d𝜏 = quantity of continuously generated GDP in the quarter
ending at moment t. By the linearity of integration:

g(q)
t = g(m)

t + g(m)
t−1 + g(m)

t−2, (5.1)

for discrete-time months t = 1,… , T.
We might say that quarterly-observed discrete-time GDP is a ‘discrete-time flow’ because it sums three con-

secutive monthly ‘discrete-time stocks’ according to (5.1). However, following Zadrozny (1990), we instead say
that quarterly GDP is a ‘discrete-time stock’ if it enters a discrete-time monthly VARMA model as g(q)

t and is a
‘discrete-time flow’ if enters the model as g(m)

t . Whereas the discrete-time-stock specification of GDP imposes no
restrictions on the parameters of a discrete-time monthly VARMA model, the discrete-time-flow specification of
GDP does and is so called because (5.1) is part of the mapping from the parameters to the likelihood function.

The imposition of restrictions on a discrete-time monthly VARMA model by (5.1) in the discrete-time-flow
case is discussed in more detail in Zadrozny (1990) in the context of computing the likelihood function for MFD
using a state-space representation of a VARMA model and the Kalman filter. Like Zadrozny (1990), the present
application initially tried the discrete-time-flow specification of GDP, but, because it produced inferior results
compared with the discrete-time-stock specification of GDP, it was abandoned, so that Table I reports only the
results of the discrete-time-stock specification of GDP.

Mariano and Murasawa (2003) correspondingly estimated a discrete-time monthly FAVARMA-type
single-factor model using quarterly-observed GDP and monthly-observed indicators and used it to compute
monthly smoothed estimates of the single factor, considered a “new coincident index of business cycles,” but used
a discrete-time-flow specification of GDP based on a weighted sum that differs from equation (5.1). Whereas their
monthly smoothed-estimated factor corresponds to a smoothed estimate of g(m)

t , like Zadrozny (1990), here we
produce monthly forecasts of g(q)

t .

5.6. Application Results

All WCFD results in Table I were obtained with WCFD forecast horizon h = 12 months. Experimentation with
neighbouring values of h led to similar results that are not reported in the table. Also, all WCFD results in the
table are based on the weighting vector W = (1, 0,… , 0), with 4 or 12 zeros, that picks GDP as the single primary
variable, y1t, from the vector of variables, yt.

All results in Table I are grouped from top to bottom into the three ‘early’, ‘middle’ and ‘late’
estimation-forecasting periods. Results for the 21 estimated models are reported in 7 rows per period. The rows
are named in column 1 by model abbreviations: 1/AR2 refers to univariate AR(2) models of GDP; M/VARN refers
to VAR(N) models of M = 5 variables (GDP and 4 coincident indicators) and M = 13 variables (GDP, 4 coinci-
dent indicators, and 8 leading indicators); M/PCF3/VARN refers to VAR(N) models of GDP and 3 PCFD factors
derived from initial VAR models of M = 5 and M = 13 variables; and, M/WCF2/VARN refers to VAR(N) models
of GDP and 2 WCFD factors derived from initial models of M = 5 and M = 13 variables. All estimated models
are monthly, including univariate AR models of GDP estimated using only quarterly GDP data.

Each row in the table reports estimation and forecasting statistics of an estimated model: column 2 is the R
2

(‘R
bar squared’) of GDP; column 3 is the Schwarz’s (1978) Bayesian information criterion (BIC); columns 4–10 are
the normalized root mean-squared errors (NRMSE) of GDP forecasts for 1, 2, 3, 6, 12, 18, and 24 months ahead;
column 11 is the average NRMSE of GDP forecasts for 1–24 months ahead; and, column 12 is the model rank
in terms of 1–24-month-average NRMSE in each of the three estimation-forecasting periods. The NRMSE were
normalized by dividing unnormalized RMSE by standard deviations of GDP in the forecasting periods to make
the NRMSE comparable across the three estimation-forecasting periods with their different GDP variances.

The 1–24-month-ahead-average NRMSE in column 11 of Table I were further averaged for each model type
over the three estimation-forecasting periods and are reported at the bottom of the table along with their overall
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implied ranks. The overall NRMSE at the bottom of the table show that models 5/VAR2, 5/WCF2/VAR2-4,
13/VAR1, and 13/WCF2/VAR2-4 have closely spaced overall NRMSE averaging 1.061 and models 1/AR2,
5/PCF3/VAR1-2, and 13/PCF3/VAR2 have more widely spaced overall NRMSE averaging 1.125, about 6.0%
higher. The 1–24-month-ahead-average NRMSE in column 11 were also averaged for each estimation-forecasting
period, yielding 0.978, 1.118, and 1.163 for the early, middle, and late periods, so that the GDP forecasts become
increasingly less accurate going from the early to late periods.

Table I leads to the following five conclusions:

1. Nelson (1972) reported that quarterly few-parameter univariate ARMA models forecast major U.S. macroe-
conomic series at quarterly intervals more accurately than many-variable and many-parameter econometric
models, which overturned many economist’s beliefs at the time. Table I reports the opposite: that the uni-
variate AR models forecast GDP much less accurately than any multivariate model in all but 1/21 = 4.8% of
cases, especially 1–3 months ahead and in the middle and late estimation-forecasting periods. Thus, apparently
both factor-free and factor-including VAR models successfully exploit 0-3-month-ahead correlations between
quarterly-observed GDP and monthly-observed indicators and computed factors, which validates estimating
multivariate monthly models with monthly-quarterly data to forecast GDP at monthly intervals.

2. However, in all three estimation-forecasting periods in Table I, NRMSE begin to and continue to converge
after about 12 forecast-ahead months, so that more difficult to estimate VAR models with MFD, both initial
factor-free and subsequent factor-including models, begin to and then lose their forecasting advantage over
simpler to estimate univariate AR models.

3. WCFD-factor models forecast GDP at monthly intervals more accurately than PCFD-factor models in all
but 1/21 = 4.8% of cases in Table I. The 1–24-month-ahead-average NRMSE in column 11 of Table I
of PCFD-model forecasts are 0.9–2.2%, 7.1–11.3%, and 4.0–4.9% higher in the early, middle, and late
estimation-forecasting periods than those of WCFD-model forecasts.

4. Stock and Watson (2002b) reduced 215 variables to a handful of PCFD factors, which indicates that most
of their secondary variables are redundant for forecasting U.S. macroeconomic variables. In the early period
in Table 1, models 5/VAR2, 5/PCF3/VAR2, and 5/WCF2/VAR4 forecast GDP more accurately than models
13/VAR1, 13/PCF3/VAR2, and 13/WCF2/VAR4, which indicates that the 4 coincident indicators (but not the 8
leading indicators) have little redundancy for forecasting GDP in this calmer period. By contrast, in the middle
and late periods, models 13/VAR1 and 13/WCF2/VAR2 (but not 13/PCF3/VAR2) produce similarly accurate
GDP forecasts as models 5/VAR2 and 5/WCF2/VAR2-3, in fact, produce NRMSE more than 1% lower in
9/14 = 64.3% cases, which indicates that the 8 leading indicators contain additional information, beyond that
in the 4 coincident indicators, that is useful for forecasting GDP in the latter two, more turbulent, periods.

5. The result in the middle and late periods that 260-estimated-parameter 13-variable initial models forecast GDP
about as accurately or more accurately than 24-estimated-parameter 3-variable WCFD models seems to con-
tradict the principle of parsimony. However, because a little-changing data generating process (DGP) underlies
parsimony and the DGP of GDP and the 12 indicators surely changed significantly during the 2007–2009 Great
Recession and financial crisis (at least, in terms of a constant-parameter VAR model’s ability to fit and forecast
data), the principle of parsimony might be less applicable in the middle and late periods.

The above discussion of forecast accuracy is ‘retrospective’ in the sense of being based on both estimation-period
and forecasting-period data. In practice, we want ‘prospective’ statistics based only on estimation-period data
to predict a model’s ability to forecast accurately beyond the estimation period. In theory, KLI (Bowden, 1973)
does this by measuring a model’s distance to the DGP of its variables. However, KLI cannot be evaluated,
only estimated using an information criterion (IC). Many ICs have been proposed with weaker (AIC; Akaike,
1973) to stronger (BIC; Schwarz, 1978) penalties on the number of estimated parameters. Table I includes BIC
in column 3 because in our experience BIC has been a good predictor of a model’s beyond-estimation-sample
forecast accuracy. An IC is expected to be a good predictor of a model’s beyond-estimation-sample fore-
cast accuracy if the DGP has not changed much in passing from the estimation period to the forecasting
period.
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BIC is strictly comparable only for models with the same variables and estimated using the same data. Therefore,

BIC is strictly comparable only for models in the same estimation-forecasting period. For this reason, R
2

of GDP
was included in column 2 of Table I, so that any model could be compared with any other model in the same or

different estimation-forecasting period. R
2

of GDP is correlated with model ranks in column 12 at 96.4%, 96.4%
and 92.9% in the three estimation-forecasting periods and BIC is correlated with the model ranks at 100%, 92.8%

and 100% in the three periods. Therefore, in all three estimation-forecasting periods of the application, both R
2

of
GDP and BIC are good predictors of a model’s relative accuracy for forecasting quarterly GDP at monthly intervals.

6. CONCLUSION

Suppose a VARMA model is estimated for m observed variables of primary interest for an application and n−m
observed secondary variables to aid in the application. An application indicates the variables of primary inter-
est but usually only broadly suggests secondary variables that may or may not be useful. Often, one has many
potential secondary variables to choose from but is unsure which ones to include or exclude from the application.
The article proposes a method called WCFD, comparable to Stock and Watson’s (2002a,b) method here called
PCFD, for reducing secondary variables to fewer factors to more effectively apply an estimated model. The WCFD
method is illustrated in the article by forecasting quarterly-observed U.S. real GDP at monthly intervals using
monthly-observed 4 coincident and 8 leading indicators from the Conference Board (2018). The results show that
normalized root mean-squared errors of GDP forecasts of PCFD-factor models are 0.9–11.3% higher than those
of WCFD-factor models, especially as estimation-forecasting periods pass from the pre-2007 Great Moderation
through the 2007–2009 Great Recession to the 2009–2016 Slow Recovery.

The WCFD approach requires estimating an initial VARMA model. If the initial model is a VAR model and the
data are single-frequency data, then, this can be done by applying OLS estimation separately to each equation of
the model, if T = number of sample periods> number of coefficients to be estimated in any equation. However, if
n= number of variables in the model≥T, then, the estimated innovation covariance is singular, which by itself does
not invalidate WCFD, but the estimated covariance matrix has no statistical reliability. The present application
successfully estimated 260 parameters of unrestricted 13-variable VAR(1) models using MLE, but did not attempt
to estimate higher-order 13-variable VAR models with 169 or more estimated parameters.

In cases of too many current and lagged variables and disturbances in a VARMA model resulting in too
many estimated parameters, one could estimate a ‘diagonal’ model with univariate ARMA coefficients in each
equation of the model but a full non-diagonal innovation covariance matrix. Cross-variable dynamics are lim-
ited but not eliminated in such diagonal models, because, being contemporaneously correlated, innovations
still propagate across different variables. Univariate ARMA coefficients of diagonal models can be estimated
by applying Box and Jenkins’ (1976) methods separately to each equation of the model, which greatly eases
MLE, especially with MFD. The innovation covariances could be estimated residually, like residual vari-
ances in OLS regressions. Box and Jenkins’ methods are known for producing forecasts whose accuracies are
often difficult to improve on. This diagonal approach reduces the number of nonlinearly estimated parame-
ters of initial VARMA models from a quadratic function of the number of variables in the model to a linear
function.

ACKNOWLEDGEMENTS

The article represents the authors’ views and does not necessarily represent any official positions of the Bureau of
Economic Analysis or the Bureau of Labor Statistics. We thank Ataman Ozyildirim for providing data from the
Conference Board and co-editor Marcus Chambers and referees for their helpful comments.

DATA AVAILABILITY STATEMENT

Data sharing is not applicable to this article as no new data were created or analysed in this study.

wileyonlinelibrary.com/journal/jtsa Published 2019. This article is a U.S. Government J. Time Ser. Anal. 40: 968–986 (2019)
work and is in the public domain in the USA. DOI: 10.1111/jtsa.12506



WEIGHTED-COVARIANCE FACTOR DECOMPOSITION OF VARMA MODELS 983

REFERENCES

Aguilar O, West M. 2000. Bayesian dynamic factor models and variance matrix discounting for portfolio allocation. Journal
of Business and Economic Statistics 18:338–357.

Ahn SK, Reinsel GC. 1988. Nested reduced-rank autoregressive models for multiple time series. Journal of the American
Statistical Association 83:849–856.

Akaike H. 1973. Information theory and extension of the maximum likelihood principle. In Second International Symposium
on Information Theory, Petrov BN, Csaki F (eds.) Akademia Kiado: Budapest, Hungary, pp. 267–281.

Anderson BDO, Moore JB. 1979. Optimal Filtering, Prentice-Hall: Englewood Cliffs, NJ.
Anderson TW. 1984. An Introduction to Multivariate Statistical Analysis, 2nd ed., John Wiley: New York, NY.
Bai J. 2003. Inferential theory for factor models of large dimensions. Econometrica 71:135–172.
Bai J, Ng S. 2002. Determining the number of factors in approximate factor models. Econometrica 70:191–221.
Bernanke B. 1986. Alternative explanations of the money-income correlation. Carnegie-Rochester Conference Series on Public

Policy 2:49–99.
Bernanke B, Boivin J, Eliasz P. 2005. Measuring the effects of monetary policy: a factor augmented vector autoregressive

(FAVAR) approach. Quarterly Journal of Economics 120:387–422.
Bowden R. 1973. The theory of parametric identification. Econometrica 41:1069–1074.
Box GEP, Jenkins GM. 1976. Time Series Analysis: Forecasting and Control, revised ed., Holden-Day: San Francisco, CA.
Box GEP, Tiao G. 1977. A canonical analysis of multiple time series. Biometrika 6:355–365.
Chen B, Zadrozny PA. 1998. An extended Yule–Walker method for estimating vector autoregressive models with

mixed-frequency data. In Advances in Econometrics: Messy Data – Missing Observations, Outliers, and Mixed-Frequency
Data, Fomby TB, Hill RC (eds.), Vol. 13 JAI Press: Greenwich, CT, pp. 47–73.

Chen B, Zadrozny PA. 2003. Higher moments in perturbation solution of the linear-quadratic exponential Gaussian optimal
control problem. Computational Economics 21:45–64.

Conference Board. 2018. Coincident and Leading Indicator Data, Conference Board: New York, NY. http://www.
conference-board.org.

Cooley TF, LeRoy SF. 1985. Atheoretical macroeconomics: a critique. Journal of Monetary Economics 1:283–308.
Deistler M, Hamman E. 2005. Identification of factor models for forecasting returns. Journal of Financial Econometrics

3:256–281.
Delchambre L. 2015. Weighted principal component analysis: a weighted covariance eigendecomposition approach. Journal

of the Royal Astronomical Society 446:3545–3555.
Dempster AP, Laird NM, Rubin DB. 1977. Maximum likelihood from incomplete data via the EM algorithm. Journal of the

Royal Statistical Society, Series B 39:1–38.
Doz C, Giannone D, Reichlin L. 2012. A quasi maximum likelihood approach for large approximate dynamic factor models.

Review of Economics and Statistics 94:1000–1013.
Dufour JM, Stevanovic S. 2013. Factor-augmented VARMA models with macroeconomic applications. Journal of Business

and Economic Statistics 31:491–506.
Forni M, Hallin M, Lippi M, Reichlin L. 2000. The generalized dynamic-factor model: identification and estimation. Review

of Economics and Statistics 82:540–554.
Forni M, Reichlin L. 1998. Let’s get real: a factor analytical approach to disaggregated business cycle dynamics. Review of

Economic Studies 65:453–473.
Geweke JF, Singleton KJ. 1981. Maximum likelihood ’confirmatory’ factor analysis of economic time series. International

Economic Review 2:37–54.
Golub GH, Van Loan CF. 1996. Matrix Computations, 3rd ed., Johns Hopkins University Press: Baltimore, MD.
Hosoya Y, Taniguchi M. 1982. A central limit theorem for stationary processes and the parameter estimation of linear processes.

Annals of Statistics 10:132–153.
Hotelling H. 1933. Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology

24:417–441.
Kim CJ, Nelson CR. 1999. State space models with regime switching, MIT Press: Cambridge, MA.
Mariano RS, Murasawa Y. 2003. A new coincident index of business cycles based on monthly and quarterly series. Journal of

Applied Econometrics 18:427–443.
Mittnik S, Zadrozny PA. 1993. Asymptotic distributions of impulse responses, step responses, and variance decompositions of

estimated linear dynamic models. Econometrica 61:857–870.
Mittnik S, Zadrozny PA. 2004. Forecasting quarterly German GDP at monthly intervals using monthly Ifo Business Conditions

Data. In Ifo Survey Data in Business Cycle and Monetary Policy Analysis, Sturm JE, Wollmershäuser T (eds.) Physica
Verlag: Heidelberg, Germany, pp. 19–48.

Nelson CR. 1972. The prediction performance of the FRB-MIT-PENN model of the U.S. economy. American Economic
Review 62:902–917.

Onatski A. 2009. Testing hypotheses about the number of factors in large factor models. Econometrica 77:1447–1479.

J. Time Ser. Anal. 40: 968–986 (2019) Published 2019. This article is a U.S. Government wileyonlinelibrary.com/journal/jtsa
DOI: 10.1111/jtsa.12506 work and is in the public domain in the USA.

http://www.conference-board.org
http://www.conference-board.org


984 P. A. ZADROZNY AND B. CHEN

Onatski A. 2010. Determining the number of factors from empirical distribution of eigenvalues. Review of Economics and
Statistics 92:1004–1016.

Otrok C, Whiteman CH. 1998. Bayesian leading indicators: measuring and predicting economic conditions in Iowa. Interna-
tional Economic Review 39:997–1014.

Sargent TJ, Sims CA. 1977. Business cycle modeling without pretending to have too much a priori economic theory. In New
Methods in Business Cycle Research, Sims CA (ed.) Federal Reserve Bank of Minneapolis: Minneapolis, MN, pp. 45–109.

Schwarz G. 1978. Estimating the dimension of a model. Annals of Statistics 6:461–464.
Serfling R. 1980. Approximation Theorems of Mathematical Statistics, John Wiley: New York, NY.
Sims CA. 1980a. Macroeconomics and reality. Econometrica 48:1–48.
Sims CA. 1980b. Comparison of interwar and postwar business cycles: monetarism reconsidered. American Economic Review

70:250–257.
Sims CA. 1986. Are forecasting models usable for policy analysis? Federal Reserve Bank of Minneapolis Quarterly Review

10(1):2–16.
Stock JH, Watson MW. 2002a. Forecasting using principal components from a large number of predictors. Journal of the

American Statistical Association 97:1167–1179.
Stock JH, Watson MW. 2002b. Macroeconomic forecasting using diffusion indexes. Journal of Business and Economic

Statistics 20:147–162.
Wilkinson JH. 1965. The Algebraic Eigenvalue Problem, Clarendon: Oxford, UK.
Zadrozny PA. 1990. Estimating a multivariate ARMA model with mixed-frequency data: an application to forecasting U.S.

GNP at monthly intervals. Working Paper No. 90-6, Research Department, Federal Reserve Bank of Atlanta, Atlanta, GA.
Zadrozny PA. 2016. Extended Yule–Walker identification of VARMA models with single or mixed-frequency data. Journal of

Econometrics 193:438–446.

APPENDIX A: COMPUTING THE WCFD DECOMPOSITION

The appendix first derives FOC of WCFD and then discusses computing the WCFD decomposition using two
alternative closely related methods. Each method solves the FOC, for i = 1,… , n− 1. If rn is needed for i = n,
then, for better expected accuracy, we recommend computing it separately at the end of each method. The second
method is easier to implement, was used in the application, and requires about the same number of computations
as PCA.

The difference between the two methods is that method 1 computes the first n− 1 eigenvalues and eigenvectors
of Σ𝜉Q sequentially, following the definition of WCFD, whereas method 2 computes them simultaneously. It can
be shown that the two methods produce the same result in theory (but a slightly different result in practice because
of slightly different computations), if rT

i Σ
−1
𝜉

rj = 0 and rT
i 𝑄𝑟j = 0, for i, j = 1,… , n and i≠ j, which hold because

Σ𝜉 is positive definite by assumption (i) and because Σ𝜉 and Q are symmetric.

A.1. Derivation of FOC

For i = 1,… , n− 1, given Q and Σi, the Lagrangian for maximizing vi with respect to ri and Yi, subject to rir
T
i +

YiY
T
i = Σi, is

ℑi = rT
i 𝑄𝑟i + 𝑡𝑟{Ξi[Σi − rir

T
i − YiY

T
i ]}, (A.1)

where Ξi is an n× n matrix of Lagrange multipliers. The FOC are obtained by differentiating ℑi with respect to
ri, Yi, and Ξi and setting the derivatives to zero,

(Q − Ξi)ri = 0n×1, (A.2)

ΞiYi = 0n×(n−i), (A.3)
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rir
T
i + YiY

T
i = Σi, (A.4)

for i = 1,… , n− 1, where 0k×𝓁 denotes the k×𝓁 zero matrix.
Postmultiply (A.4) by Ξi, use (A.3), and obtain

(Σi − rir
T
i )Ξi = 0n×n, (A.5)

for i = 1,… , n− 1. Then, postmultiply (A.5) by ri, use (A.2) and the symmetry of Q to replace rT
i Ξ

T
i with rT

i Q,
replace rT

i 𝑄𝑟i with vi, and obtain the eigenvalue problem

(ΣiQ − viIn)ri = 0n×1, (A.6)

for i = 1,… , n− 1. Thus, FOC (A.2)–(A.4) reduce to (A.6).

A.2. Method 1 for Solving the FOC

Recall the following linear algebra. A real positive semi-definite definite square matrix, symmetric or not, has real
non-negative eigenvalues and real eigenvectors. Σ𝜉 is symmetric positive semi-definite by definition and positive
definite by assumption (i); Q is symmetric positive semi-definite by definition, is often positive definite if forecast
horizon h is sufficiently large, and can always be made positive definite by adding a small positive diagonal matrix
to it see below (2.7). The product of two real symmetric positive semi-definite matrices is generally asymmetric,
but has real non-negative eigenvalues and real eigenvectors. If Σ𝜉 has full rank n, then, Σi has rank n – i+ 1.

For i = 1,… , n− 1, let 𝜆i1 ≥ · · ·≥ 𝜆in ≥ 0 denote the real non-negative eigenvalues of ΣiQ, ordered in decreasing
size and let zi1,…, zin denote their associated real eigenvectors. Then, for i = 1,… , n− 1, because vi = rT

i 𝑄𝑟i is
being maximized, set vi = 𝜆i1, determine k = number of significant vi, and set

ri =

√
𝜆i1

zT
i1𝑄𝑧i1

zi1, (A.7)

where associated eigenvector zi1 is scaled as zT
i1zi1 = 1, so that vi = rT

i 𝑄𝑟i, as desired. The eigenvalues of ΣiQ exist
and are unique in any case. The assumption that non-zero eigenvalues of Σ𝜉Q are distinct, implies that significant
[z11, … , zk1] and R1 = [r1, … , rk] exist, have full column rank, and are unique (Wilkinson, 1965, pp. 4–6).

If the last n − k eigenvalues of Σ𝜉Q are close to zero, then, we may be unable to compute insignificant
R2 = [rk+ 1, … , rn] accurately (Golub and Van Loan, 1996). But, because we need only significant R1 to com-
pute the significant part of the WCFD factorization, we can forego computing insignificant R2. If rn is needed, we
recommend computing it using (A.9) and (A.10).

A.3. Method 2 for Solving the FOC

Let 𝜇1 ≥ · · ·≥𝜇n ≥ 0 denote the real and non-negative eigenvalues of Σ𝜉Q in decreasing size and let x1,… , xn

denote the associated real eigenvectors. Then, for i = 1,… , n− 1, compute 𝜇i and xi, set vi = 𝜇i, determine
k = number of significant vi, and, for i = 1,… , k, set

ri =
√

𝜇1

xT
i 𝑄𝑥i

xi, (A.8)

where xi is scaled as xT
i xi = 1, so that vi = rT

i 𝑄𝑟i, as desired.
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A.4. Computing rn

Postmultiply, Σn = rnrT
n by rn, which leads to the eigenvalue problem

(Σn − 𝜔iIn)𝜒i = 0n×1, (A.9)

for i = 1,… , n, where 𝜔i denotes a real non-negative eigenvalue of Σn and 𝜒 i denotes its associated eigenvector.
Because Σn has rank one, 𝜔1 > 0 and 𝜔2 = · · · = 𝜔n = 0. Then, set

rn =
√
𝜔1𝜒1, (A.10)

and scale 𝜒1 as 𝜒T
1 𝜒1 = 1, so that 𝜔1 = rT

n rn and RRT = Σ𝜉 , as desired.
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