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Abstract

We reassess the use of linear models for binary responses, focusing on average partial

effects (APEs). We confirm that under certain conditions, linear projection parameters

correspond to APEs even when the true model is nonlinear. Simulations demonstrate

a large fraction of fitted values in [0, 1] is neither necessary nor sufficient for OLS

to approximate the APEs. To reduce bias, excluding observations with fitted values

outside [0, 1] has been proposed. We show that iteratively trimming the sample is

equivalent to nonlinear least squares estimation of a piece-wise linear (ramp) model,

for which we establish consistency and asymptotic normality results.
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1 Introduction

When an outcome variable, y, is binary, empirical researchers usually choose between two

general strategies given a vector of (exogenous) explanatory variables, x: (i) approximate

the response probability, P (y = 1|x), using a model linear in parameters or (ii) use a non-

linear model, such as logit or probit. The first strategy is commonly known as using a

linear probability model (LPM). The benefits of the LPM are well-known and include ease

of interpretation and simple estimation. The shortcomings of the LPM are also well known

and discussed in most introductory econometrics texts; see, for example, Wooldridge, 2019,

Section 7.5. More advanced discussions of the LPM recognize that one should not take the

linear model for P (y = 1|x) literally but only as an approximation. The approximation can

be exact in special cases—such as when x consists of binary indicators that are exhaustive

and mutually exclusive—and it may be poor in other cases. However, for the most part,

prediction is not the primary use of LPMs specifically or binary response models generally.

Rather, researchers are largely interested in using binary response models to measure ceteris

paribus or causal effects, and it is from this perspective that the LPM approximation should

be evaluated. Angrist and Pischke, 2009, Section 3.4.1 and Wooldridge, 2010, Section 15.2

take this perspective. Wooldridge, 2010, Section 15.6, p. 579 shows how the results of Stoker

(1986) can be applied to OLS estimation of the parameters in a LPM. Remarkably, there

are situations where the linear projection exactly recovers the average partial effects (APEs)

across a broad range of binary response models.1

Even though it is natural to study the LPM from the linear projection perspective, this

opinion is not universally held. In an influential paper, Horrace and Oaxaca (2006) study

both the bias and inconsistency of the OLS estimator for the parameters of an underlying

piecewise linear model for the response probability that ensures the probabilities are in the

unit interval.2 The Horrace and Oaxaca paper is regularly cited in empirical research,3

sometimes as a cautionary tale in using the LPM and sometimes as support for using the

LPM when relatively few fitted values lie outside the unit interval. While Horrace and

Oaxaca take the piecewise linear model seriously, much if not most of the citing literature

seeks to use their results to choose between the LPM and an alternative like probit or logit.4

1Note, extensions of the LPM do not necessarily recover the APE. For instance, see Li et al. (2022) for
the case of the LPM with endogenous x and two-stage least squares estimation.

2Horrace and Oaxaca (2006) defines the LPM as the piecewise linear ramp model. However, in this paper,
we differentiate between the “ramp model” and the “LPM” (which is linear everywhere).

3In recent years (2020-2024), Horrace and Oaxaca (2006) has more than 300 Google Scholar citations.
4See, for example, Footnote 20 of van den Berg and Siflinger (2022).
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In the current paper, we revisit the Horrace and Oaxaca framework but, rather than

focus on parameters, we focus on APEs. We show that Horrace and Oaxaca set up the

problem so that, in general, the response probability is nonlinear in the underlying linear

index, xβ = β1 + β2x2 + · · ·+ βKxK :

P (y = 1|x) = R(xβ) =


0, xβ ≤ 0

xβ, xβ ∈ (0, 1).

1, xβ ≥ 1

(1.1)

The nonlinear function R(·)—sometimes called the ramp function—is piecewise linear and

continuous, but it is not strictly increasing, and it is nondifferentiable at two inflection points.

Nevertheless, under fairly weak assumptions, one can define the APEs. For continuous

variables, the associated APEs are necessarily smaller in magnitude than the index slope

coefficients in the underlying nonlinear model. Consequently, Horrace and Oaxaca’s focus

on index parameters rather than APEs is essentially the same as focusing on parameters

in smooth response probabilities such as the logit and probit functions. Therefore, any

conclusions about the usefulness of the LPM should be reexamined from the perspective of

identifying APEs rather than coefficients.

It is important to understand that we are not advocating the ramp function as an es-

pecially sensible model of the response probability. Rather, we primarily study that spec-

ification from the perspective of average partial effects to determine how the Horrace and

Oaxaca conclusions hold up. Briefly, in some cases, the linear projection parameters do a

very good job of approximating the APEs even when a large percentage of the fitted values

are outside the unit interval. Conversely, in other cases, the linear projection parameters do

a very poor job of approximating the APEs even when a high percentage of the fitted values

are within the unit interval. A practical implication is that there is little justification for

how the Horrace and Oaxaca paper is cited in empirical research.

We compare the OLS estimation of the LPM to a few nonlinear competitors, includ-

ing probit and logit quasi-maximum likelihood estimation (QMLE), as natural benchmarks.

Horrace and Oaxaca cite a few theoretical rationalizations for the ramp model, so it also

makes sense to see if a consistent estimator exists that takes it seriously. Horrace and Oaxaca

suggest trimming the sample of fitted values outside the unit interval and re-estimating using

OLS, but do not present any theoretical or simulation results. In unreported simulations,

we found that trimming the sample once did not necessarily improve performance over OLS
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for estimating the APEs. Interestingly, by iteratively trimming the sample and performing

OLS estimation (referred to as the ITO procedure, hereafter), we show it produces results

equivalent to those from numerically minimizing the nonlinear least square (NLS) objective

function with the ramp model. In Section 3, we show that the NLS estimator of the ramp

model is consistent and asymptotically normal under mild assumptions, which in turn justi-

fies trimming procedures in practice. For estimating the APEs, we find that NLS estimation

of the ramp function performs comparably to quasi-MLE estimation of the logit and probit

models and has good finite sample properties even when OLS estimation of the LPM does

not.

Section 2 delivers our main theoretical arguments. Starting with a linear index model as

the response probability of a binary outcome, we define and contrast parameters of interest,

which are the index slope coefficients, average partial effects, and linear projection parame-

ters. By leveraging results from Stoker (1986), we describe scenarios where the linear projec-

tion parameters recover APEs. In particular, we extend the discussion in Wooldridge, 2010,

Section 15.6 and show that, when the covariates have a multivariate normal distribution, the

linear projection identifies the APEs. Section 4 continues with the mission by conducting

simulations under scenarios where theory has made predictions and where theory suggests,

but does not fully uncover the relations. Related to our main theoretical arguments, we show

that a large fraction of fitted values in [0, 1] is neither sufficient nor necessary condition for

the LPM to well-approximate the APEs. We revisit an empirical study of mortgage lending

decisions in Section 5. The LPM estimated by OLS, with a full set of interactions between

the variable of interest and the control variables, delivers a notably smaller and marginally

statistically significant estimate of the effect of being white on the approval probability. The

NLS estimator of the ramp function, probit QMLE, and logit QMLE are very similar and

all statistically significant at the 0.2% level—both because the estimated effects are larger

but also because the (robust) standard errors are notably smaller. In Section 6, we conclude

with some implications for empirical research.

2 Relevant Parameters of Binary Response Models

Let y be the binary outcome variable and x the 1×K vector of explanatory variables, where

x1 ≡ 1 allows for an intercept in the index. Consider a linear index model of the response

probability for y:
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P (y = 1|x) ≡ p(x) = G (xβ) = G (β1 + β2x2 + · · ·+ βKxK) (2.1)

where G : R → [0, 1]. This embeds the probit/logit model by setting G(·) as the standard

normal CDF/standard logistic function, and it includes the ramp model in Horrace and

Oaxaca (2006) by setting G(·) = R(·) as in 1.1.

The following subsection compares different parameters of interest for the linear index

model generally and for the ramp model specifically. The ramp model for the response

probability was suggested by Horowitz and Savin (2001) as being suitable when one starts

with a linear model for p (x) but wants to ensure that the probabilities are within the unit

interval. While not necessarily advocating this view, our purpose is to show that Horrace

and Oaxaca’s conclusions about one set of parameters (β) do not necessarily apply to the

most interesting set of parameters (the APEs).

2.1 APEs, Index Slopes, and Linear Projection Parameters

We will first consider partial effects for continuous variables. Let xj be a continuously

distributed explanatory variable. For simplicity, the discussion here assumes that xj appears

only by itself. If the model includes quadratics, interactions, and so on then the details

become more complicated but the conclusions do not change substantively. Assume G(·)
is differentiable almost everywhere, with its derivative denoted by g(·). Then, the partial

effects and average partial effects of xj on the response probability of y can be defined as:

PEj(x) ≡ βjg (xβ) , APEj ≡ βjE [g (xβ)]

In the case of the ramp function, even though R (z) is non-differentiable at z = 0 and

z = 1, it is still differentiable with probability one as long as xβ is continuous, and so

P (xβ = 0) = P (xβ = 1) = 0. This holds true provided that at least one element of x is

continuous, and that element has a nonzero coefficient, which is a very common assumption

imposed in the semiparametric literature on binary response models. In what follows, we

maintain that xβ is continuous so that partial effects are well-defined with probability one.

As a result, we can define a partial effect function as the derivative of R (xβ) and ignore

points where the derivative does not exist:

PEj (x) =
∂p

∂xj

(x) = βj1 [0 ≤ xβ ≤ 1] ,
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where 1 [·] is the indicator function. Therefore, under the ramp model, the APE is

APEj ≡ E [PEj (x)] = βjP (0 ≤ xβ ≤ 1) . (2.2)

There are some simple but useful observations about (2.2). First, similar to the probit

or logit cases, APEj always has the same sign as βj. Second, because P (0 ≤ xβ ≤ 1) ≤ 1,

|APEj| ≤
∣∣βj

∣∣; with wide support for xβ, APEj can be much smaller in magnitude than

βj. Moreover, APEj = βj if and only if P (0 ≤ xβ ≤ 1) = 1, which means the support of

xβ is inside the unit interval. This is essentially the condition used by Horrace and Oaxaca

(2006) to conclude that the OLS estimator in linear regression is unbiased and consistent

for β. Our goal here is to compare the OLS estimators with the APEs in the general case

where P (0 ≤ xβ ≤ 1) < 1; the Horrace and Oaxaca condition is then a special case where

the index coefficient, βj, is identical to APEj.

In order to understand the behavior of the OLS estimator under a linear index model,

it is important to introduce a third set of parameters: the linear projection parameters,

denoted as γ. Assume that the xj have finite second moments and that the K ×K matrix

E (x′x) is nonsingular. Then we can always define the K × 1 vector γ as

γ = [E (x′x)]
−1

E (x′y) .

We then write the linear projection of y on (1, x2, ..., xK) as.

L (y|x) = L (y|1, x2, ..., xK) = γ1 + γ2x2 + · · ·+ γKxK = xγ.

In understanding the findings in Horrace and Oaxaca, and their limitations, it is important

to know that, given the model of 2.1, APEj, βj, and γj are all well-defined parameters and,

in general, they are all different. Defining β and the APEs require an underlying model for

the response probability whereas defining γ does not.

As is well known, under random sampling the OLS estimator consistently estimates the

parameters of the linear projection; see, for example, Wooldridge (2010, Chapter 4.2). In

other words, if we run the OLS regression underlying LPM estimation,

yi on 1, xi2, ..., xiK , i = 1, ..., N,

and obtain the γ̂j, then γ̂j

p→ γj. Again, this result holds free of any kind of underlying
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model.

Under the ramp model, Horrace and Oaxaca study the consistency of the γ̂j when con-

sidered as estimators of βj—the coefficients in the index. In other words, their asymptotic

analysis is the same as comparing the linear projection parameters γj to the index parame-

ters βj. Our view is that this does usually not make much sense—for the same reason, we do

not study the consistency of the OLS estimator for the index parameters in, say, probit or

logit. If one explicitly models the response probability as a nonlinear function of xβ then one

must recognize that nonlinearity when defining the parameters of interest. When interest

is in the effects of the explanatory variables on the response probability—which describes

almost all modern usages of the LPM—it only makes sense to compare the linear projection

parameters to the APEs. In other words, we should ask: When is γj “close” to APEj?

This is not the same as studying when γj is “close” to βj (except in the special case where

P (0 ≤ xβ ≤ 1) holds).

Under the ramp model we can write

E (y|x) = p (x) = 1 [0 ≤ xβ ≤ 1]xβ + 1 [xβ > 1] .

If P (0 ≤ xβ ≤ 1) holds then, with probability one,

E (y|x) = xβ = L (y|x) ,

in which case APEj = βj = γj and so the OLS estimators, γ̂j are consistent for βj and

APEj. If for a random sample of size N , xiβ ∈ [0, 1] for all i, then

E (yi|x1,x2, ...,xn) = xiβ,

and it follows that the OLS estimators are conditionally unbiased for the βj – the conclusion

reached in Horrace and Oaxaca.

If P (0 ≤ xβ ≤ 1) < 1, then the βj measure the partial effects when 0 ≤ xβ ≤ 1, but this

restriction depends on the unknown vector and the βj need not be very useful as summary

measures of the partial effects. In the next subsection, we discuss more generally when the

linear projection parameters identify the APEs.
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2.2 When Linear Projection Recovers the APEs

In addition to being easy to interpret, empirically, the OLS estimates of the LPM are often

similar to the corresponding APEs from nonlinear index models—particularly logit or probit.

Wooldridge, 2010, Section 15.6 provides a discussion based on a results of Stoker (1986) that

helps one understand these empirical findings. Here we expand that discussion to allow for

an extension to the ramp model.

As argued in Wooldridge, 2010, Section 15.6, the results of Stoker (1986) imply that, if

(x2, ..., xK) has a multivariate normal distribution and G (·) is differentiable almost every-

where on R (with respect to Lebesgue measure), then

γj = βjE [g (xβ)] = APEj, j = 2, ..., K,

where γj is the slope coefficients on xj in L (y|x) = xγ, g (·) is the almost everywhere

derivative of G (·). The ramp function R (·) is differentiable everywhere except at zero and

one, and so it satisfies Stoker’s (1986) assumptions. The result is that OLS consistently

estimates APEj, even though the APEj are attenuated versions of the βj. This equality

holds even when P (0 ≤ xβ ≤ 1) is very close to zero. Horrace and Oaxaca (2006), and many

papers citing their findings, focus on the inconsistency of OLS for βj, failing to recognize

that the OLS estimators from the linear model could be consistent for the more interesting

quantities, the APEj. This point is key to our argument: If the model of the response

probability is nonlinear so that 0 ≤ p (x) ≤ 1 is ensured, one should study estimation of

APEs, not underlying index parameters.

Other than the case of multivariate normality of (x2, ..., xK), there is another case where

the linear projection parameters, γj, j = 2, ..., K, equal the APEs: x2, ..., xK are mutually

exclusive binary indicators that, along with a base group given by x2 = x3 = · · · = xK = 0,

are exhaustive. See Angrist and Pischke, 2009, Section 3.1.4 and Wooldridge, 2010, Section

15.2. If x1 = 1 denotes the base group then the APEs are simply

APEj = E (y|xj = 1)− E (y|x1 = 1) , j = 2, ..., K,

and these are identical to the corresponding LPM coefficients.
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2.3 More General Cases

Clearly the assumption of multivariate normality of x is too restrictive to be widely applica-

ble. Nevertheless, the results of Stoker (1986) are suggestive, especially when combined with

Ruud (1983). Ruud studies smooth nonlinear function forms that never hit the endpoints

of the unit interval, like probit and logit. In these cases, quasi-MLE identifies the index

coefficients up to scale.5 If x has a centrally symmetric distribution—of which the multi-

variate normal is a special case—then Ruud’s (1983) conditions hold. In Section 4, we will

find several cases where the covariates are symmetrically distributed (but not multivariate

normal) and the APEs are still approximated well by the linear projection parameters.

Beyond the extreme cases described here, there appears to be no general theory to de-

termine when the linear projection coefficients will be the same or “close” to the APEs.

Many empirical applications include a combination of continuous, discrete, and even mixed

explanatory variables. Rarely do these all have marginal symmetric distributions, let alone

a symmetric joint distribution. Plus, such explanatory variables often appear as quadratics,

interactions, and other functional forms—which also do not have symmetric distributions.

In Section 4, we use simulations to shed light on when the LPM coefficients closely approx-

imate the APEs—and when they do not. When evaluating the performance of the LPM

as an approximation to Horrace and Oaxaca’s ramp model, it makes sense to consider an

estimator which takes such a model seriously. To that end, the next section describes such

an estimator.

3 Asymptotically Valid Estimators of the Ramp Model

3.1 Nonlinear Least Square Estimation

We have already seen how if P (0 ≤ xβ ≤ 1) = 1, then OLS is consistent for the βj, which are

equal to APEj in the case of a continuous covariate xj under model (1.1). If the probability

that xβ lies outside the unit interval is nonzero, then OLS is no longer consistent for the

βj, and it may or may not approximate the APEj depending on the distribution of x. In

addition to probit and logit quasi-MLE, it makes sense to consider an estimator which is

consistent if the ramp model is true. Of course, Bernoulli MLE in the usual fashion using the

ramp model as the conditional response probability is not feasible because the log-likelihood

5Li et al. (2022) discuss this further and show that in the case of a single normal covariate, logit quasi-MLE
identifies the APE, but probit quasi-MLE does not.
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is not necessarily defined for xβ /∈ (0, 1). Instead, we consider nonlinear least squares (NLS)

using the piecewise ramp function R(xβ) from (1.1) as the conditional mean. In addition,

since there may not be much justification to think the ramp function is the true response

probability, we allow for general misspecification. Therefore, we define βo as the pseudo-true

value in the sense that βo is the unique solution to

min
β

E
[
(y −R(xβ))2

]
≡ min

β
Q(β). (4.1)

We say that the model is misspecified if there is no such β such that E[y|x] = R(xβ). By

construction, βo is the true coefficient when the model is correctly specified and otherwise we

view R(xβo) as the best mean squared error approximation to E[y|x] over all ramp functions

R(xβ).

Assume a random sample indexed by i = 1, ..., N . As a sample analogue of (4.1), we

define the objective function QN(β) as

QN(β) ≡
1

N

N∑
i=1

(yi −R(xiβ))
2

=
1

N

N∑
i=1

(
y2i 1 {xiβ ≤ 0}+ (yi − xiβ)

2 1 {xiβ ∈ (0, 1)}+ (yi − 1)21 {xiβ ≥ 1}
)
,

where N is the sample size. We define the NLS estimator β̂ as

β̂ ≡ argmin
β

QN(β).

The following theorem gives the consistency of the NLS estimator for the pseudo-true

value, allowing for misspecification of the conditional mean model.

Theorem 1. Let {yi,xi}∞i=1 be an i.i.d. sequence with y only taking on values zero and one,

and let R : R → [0, 1] be the ramp function defined in (1.1). Suppose β ∈ B such that

B ⊂ RK is compact, and βo is identified in the sense that ∀β ∈ B,β ̸= βo,

E
[
(yi −R(xiβo))

2] < E
[
(yi −R(xiβ))

2]
Then, β̂

p→ βo as N → ∞.

The consistency result of Theorem 1 follows directly from Theorem 12.2 of Wooldridge
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(2010).

If x contains a continuously distributed xj and βjo is nonzero, then the probability of

xiβo being equal to 0 or 1 is zero. Then, with suitable moment conditions on x (so the

Leibniz integral rule applies), the FOC of the (4.1) is well defined with probability 1 as

follows:

E [x′
iui1{xiβo ∈ (0, 1)}] = 0, (4.2)

where ui(β) = yi −R(xiβ) and ui ≡ ui(β0). Define the score function for random draw i:

si(β) = −x′
iui(β)1{xiβ ∈ (0, 1)}.

Then, βo solves E[si(βo)] = 0. The variance-covariance matrix of si(β) is

Ω(β) = E
[
x′
ixiui(β)

21 {xiβ ∈ (0, 1)}
]
. (4.3)

The natural definition of the Jacobian of si(β) is

Ai(β) = x′
ixi1 {xiβ ∈ (0, 1)} .

For the similar reason as (4.2), the Hessian of Q(β) is well-defined with probability 1 at βo

as follows

A(βo) = E [x′
ixi1 {xiβo ∈ (0, 1)}] . (4.4)

Note that (4.3) and (4.4) are the same whether the conditional mean model is correctly

specified or not. Therefore, the following asymptotic distribution result allows for misspeci-

fication of the model.

Theorem 2. Suppose that the assumptions from Theorem 1 hold, and (i) βo is an interior

point of B; (ii) xi contains a continuously distributed random variable with a nonzero coeffi-

cient; (iii) E ∥xi∥2 < ∞ and E [x′
ixi1 {xiβo ∈ (0, 1)}] > 0, where ∥.∥ denotes the l2 − norm.

Then, as N → ∞,

√
N

(
β̂ − βo

)
d→ N(0,A(βo)

−1Ω(βo)A(βo)
−1).

The proof of Theorem 2 is given in the Appendix. The asymptotic normality results
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does not follow directly from the M-estimator due to the non-smoothness of the objective

function. We therefore leverage an asymptotic normality result for estimators with non-

smooth objective function from Newey and McFadden (1994).

Taking the sample analogue of the asymptotic variance from Theorem 2, we define a

variance estimator of
√
N(β̂ − βo) as

V̂ = AN(β̂)
−1ΩN(β̂)AN(β̂)

−1,

where AN(β̂) = N−1
∑N

i=1 x
′
ixi1{xiβ̂ ∈ (0, 1)}, ΩN(β̂) = N−1

∑N
i=1 x

′
ixiû

2
i 1{xiβ̂ ∈ (0, 1)},

and ûi = yi − R(xiβ̂). Standard errors are obtained the usual way from V̂/N . The next

theorem gives the consistency result of the variance estimator.

Theorem 3. Under the same assumption of Theorem 2 and E∥x∥4 < ∞, as N → ∞,

V̂
p→ A(βo)

−1Ω(βo)A(βo)
−1.

The proof of Theorem 3 is given in the Appendix. As before, we are interested in the

APE. Consider the best ramp approximation in (4.1), the APE of a continuous random

variable xk is defined as

APEk = E

[
∂R(xiβo)

∂xk

]
= βkoP (xiβo ∈ (0, 1)) .

A sample-analogue estimator of the APE is then given by

AP̂Ek = β̂k

1

N

N∑
i=1

1
{
xiβ̂ ∈ (0, 1)

}
Define g(xi,β) = βk1{xiβ ∈ (0, 1)}, δo = E[g(xi,βo)], and Go = ∇βg(xi,βo). Following

problem 12.17 of Wooldridge (2010), the asymptotic variance of the estimated APE is given

by

AVar
(√

N
(
AP̂Ek − APEk

))
= Var

(
g(xi,βo)− δo −GoA(βo)

−1si(βo)
)
,

where Go is a 1 × K vector with the kth element being po ≡ P (xiβo ∈ (0, 1)) and all else

0. The asymptotic variance can be estimated by the sample variance of g(xi, β̂) − δ̂ −
ĜAN(β̂)

−1si(β̂), where δ̂ =
1
N

∑N
i=1 g(xi, β̂), Ĝ is a 1×K vector with the kth element being

p̂ = 1
N

∑N
i=1 1

{
xiβ̂ ∈ (0, 1)

}
.
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The APE for a discrete random variable xk can be defined as

APEk = E
[
R(xi,−kβ−ko + βko)−R(xi,−kβ−ko)

]
.

A sample analogue estimator of APEk is given by

AP̂Ek =
1

N

N∑
i=1

R(xi,−kβ̂−k + β̂k)−R(xi,−kβ̂−k).

The asymptotic variance can be found and estimated in a similar manner as the continuous

case.

3.2 Iterative Trimming OLS Estimation

To estimate βo, Horrace and Oaxaca suggest running OLS on a trimmed sample (i.e., those

observations for which initial OLS fitted values are inside the unit interval) to reduce bias.

We find in practice that a single round of trimming may not reduce the bias for the APEs in

the cases where OLS is not consistent for them. However, we find an iterative trimming OLS

procedure (ITO) does reduce the bias for estimating APEs, as well as βo. The procedure goes:

1) estimate the LPM by OLS. 2) Compute fitted values. 3) Drop observations with fitted

values outside the unit interval, and 4) Repeat starting at 1) until no further observations are

dropped. In fact, we find in simulations that the NLS estimates are numerically the same as

the ITO estimates up to machine precision.6 It turns out that ITO is implicitly minimizing

the NLS sample objective function using the OLS estimates as starting values and following

the Newton-Raphson numerical method, which is iterative (see Wooldridge, 2010, Section

6With some DGP, it was occasionally necessary to specify OLS starting values for the NLS function
evaluator for the NLS and ITO estimates to match to machine precision. The two were still otherwise very
close.
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12.7.1). Given an estimate β{g}, the next iteration is given (using our notation) by

β{g+1} = β{g} −

[
N−1

N∑
i=1

Ai(β
{g})

]−1

N−1

N∑
i=1

si(β
{g})

= β{g} +

[
N−1

N∑
i=1

x′
ixi1

{
xiβ

{g} ∈ (0, 1)
}]−1

N−1

N∑
i=1

x′
i

(
yi − xiβ

{g}
)
1
{
xiβ

{g} ∈ (0, 1)
}

=

[
N−1

N∑
i=1

x′
ixi1

{
xiβ

{g} ∈ (0, 1)
}]−1

N−1

N∑
i=1

x′
iyi1

{
xiβ

{g} ∈ (0, 1)
}
.

The second equality above substitutes our expressions for si(β) and Ai(β) and uses the fact

that R(xiβ) = xiβ for xiβ ∈ (0, 1). This shows that β{g+1} is simply the OLS estimator on

the sample with xiβ
{g} ∈ (0, 1).

As a consequence, the preceding consistency and asymptotic normality results for the

NLS estimator justify using the ITO procedure to reduce the OLS bias. However, it is worth

mentioning that, at least in Stata, the pre-loaded NLS solver (the“nl” command) may have

a performance advantage over ITO in practice. We find in simulations that ITO can result

in a dead loop when only a very small portion of observations are left for estimation after

iterative trimming. The pre-loaded NLS algorithm continues to work well in those cases.

4 Simulations

In this section, we present several Monte Carlo simulations that provide insights into the

behavior of different modeling/estimation approaches. The LPM is estimated by OLS and

the ramp function is estimated by NLS. For the LPM, the APE estimates come directly from

the linear projection (e.g., the estimated slope coefficient for a non-interacted variable). For

the ramp model, the APEs are estimated using averages of derivatives and differences of the

ramp function, as discussed in Section 2. These resemble the familiar formulas for the linear

model, though the individual unit partial effects need to be scaled by 1
[
0 ≤ xβ̂NLS ≤ 1

]
before averaging, where β̂NLS corresponds to the NLS slope estimate. The logit and probit

parameters are estimated by the (quasi-) maximum likelihood estimator, and then the APEs

are estimated using the usual APE formulas. We used Stata®17 for simulation. 7.

7The Stata code is available via the repository https://kaichengchen.github.io/lpm_simulation_

post.rar

13

https://kaichengchen.github.io/lpm_simulation_post.rar
https://kaichengchen.github.io/lpm_simulation_post.rar


To better evaluate the findings from Horrace and Oaxaca (2006), we generate the re-

sponses to follow the ramp model for their true conditional probabilities. We also show that

our main arguments hold when the true responses are probit. It is useful to observe that the

response probability can be derived from a latent variable formulation:

y∗ = xβ − u, (4.1)

y = 1 [y∗ > 0] . (4.2)

For the ramp model in (1.1), suppose that

u|x ∼ Uniform (0, 1) . (4.3)

Under 4.3, the CDF of u is identical to the ramp function R (·), it follows immediately that

(4.1), (4.2), (4.3) lead to the response probability in (1.1). In the Appendix, we show an

extension of the above model where u has variable support, which is another way to represent

the role of the unit interval bounds for response probabilities. For the probit model, suppose

that

u|x ∼ N(0, 1). (4.4)

Initially, the true models take the form (we are dropping o on beta here)

y = 1 [β0 + β1x1 + β2x2 − u > 0] ,

For a given choice of (β0, β1, β2) = (b0, b1, b2), we can scale (β1, β2) by a positive constant c,

(β0, β1, β2) = (b0, cb1, cb2),

to govern how close to linear the response probability is. When u ∼ Uniform(0, 1), the ramp

model is correctly specified, but the LPM is misspecified to varying degrees. For given initial

values (b0, b1, b2), a larger scaling factor c makes the kinks in the ramp function more likely

to be binding and the LPM can provide a poor approximation to the response probability.

Naturally, the logit and probit models are always misspecified in this case. As stated before,

here we focus on the APEs rather than the underlying parameters or how well the models

approximate the true response probability.

The sample size is N = 1, 000 and 10, 000 replications are used. The population (or true)
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APEs are not available in closed form, so we simulate these along with the estimators. In

the tables to follow, the columns labeled “Simulated Truth” include the empirical means

and standard deviations of the sample APEs at the true parameter values. We also simulate

the probabilities P (y = 1) and P (0 ≤ xβ ≤ 1) where the first quantity is the (Monte Carlo)

population response probability and the second one tells us how binding are the ramp func-

tion inflection points. We also simulate the fraction of OLS fitted values in the unit interval,

P (0 ≤ xβ̂OLS ≤ 1). This is practically relevant because researchers often check the fraction

of fitted values outside the unit interval to determine the adequacy of the LPM.

4.1 Symmetrically Distributed Explanatory Variables

In the first design, (x1, x2) are generated as

x1 = v/2
√
2 + e/2

√
2

x2 = 1 [v + r > 0] ,

where v, e, and r are independent standard normals. The initial choice of parameters is set

to

(b0, b1, b2) = (1/2, 1/4, 1/4).

Table 1 reports the findings when c = 1. There is a small probability that xβ /∈ [0, 1] –

roughly, about 0.021. Moreover, across all simulations, about 2.0% of the OLS fitted values

are outside the unit interval. The pattern is clear: All the estimators of the APEs show

very little bias and have the same precision. This is true for the continuous variable, x1, and

the binary variable, x2. Note that this is not predicted by application of the Stoker results

because x2 is a discrete variable.8 Nevertheless, this table illustrates what is often observed

in practice: the LPM coefficients estimated by OLS are often close to the probit and logit

APEs.

The story does not change when the constraints of the ramp function are strongly binding.

In Table 2, we scale the initial choice coefficients by c = 2 and we see P (0 ≤ xβ ≤ 1) is

only about 0.67, and about 28% of the OLS fitted values are outside [0, 1]. And yet, for

estimating the APEs, the LPM does essentially as well as probit and logit, with the bias

being slightly larger for APE2. This delivers the first argument: having a large fraction of

8Admittedly, when the LPM is used for approximation, the bias for APE2 is slightly larger compared to
APE1, but the bias is still reasonably small and comparable to the ones by probit and logit approximation.

15



Table 1. u ∼ Uniform(0, 1), x1 normal, x2 binary; c = 1

N = 1000 Simulated LPM Ramp Probit Logit.
Truth* (OLS) (NLS) (QMLE) (QMLE)

APE1
mean 0.2448 0.2444 0.2450 0.2483 0.2452
sd 0.0011 0.0288 0.0292 0.0287 0.0290

APE2
mean 0.2489 0.2506 0.2493 0.2454 0.2449
sd 0.0003 0.0325 0.0326 0.0323 0.0324

P (y = 1) = 0.6238, P (0 ≤ xβ ≤ 1) = 0.9792

P (0 ≤ xβ̂OLS ≤ 1) = 0.9806, P (0 ≤ xβ̂NLS ≤ 1) = 0.9774

*This column contains the empirical means and standard deviations of the
sample APEs at the true parameter values.

observations with fitted values within 0, 1 is not a necessary condition for the OLS estimator

to produce a good estimate of the APE.

Table 2. u ∼ Uniform(0, 1), x1 normal, x2 binary; c = 2

N = 1000 Simulated LPM Ramp Probit Logit.
Truth* (OLS) (NLS) (QMLE) (QMLE)

APE1
mean 0.3219 0.3200 0.3221 0.3242 0.3220
sd 0.0075 0.0237 0.0237 0.0226 0.0236

APE2
mean 0.4003 0.4186 0.4006 0.4051 0.4036
sd 0.0044 0.0270 0.0274 0.0263 0.0270

P (y = 1) = 0.6769, P (0 ≤ xβ ≤ 1) = 0.6738

P (0 ≤ xβ̂OLS ≤ 1) = 0.8155, P (0 ≤ xβ̂NLS ≤ 1) = 0.6406

*This column contains the empirical means and standard deviations of the
sample APEs at the true parameter values.

Table 3 shows the case where P (0 ≤ xβ ≤ 1) is very close to one (the consistency result

of OLS estimator for the index coefficients in Horrace and Oaxaca (2006) applies when

P (0 ≤ xβ ≤ 1) is exactly one). We would expect the LPM to work very well in this case,

and it does. What is, perhaps, more surprising is that probit and logit work just as well, even

though the true response probability is largely linear over the support of xβ. These findings

are a good reminder of why statements such as “the linear probability model is preferred

to probit because the latter assumes normality” are not just misleading: they are wrong.

In the end, what we care about is how well each approach approximates the partial effects

on P (y = 1|x). When we consider the APEs, all methods do well even when the response

probability has the peculiar ramp shape.

We next consider the response probability resulting from 4.1, 4.2, and 4.4, under which
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Table 3. u ∼ Uniform(0, 1), x1 normal, x2 binary; c = 0.75

N = 1000 Simulated LPM Ramp Probit Logit.
Truth* (OLS) (NLS) (QMLE) (QMLE)

APE1
mean 0.1874 0.1873 0.1875 0.1886 0.1877
sd 0.0001 0.0312 0.0314 0.0313 0.0313

APE2
mean 0.1875 0.1881 0.1880 0.1859 0.1856
sd 0.0000 0.0334 0.0334 0.0333 0.0334

P (y = 1) = 0.5937, P (0 ≤ xβ ≤ 1) = 0.9996

P (0 ≤ xβ̂OLS ≤ 1) = 0.9991, P (0 ≤ xβ̂NLS ≤ 1) = 0.9990

*This column contains the empirical means and standard deviations of the
sample APEs at the true parameter values.

only the probit model is correctly specified. Tables 4 and 5 maintain the same true index

slopes as Tables 1 and 2, but due to scaling from the standard normal PDF, the true APEs

are lower. Nevertheless, a similar pattern is revealed. Table 4 can be compared to Table 1

where P (0 ≤ xβ ≤ 1) is close to one. In this case, OLS even does a better job in fitting

the response probability into the unit interval and, not surprisingly, LPM estimated by OLS

performs just as well as the the correctly specified probit model in producing the estimated

APEs. As c increases from 1 to 2 in Tables 5, P (0 ≤ xβ ≤ 1) drops to 0.64. Due to the

better-behaved Gaussian error, we still observe a large fraction of OLS fitted values are within

[0, 1] and there is not much difference across different methods. To better compare with the

true APEs of Table 1, we increase c even further in Table 6. In this case, support of the

linear index becomes really wide, and P (0 ≤ xβ ≤ 1) is as small as 0.37. Correspondingly,

only 86% of observations have OLS fitted values within [0, 1]. However, OLS still produces

estimates of APEs as good as those produced by nonlinear methods. Not surprisingly, probit

and logit QMLE have low bias, while NLS of the ramp model has slightly higher bias in the

cases (e.g., Table 6) where the true APEs are larger.

We also generated the outcome y using an interaction between x1 and x2, with u having

a uniform distribution. Specifically,

y = 1 [β0 + β1x1 + β2x2 + β3 (x1 · x2) + u > 0]

The initial choice of parameters and the scaled parameters are

(b0, b1, b2, b3) = (1/2, 1/4, 1/4, 1/8)

(β0, β1, β2, β3) = (b0, cb1, cb2, cb3)
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Table 4. u ∼ N(0, 1), x1 normal, x2 binary; c = 1

N = 1000 Simulated LPM Ramp Probit Logit.
Truth* (OLS) (NLS) (QMLE) (QMLE)

APE1
mean 0.0810 0.0814 0.0814 0.0814 0.0814
sd 0.0003 0.0302 0.0303 0.0302 0.0302

APE2
mean 0.0815 0.0817 0.0817 0.0815 0.0816
sd 0.0002 0.0306 0.0306 0.0306 0.0306

P (y = 1) = 0.7296, P (0 ≤ xβ ≤ 1) = 0.9793

P (0 ≤ xβ̂OLS ≤ 1) = 0.9999, P (0 ≤ xβ̂NLS ≤ 1) = 0.9999

*This column contains the empirical means and standard deviations of the
sample APEs at the true parameter values.

Table 5. u ∼ N(0, 1), x1 normal, x2 binary; c = 2

N = 1000 Simulated LPM Ramp Probit Logit.
Truth* (OLS) (NLS) (QMLE) (QMLE)

APE1
mean 0.1448 0.1450 0.1484 0.1451 0.1450
sd 0.0013 0.0281 0.0305 0.0280 0.0281

APE2
mean 0.1478 0.1488 0.1484 0.1480 0.1483
sd 0.0008 0.0288 0.0288 0.0287 0.0288

P (y = 1) = 0.7550, P (0 ≤ xβ ≤ 1) = 0.6438

P (0 ≤ xβ̂OLS ≤ 1) = 0.9890, P (0 ≤ xβ̂NLS ≤ 1) = 0.9845

*This column contains the empirical means and standard deviations of the
sample APEs at the true parameter values.

Tables 7 and 8 display simulation results under uniformly distributed u and normally

distributed u, respectively. The scaling factor c is set as 2 to focus on the scenarios with

small P (0 ≤ xβ ≤ 1) and potentially small P (0 ≤ xβ̂OLS ≤ 1). Remember, both x1 and x2

have symmetric distributions, but this functional form falls outside Stoker’s results because

x2 is discrete and so is x1 · x2: it has a mass point at zero and is otherwise continuous.

However, the four approaches—where the interaction term is included in the estimation—

delivered similar estimated APEs that were close to the sample “true” APEs (as previously,

probit, logit, and LPM approaches use a misspecified response probability).
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Table 6. u ∼ N(0, 1), x1 normal, x2 binary; c = 4

N = 1000 Simulated LPM Ramp Probit Logit.
Truth* (OLS) (NLS) (QMLE) (QMLE)

APE1
mean 0.2296 0.2295 0.2368 0.2298 0.2296
sd 0.0043 0.0253 0.0257 0.0247 0.0249

APE2
mean 0.2375 0.2396 0.2420 0.2375 0.2393
sd 0.0029 0.0257 0.0279 0.0255 0.0256

P (y = 1) = 0.7733, P (0 ≤ xβ ≤ 1) = 0.3725

P (0 ≤ xβ̂OLS ≤ 1) = 0.8605, P (0 ≤ xβ̂NLS ≤ 1) = 0.7028

*This column contains the empirical means and standard deviations of the
sample APEs at the true parameter values.

Table 7. u ∼ Uniform(0, 1), x1 normal, x2 binary; c = 2; with interaction

N = 1000 Simulated LPM Ramp Probit Logit.
Truth* (OLS) (NLS) (QMLE) (QMLE)

APE1
mean 0.3634 0.3606 0.3638 0.3664 0.3641
sd 0.0089 0.0245 0.0249 0.0241 0.0246

APE2
mean 0.3509 0.3777 0.3512 0.3471 0.3456
sd 0.0040 0.0281 0.0289 0.0275 0.0278

P (y = 1) = 0.6645, P (0 ≤ xβ ≤ 1) = 0.6436

P (0 ≤ xβ̂OLS ≤ 1) = 0.8554, P (0 ≤ xβ̂NLS ≤ 1) = 0.6403

*This column contains the empirical means and standard deviations of the sample
APEs at the true parameter values.

4.2 Asymmetrically Distributed Explanatory Variables

The story changes markedly when the distributions of x1 and x2 are asymmetric. With v,

e, and r generated as before, x1 and x2 are now generated as

x1 = exp
(
−1/4 + v/2

√
2 + e/2

√
2
)

x2 = 1 [−1/4 + v + e > 0] ,

so that x1 has a lognormal distribution. The variable x2 is still binary but the response prob-

ability is below 0.5. The unscaled parameter values are, again, (b0, b1, b2) = (1/2, 1/4, 1/4).

Table 9 repeats the same experiment as Table 1, with the scaling factor c = 1 except

that the explanatory variables are not asymmetrically distributed. We observe that the OLS

estimated APE for x1 under the LPM is severely biased. The misspecified probit model

and logit model estimated by QMLE appear to be slightly biased too. The Ramp model
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Table 8. u ∼ N(0, 1), x1 normal, x2 binary; c = 2; with interaction

N = 1000 Simulated LPM Ramp Probit Logit.
Truth* (OLS) (NLS) (QMLE) (QMLE)

APE1
mean 0.1685 0.1684 0.1717 0.1689 0.1689
sd 0.0013 0.0280 0.0295 0.0279 0.0280

APE2
mean 0.1393 0.1427 0.1418 0.1392 0.1384
sd 0.0005 0.0290 0.0292 0.0292 0.0293

P (y = 1) = 0.7566, P (0 ≤ xβ ≤ 1) = 0.6437

P (0 ≤ xβ̂OLS ≤ 1) = 0.9842, P (0 ≤ xβ̂NLS ≤ 1) = 0.9728

*This column contains the empirical means and standard deviations of the
sample APEs at the true parameter values.

Table 9. u ∼ Uniform(0, 1), x1 lognormal, x2 asym. binary; c = 1

N = 1000 Simulated LPM Ramp Probit Logit.
Truth* (OLS) (NLS) (QMLE) (QMLE)

APE1
mean 0.1975 0.1299 0.1988 0.2225 0.2203
sd 0.0032 0.0220 0.0350 0.0361 0.0383

APE2
mean 0.2203 0.2354 0.2211 0.2291 0.2298
sd 0.0020 0.0226 0.0233 0.0226 0.0230

P (y = 1) = 0.8024, P (0 ≤ xβ ≤ 1) = 0.7900

P (0 ≤ xβ̂OLS ≤ 1) = 0.9011, P (0 ≤ xβ̂NLS ≤ 1) = 0.7857

*This column contains the empirical means and standard deviations of the
sample APEs at the true parameter values.

is correctly specified and, as predicted by the asymptotic properties given in Section 3, the

NLS estimator continues to perform well. The relative bias of probit and logit are higher as

well compared to the previous tables, but not to as high a degree as the LPM.

The findings in Table 10 are striking. Even though P (0 ≤ xβ ≤ 1) is high—around

0.95—and the OLS fitted values are very rarely outside the unit interval (only about 3.3

percent of the time), LPM/OLS is badly biased for the APEs and notably worse than other

methods. This would seem to go against the conventional wisdom of checking the proportion

of fitted values within [0, 1], and this confirms the second argument: having a large fraction

of OLS fitted values within the unit interval is not sufficient. Among the other estimators,

Ramp/NLS has a smaller bias in terms of both APEs, while probit and logit appear to have

small bias for the discrete APE, but higher bias for the continuous APE. With respect to the

performance of the LPM, the results with a normally distributed u and with an interaction

term are similar and so are skipped for brevity.
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Table 10. u ∼ Uniform(0, 1), x1 lognormal, x2 asym. binary; c = 0.75

N = 1000 Simulated LPM Ramp Probit Logit.
Truth* (OLS) (NLS) (QMLE) (QMLE)

APE1
mean 0.1776 0.1486 0.1796 0.2110 0.2111
sd 0.0013 0.0248 0.0345 0.0358 0.0378

APE2
mean 0.1828 0.1910 0.1829 0.1835 0.1835
sd 0.0007 0.0278 0.0282 0.0281 0.0285

P (y = 1) = 0.7413, P (0 ≤ xβ ≤ 1) = 0.9471

P (0 ≤ xβ̂OLS ≤ 1) = 0.9671, P (0 ≤ xβ̂NLS ≤ 1) = 0.9446

*This column contains the empirical means and standard deviations of the
sample APEs at the true parameter values.

5 Mortgage Approval Probabilities

As an illustration of linear and nonlinear estimators for binary response models, we revisit

the analysis of mortgage lending decisions from Hunter and Walker (1996).9 We compare

linear and nonlinear estimates of the average effect of being white on the probability of loan

approval, holding constant a number of loan, property, and borrower characteristics. Table

9 presents basic summary statistics for the dependent variable “approve” and 23 covariates.

For our index model, we include interactions between “white” and all other explanatory

variables to allow for the factors like loan amount and credit history to have a differential

impact on approval probability by group. Let w denote “white” and z be a vector including

the 22 other covariates, so that x = {1, z, w, wz} and β = {β0,βz, βw,βwz}, where β0 is the

intercept, βz and βw are the coefficients on z and w, respectively, while βwz is the coefficient

on wz. Then the partial effects we average are formed by evaluating the difference in the

probabilities evaluated at w = 1 and w = 0, respectively, as given below.

APEw = E [G(β0 + βw + z(βz + βwz))−G(β0 + zβz)] ,

where G() is either the identity function (for the LPM), the probit CDF, the logit CDF, or

the ramp function.

Table 10 presents the results. Using the LPM estimated by OLS, about 18% of obser-

vations have predicted probabilities outside the unit interval.10 The Horrace and Oaxaca

results then clearly imply OLS is inconsistent for the slope parameters if the ramp model is

9We use a version of the loan applications dataset provided by Mary Beth Walker for Wooldridge (2019).
10Within this 18%, 98% of observations had predicted values greater than 1.
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Table 9: Loan Approval Summary Statistics (N = 1989)
Variable Description Mean SD Skew. Kurt.

approve =1 if loan approved 0.88 0.33 -2.30 6.29
white =1 if white 0.85 0.36 -1.91 4.64
loanamt Loan amount $1000s 143.25 80.52 3.13 20.36
suffolk =1 if in Suffolk County 0.15 0.36 1.91 4.66
appinc Applicant income $1000s 84.68 87.06 5.26 36.70
unit Number of units in property 1.12 0.44 4.01 19.89
married =1 if applicant married 0.66 0.47 -0.67 1.45
dep Number of dependents 0.77 1.10 1.47 5.33
emp Years employed in line of work 0.21 1.00 6.69 50.57
yjob Years at this job 0.45 1.12 5.32 36.18
atotinc Total monthly income 5195.55 5269.06 6.36 65.34
self =1 if self employed 0.13 0.34 2.21 5.89
other Other financing $1000s 2.37 28.23 26.80 886.84
rep Number of credit reports 1.50 0.99 1.45 7.37
pubrec =1 if filed bankruptcy 0.07 0.25 3.40 12.59
hrat Housing expense % of total inc. 24.79 7.12 0.25 6.74
obrat Other obligations % of total inc. 32.39 8.26 0.44 7.40
cosign =1 if there is a cosigner 0.03 0.17 5.65 32.92
sch =1 if > 12 years schooling 0.77 0.42 -1.29 2.68
mortno =1 if no mortgage history 0.33 0.47 0.71 1.51
mortlat1 =1 if one or two late payments 0.02 0.14 7.03 50.36
mortlat2 =1 if more than two late payments 0.01 0.10 9.58 92.72
chist =0 if accounts are delinq. ≥60 days 0.84 0.37 -1.83 4.35
loanprc Loan amount / purchase price 0.77 0.19 0.44 14.39

correct. There is little reason to expect the LPM will approximate this APE, either based

on the theoretical results of Stoker (1986) or our simulation study. Many of the explanatory

variables are binary, and the continuous variables (e.g., income) tend to be skewed. For each

variable, normality is strongly rejected by a Jarque-Bera test (a joint test of the skewness

and kurtosis) with p-values well below 1%. The model also includes interactions between the

continuous variables and a binary variable. Using the LPM estimates, the APE for white is

5.3 percentage points and it is only marginally significant. Using the nonlinear estimators,

the APEs are each a bit larger at about 7.0 percentage points, and they are all significant

at the 1% level.

Interestingly, OLS predicts only 18% of observations with indexes outside the unit inter-

val, whereas NLS predicts nearly 40%, which follows the pattern of many of our simulations

from the previous section and suggests trimming the sample once is not sufficient to consis-
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Table 10: Estimates of the APE of “White” on Loan Approval
LPM Ramp Probit Logit

(OLS) (NLS) (QMLE) (QMLE)

Estimate 0.0532 0.0706 0.0695 0.0712
Robust SE 0.0278 0.0227 0.0220 0.0219
Mean Squared Error 0.1171 0.0839 0.0840 0.0837

Notes: There were only 1976 complete cases out of 1989 observa-
tions total. All robust standard errors were computed using the
sandwich forms and the delta method. The fraction of predicted
linear indexes within the unit interval is 0.8173 by OLS and 0.6027
by NLS.

tently estimate the parameters or APEs under the piecewise linear model.11 Of this 40%,

99% had NLS predicted linear indexes greater than 1 and most had high predicted prob-

abilities of approval regardless of the model or counterfactual race.12 Model selection by

the minimum mean squared error favors logit, though the other nonlinear models are very

similar.

6 Implications for Empirical Research

We have revisited the conclusions reached by Horrace and Oaxaca (2006) concerning the

ability of the linear projection parameters—consistently estimated by OLS—to recover in-

teresting parameters. We argue that Horrace and Oaxaca’s focus on the parameters in the

underlying index model is misguided; instead, one should focus on the APEs. Focusing on

the APEs is hardly controversial, as almost every modern study that employs any model

nonlinear in the explanatory variables reports estimated APEs.

Once the focus is on the APEs, a few useful conclusions emerge. First, having a high

of estimated response probabilities in [0, 1] is neither necessary nor sufficient for good per-

formance of the LPM. Notably, when the explanatory variables have a multivariate normal

distribution, the linear projection parameters are identical to the population APEs under a

11The reason we report the fraction of NLS predicted linear index outside 0 and 1 here is to illustrate what
proportion of observations would have been trimmed by the iterated trimming OLS procedure. We should
note that this quantity is not of essential interest just as the linear indexes in probit and logit models are
not.

12NLS drops these observations because they have predicted indexes outside the unit interval, not neces-
sarily because they have high leverage. In fact, under the logit model, the average Pregibon (1981) leverage
statistic for the 40% (“predict lev, hat” in Stata following logit estimation) was lower (0.008) than the average
for the included observations (0.033).
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general index model, and this is true even when the flat parts of the ramp function occur

with high probability, i.e. P (0 ≤ xβ ≤ 1) is small. In this case, the linear projection param-

eters, γj, will be greatly attenuated toward zero compared with the index parameters, βj.

We find that OLS estimation of the LPM continues to have good finite sample properties

for the APE in many cases when the covariates are symmetrically distributed. When the

explanatory variables have asymmetric distributions, however, the conclusions for the LPM

are not as sanguine—unless the support of xβ is contained entirely in the interval [0, 1].

Some simulations show that even if the probability of xβ being in the unit interval is high

(e.g. 97% in Table 10), the linear projection parameters are not very close to the true APEs.

For the DGPs we study, we also find the logit and probit models, estimated by quasi-

MLE (because the response probabilities are misspecified), tend to approximate the APEs

very well. Especially when the support of xβ is wide relative to [0, 1], the logit and probit

approximations to the APEs may be notably better than those for the LPM when the

covariates have asymmetric distributions, though this is not guaranteed. Although the ramp

function may not be particularly realistic as a model for the response probability, we have

shown that NLS estimation based on it is consistent (for the best MSE approximation to

the true response probability) and asymptotically normal. A nonlinear model, of course,

offers other advantages over the LPM, such as more realistic response probabilities and

nonconstant partial effects. Especially given the ease of modern computation, an implication

of our simulation findings is that researchers should generally try a nonlinear estimator, as

they may be more robust to covariate asymmetry and variance than OLS estimation of the

LPM.

To summarize, in evaluating different strategies, one needs to make sure we have carefully

defined the population quantities of interest, and then we make proper comparisons across

different approaches. We find probit, logit, and the ramp models have the best finite sample

properties for estimating the APEs across the model DGPs we study. However, when the

APEs are of interest, we also find the LPM is more widely applicable than a simple reading

of Horrace and Oaxaca might suggest. The conclusions drawn here are easily extended to

the case where y is a fractional response, where the limit values zero and one can occur

with positive probability. In particular, the results of Stoker (1986) apply to E (y|x). If this
conditional mean follows the same ramp function, the qualitative conclusions obtained in

the binary case will remain.
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Appendix

Proof of Theorem 2

Proof. We will obtain the asymptotic normality of the NLS estimator by applying Theorem

7.1 of Newey and McFadden (1994). Condition (i) and (ii) of Theorem 7.1 follows from our

assumptions. As we discussed in the main context, condition (iii) is satisfied as long as x

contains a continuous variables xj with nonzero βjo so that P (xiβo = 0 or xiβo = 1) = 0.

For condition (iv), notice that the first derivative of the object function is well defined at

βo with probability 1:

DN(βo) = ∇βQN(βo) =
1

N

N∑
i=1

x′
i(yi − xiβo)1{xiβo ∈ (0, 1)} =

1

N

N∑
i=1

x′
iui1{xiβo ∈ (0, 1)},

where ui = yi−R(xiβo). Since E∥x′
iui∥1{xiβo ∈ (0, 1)} < ∞ under the assumption E∥xi∥2 <

∞, the vector Lindberg-Levy CLT applies:

√
NDN(βo)

d→ N (0,Ω(βo)) ,

giving condition (iv). Lastly, for condition (v), following Newey and McFadden (1994), we

can rewrite

√
N [QN(β)−QN(βo)]

=
√
N [DN(βo)(β − βo) +Q(β)−Q(βo)] + ∥β − βo∥MN(β),

where MN(β) is the remainder term, defined as:

MN(β) =

√
N [QN(β)−QN(βo)−D′

N(βo)(β − βo)− (Q(β)−Q(βo))]

∥β − βo∥
.

Let UN be an neighborhood of βo: UN = {β ∈ B : ∥β − βo∥ < εN} where εN → 0.

Consider any β ∈ UN . Since DN(βo) is the gradient of QN(β) at βo, QN(β) − QN(βo) −
DN(βo)(β − βo) goes to zero faster than ∥β − βo∥ as β goes to βo, by the definition

of the gradient. Similarly, due to ∇βQ(βo) = E (si(βo)) = 0, Q(β) − Q(βo) goes to 0

faster than ∥β − βo∥ as β goes to βo. Under the moment conditions, we can easily show

QN(β) − Q(β) → 0 in probability for each β and so
√
N [QN(β) − Q(β)] is bounded in

probability for each β. Also note that
√
NDN(βo) is bounded in probability due to the
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asymptotic normality. Since the numerator is bounded in probability and converges to zero

faster than the denominator, we conclude that limN→∞ supβ∈UN
MN(β) → 0 in probability,

which implies condition (v).

Proof of Theorem 3

Proof. Consider Ω(β̂):

Ω(β̂) =
1

N

N∑
i=1

x′
ixi

(
yi −R(xiβ̂)

)2

1{xiβ̂ ∈ (0, 1)}

≡ 1

N

N∑
i=1

a(xi, β̂)

Note that E|yi − R(xiβ)|4 ≤ 1 for any β ∈ B since both yi and R(.) are naturally bounded

in [0, 1] with probability 1. Then, we have

E sup
β∈B

∥a(x,β)∥ ≤ (E ∥xi∥4E|yi −R(xiβ)|4)1/2 < ∞,

where the first inequality follows from Hölder’s inequality. Also note that a(xi,β) is contin-

uous at βo with probability one given that P (xiβo = 0) = P (xiβo = 1) = 0. Then, we can

apply Lemma 4.3 of Newey and McFadden (1994):

Ω(β̂) =
1

N

N∑
i=1

a(xi, β̂)
p→ E(a(xi,βo)) = Ω(βo).

Similarly, Lemma 4.3 also applies to AN(β̂) =
1
N

∑N
i=1 x

′
ixi1{xiβ̂ ∈ (0, 1)}:

plim
N→∞

1

N

N∑
i=1

1{xiβ̂ ∈ (0, 1)}x′
ixi = A(βo).

So, we conclude that

V̂ = AN(β̂)
−1ΩN(β̂)AN(β̂)

−1 p→ A(βo)
−1Ω(βo)A(βo)

−1.
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The Ramp Model with Variable Support

In this appendix, we modify and extend the Horrace and Oaxaca setup in order to show how

the constraint on the linear index through a ramp function can be interpreted as relating to

the support of the latent model error term. In particular, write

y∗ = xβ − u

u|x ∼ Uniform (−a, a) (6.1)

y = 1 [y∗ > 0]

for some a > 0. Compared with Horrace and Oaxaca, we have shifted the intercept so that

u has a symmetric distribution about its mean of zero. Also, we allow u to have narrow or

wide support, depending on a. The CDF for the Uniform
(
−
√
3,
√
3
)
distribution, which has

unit variance, is graphed in Figure 1.

Figure 1: The CDF of y with u|x ∼ U
(
−
√
3,
√
3
)
.

Given the latent variable model in (6.1), we can derive the response probability:

p (x) ≡ P (y = 1|x) = P (y∗ ≥ 0|x) = P (u ≥ −xβ|x) = P (u ≤ xβ|x) = Fu (xβ)

=


0, xβ < −a

xβ+a
2a

, −a ≤ xβ ≤ a

1, xβ > a
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We write this function as Fu (xβ) ≡ Ra (xβ), which is a ramp function that is nondiffer-

entiable at −a and a. For an xj with a positive coefficient, the response probability has the

same shape as in Figure 1.

As a increases relative to β, the response probability is linear over more of the support

of x. If

P (−a ≤ xβ ≤ a) = 1 (6.2)

then, with probability one, Ra (xβ) = (xβ + a) /2a, a linear function of x. In this case,

the partial effects are constant and equal to βj/2a, j = 2, ..., K. These are also the linear

projection parameters γj and so OLS consistently estimates the APEs under (6.2).

If xj is a continuous variable, we are interested in the APE defined as a derivative, which

exists with probability one when xβ is continuous. At xβ ∈ {−a, a} the definition of the

partial effect is immaterial. To be concrete, take

PEj (x) =
βj

2a
· 1 [−a ≤ xβ ≤ a] .

Notice that PEj (x) = 0 if xβ < −a or xβ > a because we are on one of the flat parts of

the ramp. This feature of PEj (x) is taken into account in computing the APE:

APEj = E [PEj (x)] =
βj

2a
· P (−a ≤ xβ ≤ a)

The case that aligns with Horrace and Oaxaca is a = 1/2—so that the Uniform (0, 1)

distributed has just been shifted to have zero mean—in which case |APEj| ≤
∣∣βj

∣∣, and the

difference between APEj and βj can be large. It is easily seen that |APEj| <
∣∣βj

∣∣ for any
a ≥ 1/2. In the extended model (6.1), depending on the values of a and P (−a ≤ xβ ≤ a),

|APEj| need not be smaller than
∣∣βj

∣∣.
While the latent error support parameter a is not separately identified from β, this model

can be a convenient device for generating data where the unit interval for probabilities is

binding to varying degrees.
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