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Hedonic Price Indexes under Static Pricing: 
An Application to PPI Microprocessors 
Brian Adams, University of Akron and Steven D. Sawyer, U.S. Bureau of Labor Statistics 

Abstract 

Price change for microprocessors largely coincides with product turnover. This static pricing challenges 

some price index methods and makes accounting for quality change paramount in designing price indexes. 

We evaluate the performance of several hedonic methods of quality adjustment under static pricing. We 

find the relative performance of these methods depends on sample size. For the small product samples 

feasible for microprocessors, the low variance of time-dummy hedonics gives them an advantage over 

less simple specifications, but with the potential downside of being more biased. 

1. Introduction 
A matched-model price index uses prices on the same set of products every period to separate changes 

in price from changes in the average quality of the product set. Product turnover complicates this.  

Discontinued products and new products often differ in quality from continuing products, making a 

sample of continuing products unrepresentative of all products.  This causes the well-documented 

“quality bias” in matched-model price indexes (National Research Council, 2002, chapter 4). 

The limitations of matched-model indexes are especially pronounced for microprocessors because price 

changes seldom happen during a product’s life. Instead, sellers change prices with the introduction of new 

products or the retirement of old products.  Adhering to a strict matched-model index methodology would 

yield constant price levels, no matter how drastically prices or product qualities differ for new models.   

Price indexes instead often employ some form of quality adjustment. One class of quality adjustment is 

based on hedonic regression, regressing price on observed product characteristics. (See Groshen et al 

(2017) for an overview of quality adjustment practices at U.S. statistical agencies.)  

A variety of hedonic approaches are extant in price index methodology, and theory does not provide clear 

guidance on which would perform best. Empirical comparisons of the performance of different hedonics 

methods are rare in any setting and were previously missing for settings with static pricing.1  We explore 

how different hedonic approaches behave under static pricing by running simulations. Specifically, we 

repeatedly generate product characteristics and prices, using real data to inform the distributions of 

random variables we use. We calculate several hedonic price indexes in each simulation.  

By comparing the price index results across simulations, we can find the distribution of price index 

estimates under each hedonic approach. Unlike typical Monte Carlo simulations that assume one model 

or data generating process, our Monte Carlo simulations assume prices for entering, exiting, and 

continuing microprocessors are governed by separate data generating processes.  These separate data 

generating processes allow us to reflect the pattern of unchanging prices for continuing goods, a pattern 

 
1 Many studies compare the results of different price index formulae to each other. McClelland (1996) and Adams 
and Klayman (2018) are among the few that simulate indexes and compare them to a trusted benchmark. 
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that Section 0 documents as prevalent in microprocessor pricing and one that is illustrated in Figure 1, 

where four microprocessors have the same price from their introductions until they are discontinued.  

Figure 1. Prices for Select Microprocessors 

 

Section 3 includes descriptions of the data and methodology and hedonic model specifications tests. The 

data generating processes, sample sizes, and other parameters of the Monte Carlo simulations are 

calibrated to wholesale semiconductor data from the United States.  Section 3.1 details the generation of 

simulated data. Section 3.2 describes the hedonic specifications we test and the benchmarks to which we 

compare them.  We calculate hedonic indexes on samples from this simulated population and measure 

differences from simulated population benchmarks. We use a time-dummy hedonic model with added 

exit and entry indicators to attempt to account for the three separate cohorts in the data generating 

process. 

Section 4 reports results.  Hedonic methods differ in the expected values of their inflation rates.  Thus, if 

one model is considered the true measurement objective, then the others would be considered biased.    

We find that the performance of the different hedonics varies based on sample size and which hedonic is 

chosen as a benchmark.  Yet, for small samples, a simple time-dummy hedonic more closely tracks all the 

simulated population benchmarks we calculate.  On small samples, it even outperforms indexes that share 

their index formula with the benchmarks. 

Section 5 concludes by identifying implications of applying the results into the Producer Price Index (PPI).  

Critical considerations are the size of samples and an understanding of the underlying data generating 

process.   More broadly, Monte Carlo simulations are a valuable tool to show the properties of different 

hedonic methods and model specifications. 
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2. Data 
We parameterize Monte Carlo simulations with prices and characteristics data for wholesale 

microprocessors from Intel, the same data source used by Sawyer and So (2018) and Byrne et. al (2018).  

The data downloaded from their website include a price for a 1,000-chip direct shipment and seven 

product characteristics: number of cores, number of threads, thermal design power, base frequency, 

turbo frequency, cache size, and graphical processing execution units (for semiconductors with an 

integrated graphics processing unit).  In addition, we use the PassMark performance score for each 

microprocessor.2   

We highlight one pair of quarters in the Monte Carlo simulations, 2017 Q3 - 2017 Q4.  We then check the 

robustness of our results with parameters from 2015 Q3 – 2015 Q4, 2014 Q2 – 2014 Q3, and 2012 Q3 – 

2012 Q4.  Running the simulations on multiple pairs of quarters allows us to see if the performance of the 

different indexes remains consistent on different data.  Thus, we can reduce the chance that the 

performance of an index comes from the idiosyncrasies of one pair of quarters.  The pool of data we chose 

from was between 2010 and 2020.  The four pairs of quarters we selected each have at least five 

microprocessors exiting and entering.  This fact is important because price change comes from entry and 

exit and many pairs of quarters had little to no exit or entry.    Quarters without exit and entry have little 

price change, and any price change could be measured with a matched-model index.  The quarters we 

selected also spanned the range of available quarters, which would help show the performance of 

different indexes with respect to any changes in technology or market conditions over time. 

Our pool of data covers a period where the pricing behavior for microprocessors changed.  Prior to 2010, 

the prices of existing microprocessors would fall when a new microprocessor was introduced (Flamm, 

2017). Still, Aizcorbe (2005) estimates adjustments for quality improvements contributed more to declines 

in microprocessor price indexes than price movements.   After 2010, the prices of existing microprocessors 

would tend to remain the same when a new microprocessor was introduced. Byrne et al (2017) noted 

that all microprocessors introduced in 2000 and 2001, had price changes within four quarters; yet, only 

20 percent of microprocessors introduced from 2010 to 2013 saw a price change.  This behavior is not 

unique to microprocessors; price changes largely coinciding with product turnover have been identified 

in cloud computing services (Sawyer and O’Bryan, 2023) and mobile phones (Aizcorbe et al, 2020). High 

degrees of price rigidity, if not fully static pricing, have been documented more widely.  Carlton (1986) 

identified broad sectors in which the average price duration exceeds one year. Subsequent studies, 

reviewed in Alvarez (2008), find less frequent than annual price changes in a substantial fraction of 

products in a variety of countries and periods. 

The number of continuing microprocessors with price changes trended downward (see Table 1).  For 2009 

Q1 – 2009 Q2 through 2012 Q4 – 2013 Q1, 75 percent of pairs of quarters had at least one continuing 

microprocessor with a price change.  For 2013 Q1 – 2013 Q2 through 2015 Q4 – 2016 Q1, it was 50 

percent.  For 2016 Q1 – 2016 Q2 through 2019 Q3 – 2019 Q4, it was 27 percent.  

Table 1. Microprocessor Vintage Counts 

Interval 
Exiting 

products 
Entering 
products 

Continuing 
products  

Continuing products 
with price changes 

 
2 For more details on the PassMark performance score, see Sawyer and So (2018) 
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2009 Q1 – 2009 Q2 5 1 24 1 

2009 Q2- 2009 Q3 2 5 23 8 

2009 Q3 – 2009 Q4 3 7 25 1 

2009 Q4 – 2010 Q1 0 13 32 3 

2010 Q1 – 2010 Q2 9 4 36 0 

2010 Q2 – 2010 Q3 3 8 37 4 

2010 Q3 – 2010 Q4 3 4 42 4 

2010 Q4 – 2011 Q1 3 17 43 2 

2011 Q1 – 2011 Q2 0 0 60 0 

2011 Q2 – 2011 Q3 17 7 43 0 

2011 Q3 – 2011 Q4 0 13 50 8 

2011 Q4 – 2012 Q1 35 7 28 0 

2012 Q1 – 2012 Q2 0 0 35 2 

2012 Q2 – 2012 Q3 0 21 35 3 

2012 Q3 – 2012 Q4 17 15 39 3 

2012 Q4 – 2013 Q1 1 9 53 1 

2013 Q1 – 2013 Q2 26 0 36 0 

2013 Q2 – 2013 Q3 0 23 36 4 

2013 Q3 – 2013 Q4 0 20 59 1 

2013 Q4 – 2014 Q1 3 3 76 4 

2014 Q1 – 2014 Q2 0 26 79 0 

2014 Q2 – 2014 Q3 23 14 82 2 

2014 Q3 – 2014 Q4 0 3 96 2 

2014 Q4 – 2015 Q1 0 0 99 0 

2015 Q1 – 2015 Q2 0 8 99 2 

2015 Q2 – 2015 Q3 0 5 107 0 

2015 Q3 – 2015 Q4 21 20 91 0 

2015 Q4 – 2016 Q1 0 8 111 0 

2016 Q1 – 2016 Q2 0 0 119 0 

2016 Q2 – 2016 Q3 0 4 119 0 

2016 Q3 – 2016 Q4 0 2 123 0 

2016 Q4 – 2017 Q1 0 23 125 0 

2017 Q1 – 2017 Q2 60 0 88 0 

2017 Q2 – 2017 Q3 1 5 87 0 

2017 Q3 – 2017 Q4 13 12 79 0 

2017 Q4 – 2018 Q1 0 0 91 0 

2018 Q1 – 2018 Q2 18 18 73 1 

2018 Q2 – 2018 Q3 4 1 87 1 

2018 Q3 – 2018 Q4 24 3 64 0 

2018 Q4 – 2019 Q1 1 12 66 0 

2019 Q1 – 2019 Q2 0 18 78 3 

2019 Q2 – 2019 Q3 12 2 84 0 

2019 Q3 – 2019 Q4 0 0 86 8 
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While price changes for continuing microprocessors were becoming less common, the quality of 

microprocessors continued to improve. For example, Intel introduced its i3-2100 in 2011 Q1 and 

discontinued it in 2013Q1, when it introduced the i3-3210. Both the i3-2100 and i3-3210 featured 2 cores 

and 3 MB of cache, but the newer i3-3210 was faster (with a base frequency of 3.20 GHz instead of 3.10 

GHz) and drew less power (with a thermal design power of 55 W instead of 65 W). The i3-2100 was listed 

at $120 from its introduction until its discontinuation. The i3-3210 then entered at a lower price, $117. 

As another example, Intel introduced the i5-6400 in 2015 Q3 at a price of $182. In 2017 Q1, it introduced 

its replacement, the i5-7400, at the same price. Yet, the i5-7400 was faster (with a base frequency 3.0 GHz 

instead of 2.7 GHz turbo frequency of 3.5 GHz instead of 3.3GHz), while remaining a 4-core processor with 

the same cache (6 MB) and thermal design power (65 W). 

Such product improvements within a set price level were widespread. The mean PassMark score for Intel’s 

product offering rose from 3,484 in 2009 Q1 to 11,221 in 2019 Q4 for microprocessors priced between 

$200 and $299. For microprocessors between $300 and $399, the mean PassMark score rose from 4,221 

to 13,712. 

The eight product characteristics have a high degree of explanatory power for price. Table 2 presents 

regression results of log characteristics on log price in 2017 Q3 and 2017 Q4. Column 1 of Table 2 includes 

a time dummy indicating the second period (2017 Q4). Column 2 adds indicators for products in their first 

quarter and products in their last quarter. In both specifications, logged values of the number of cores, 

number of threads, cache per core, and turbo frequency are highly significant. All product characteristics 

except the PassMark score have coefficients with the expected sign. In the time-dummy specification 

(presented in Column 1), the negative time-dummy indicates price deflation. When entry and exit 

indicators are added in Column 2, the time-dummy measures price change among continuing products, 

which is zero, as prices and characteristics are static for continuing products. 

The regression presented in Column 1 of Table 2 approximates the regression used to calculate the U.S. 

Producer Price Index for Microprocessors, but the U.S. PPI selects a subset of regressors similar to Sawyer 

and So (2018) and excludes microprocessors more than 15 months old. 

Table 2. Time Dummy Hedonic Regression using full sample, 2017 Q3 - 2017 Q4 

 Dependent variable: 

 Log price 
 (1) (2) 

Log PassMark -0.195 -0.354** 

Standard error (0.173) (0.171) 

Log base frequency 0.228 0.262 

Standard error (0.221) (0.214) 

Log turbo frequency 0.213*** 0.234*** 

Standard error (0.077) (0.074) 

Log threads 0.567*** 0.625*** 

Standard error (0.101) (0.098) 
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Log cores 1.105*** 1.225*** 

Standard error (0.137) (0.134) 

Log (cache/cores) 0.609*** 0.632*** 

Standard error (0.088) (0.085) 

Log TDP -0.130 -0.057 

Standard error (0.088) (0.087) 

Log graphics 0.052* 0.081*** 

Standard error (0.030) (0.030) 

Time dummy -0.026 -0.000 

Standard error (0.036) (0.037) 

Enter dummy  -0.315*** 

Standard error  (0.077) 

Exit dummy  -0.068 

Standard error  (0.072) 

Constant 4.322*** 5.062*** 

Standard error (0.927) (0.911) 

Observations 183 183 

R2 0.921 0.928 

Adjusted R2 0.917 0.924 

Residual Std. Error 0.240 (df = 173) 0.229 (df = 171) 

F Statistic 223.584*** (df = 9; 173) 201.111*** (df = 11; 171) 

 *p<0.1; **p<0.05; ***p<0.01 

 

3. Methods 

3.1. Simulated Data Generating Processes 
Consider a two-period model in which some products exit after the first period, some enter for the second 

period, and some continue in the market in both periods.  Let products be indexed by 𝑖 ∈ 𝐼.  Let A denote 

the set of exiting products, B the entering products, and C the continuing products.  Together 𝐴, 𝐵, and 𝐶 

partition 𝐼.  Each product 𝑖 has unchanging, observable characteristics 𝑋𝑖.   

We simulate populations and samples for exiting, continuing, and entering products separately.  

Multivariate normal distributions generate the populations and samples.  The parameters of the 

distributions are the means of the prices and characteristics, and the covariances of the prices and 

characteristics of the actual data. 

In the first period, no products from B have yet entered.  First-period log prices and characteristics for 

exiting and continuing goods are given by joint-normal distributions: 
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𝑙𝑜𝑔(𝑝𝑟𝑖𝑐𝑒𝐴), 𝑋𝐴 = 𝒩(𝜇𝐴, ∑𝐴) 

( 1 ) 

𝑙𝑜𝑔(𝑝𝑟𝑖𝑐𝑒𝐶), 𝑋𝐶 = 𝒩(𝜇𝐶 , ∑𝐶) 

( 2 ) 

Prices for continuing goods remain the same in the second period.  Products from A exited by the second 

period.  Log prices and characteristics for entering goods are given by: 

𝑙𝑜𝑔(𝑝𝑟𝑖𝑐𝑒𝐵), 𝑋𝐵 = 𝒩(𝜇𝐵, ∑𝐵) 

( 3 ) 

For 2017 Q3 – 2017 Q4 and 2015 Q3 – 2015 Q4, none of the continuing products have price change.  For 

2014 Q2 – 2014 Q3 and 2012 Q3 – 2012 Q4, we constrain the continuing products to have static prices by 

calculating the arithmetic mean of each continuing products price from each period, and having that mean 

be the price for each period. 

3.2. Price Index Specifications 
No single pricing function is dictated by model assumptions.  Although Monte Carlo exercises can simulate 

the true pricing model, the “true” inflation rate depends on formula choice and weighting.  An exact cost-

of-living index would require assuming a demand model, for example. Likewise, specific production 

functions would need to be assumed to calculate a fixed-input output price index.  Because products are 

entering and exiting the index, even a superlative index may not approximate any exact price index.   

Nevertheless, the observational relationship between prices and characteristics can still be estimated.  A 

hedonic index may be useful as a summary statistic, even if it lacks a clear structural interpretation.  The 

usefulness of a particular hedonic index may depend on how well it can be estimated with the sample 

available.  To investigate, we create a large population with our data generating process.  We then create 

samples from that same data generating process and calculate several hedonic price indexes. 

For any price index formula choice, we can calculate inflation rates in the large, simulated populations 

and in the small samples.  (The data generation process was calibrated with real data, and the inflation 

rates in the large populations are near the inflation rates in the real data for all the formulae we 

investigate.)  Each sample draw produces a different small sample and, therefore, a different inflation rate 

for a given formula.  With repeated draws, we can estimate the variance of the inflation rates.  We also 

can estimate the average difference from large-population inflation rate from that formula or from any 

other benchmark.  We examine several price index formulae.  

Because all the price index formulae we use estimate quality-adjusted price with the ratio of log prices, 

we must correct for the bias that is introduced from transforming log price ratios to price ratios.  The first 

step of this process is to take the mean of the summation of exponentiated residuals: 

𝜏̂𝑡 = 𝑁𝑡
-1 ∑ 𝑒∈𝑖𝑡

𝑁𝑡

𝑖=1
 

( 4 ) 
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where ∈𝑖𝑡 is the regression error for product 𝑖 in time 𝑡 and 𝑁𝑡 is the number of products in a period.  

Taking equation ( 4 ), the bias adjustment term is 

𝜏̂2

𝜏̂1
 

( 5 ) 

The first index formula is a time-dummy index.  This index is an OLS regression with product characteristics 

and a time-dummy variable for whether an observation is from period 1 or period 2; the time dummy 

gives a direct measure of price change between the periods and the product characteristics account for 

changes in the products.  The regression model is 

𝑙𝑛(𝑝𝑖𝑡) = 𝛼 + 𝛽𝑋𝑖  + 𝛿𝐼(𝑡 = 2) + 𝜖 

( 6 ) 

The index change from period 1 to 2 is  

(𝑒𝛿̂ − 1) +
𝜏̂2

𝜏̂1
 

( 7 ) 

This index is currently used for PPI Microprocessors.  It constrains the characteristic coefficients to be the 

same for both periods.  The exiting and continuing products have the same intercept and the continuing 

and entering products have the same intercept (the time dummy).  Neither feature reflects the data 

generating process.  The time-dummy index has the advantage of only having one model estimated on 

the dataset. 

The second index formula is an OLS regression that includes time, exiting good, and entering good 

coefficients along with characteristic coefficients. The regression equation is  

ln(pit) = α + β𝑋𝑖  + γAΠ(i ∈ A) + γBΠ(i ∈ B) + δΠ(t = 2) + ϵ 

( 8 ) 

The results of such a regression could produce price indexes in several ways.  If the entry and exit 

indicators are proxies for unobserved characteristics, then when the continuing products have price 

change, it would be shown by the time-dummy coefficient.  However, if none of the continuing products 

have price change, the time-dummy coefficient is zero.  In this scenario, we would be able to measure 

constant quality price change from exit and entry of products, which is what we often observe with 

microprocessors. 

Instead, we use the exit, time, and entry dummy coefficients to construct price relatives weighted by the 

proportion of exiting, entering, and continuing microprocessors.  The index change from period 1 to 2 is 
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(e(
#𝐴

#𝐴+#𝐵+#𝐶
∗𝛿̂−𝛾̂𝐴)+(

#𝐵
#𝐴+#𝐵+#𝐶

∗𝛾̂𝐵+𝛿̂)+(
#C

#A+#B+#C
∗𝛿̂)) − 1) +

𝜏̂2

𝜏̂1
 

( 9 ) 

Like the time-dummy index, the time-dummy with exit and entry indicators has the same characteristic 

coefficients for all products.  Unlike the time-dummy index, however, the time-dummy with exit and entry 

indicators index has separate intercepts for exiting, continuing, and entering products. 

The two-period hedonic imputation index estimates separate OLS regressions on period 1 and 2.  The 

regressions are used to impute prices for all products in their respective time periods.  The imputed log 

prices are used to make price ratios that are aggregated into a price index, in this case using a Jevons 

index.   

The period 1 regression model is 

𝑙𝑛(𝑝𝑖1) = 𝛼1 + 𝛽1𝑋𝑖1 + 𝜖1 

( 10 ) 

The period 2 regression model is 

𝑙𝑛(𝑝𝑖2) = 𝛼2 + 𝛽2𝑋𝑖2 + 𝜖2 

( 11 ) 

The index change from period 1 to 2 is 

(e
(

∑ 𝑙𝑜𝑔(𝑝𝑖2)̂ −𝑙𝑜𝑔(𝑝𝑖1)̂#𝐴+#𝐵+#𝐶
𝑖=1

#𝐴+#𝐵+#𝐶
)

− 1) +
𝜏̂2

𝜏̂1
 

( 12 ) 

The advantage of this method is that period 1 and period 2 have separate intercepts and coefficients.  

Also, there are enough degrees of freedom in periods 1 and 2 to support models with all 8 variables.  The 

disadvantages are that the exiting and continuing products in period 1 have the same intercepts and 

coefficients and the continuing and entering products in period 2 have the same coefficients and 

intercepts. 

The third, and last index is the two-period hedonic imputation with Exit and Entry indicators index.  This 

index estimates separate OLS regressions on periods 1 and 2.  The regressions are used to impute prices 

for all products in their respective time periods.  The imputed prices are used to make price ratios that 

are aggregated into a price index.  The period 1 regression has an exit indicator, and the period 2 

regression has an entry indicator. 

The period 1 regression model is 

𝑙𝑛(𝑝𝑖1) = 𝛼1 + 𝛾𝐴 + 𝛽1𝑋𝑖1 + 𝜖1 

( 13 ) 
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The period 2 regression model is 

𝑙𝑛(𝑝𝑖2) = 𝛼2 + 𝛾𝐵 + 𝛽2𝑋𝑖2 + 𝜖2 

( 14 ) 

The index change from period 1 to 2 is 

(e
(

∑ 𝑙𝑛(𝑝𝑖2)̂ −𝑙𝑛(𝑝𝑖1)̂#𝐴+#𝐵+#𝐶
𝑖=1

#𝐴+#𝐵+#𝐶
)

− 1) +
𝜏̂2

𝜏̂1
 

( 15 ) 

 

The advantage of this method is that period 1 and period 2 have separate intercepts and coefficients.  

Also, there are enough degrees of freedom in periods 1 and 2 to support models with all 8 variables.  In 

the first period regression, the exiting products and continuing products have the same coefficients, but 

different intercepts.  In the second period regression, the continuing products and entering products have 

the same coefficients but different intercepts. The weighting for the time-dummy with exit and entry 

indicators index and both two-period hedonic imputation indexes is the same. 

We do not simulate the two-step method of Erickson and Pakes (2011). Although it is still one of the 

frontier methods for addressing unobserved quality change in price indexes, estimation in Erickson and 

Pakes (2011) relies on price change in continuing goods. Under static pricing, its two stages cancel each 

other exactly. 

4. Monte Carlo Results 

4.1. Simulated data the same size as the actual data 
Our main simulation was run with parameters set to match microprocessors in 2017 Q3 - 2017 Q4.  

Thirteen microprocessor models exited the market after 2017 Q3, and 12 were introduced in 2017 Q4.  

We calibrate 𝜇𝐴, ∑𝐴, 𝜇𝐵 , ∑𝐵, 𝜇𝐶 , ∑𝐶  in equations 1-3 to the means and covariance matrices observed 

in the price and characteristics for exiting, entering, and continuing goods.  We generate simulated 

populations 1,000 times larger than the actual number of observations using the data generating process.  

For all the price index formulae we examine, the calculated inflation rates are nearly identical in the 

simulated populations and raw data.  We then sample these simulated populations to have the same 

number of observations as the actual data. 

Each price index formula gives a different inflation rate, as shown in Table 3. All the indexes, except the 

matched-model index, show price decline.  The target index for the time-dummy with exit and entry 

indicators shows the largest decline while the time-dummy target index shows the smallest decline. Entry 

and exit indicators give both the time-dummy and hedonically-imputed Jevons index a more negative 

inflation rate, which is consistent with the idea that the proxy for some otherwise unobserved quality that 

is higher in entering products and lower in exiting products.  Yet, without assuming a utility function or 

production function, no formula has a special claim to giving the one true inflation rate.   
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Table 3. 2017 Q3 – 2017 Q4 Actual, Target, and Means of Simulation Indexes 

 Price change computed from: 

 Formula Actual data  
Simulated 
population 

Means of small-sample 
simulations 

Matched-model 0.0000 0.0000 0.0000 

Time dummy -0.0166 -0.0163 -0.0159 

Time dummy w/ exit and entry -0.0211 -0.0208 -0.0218 

Jevons index -0.0186 -0.0178 -0.0186 

Jevons w/ exit and entry -0.0190 -0.0182 -0.0194 

 

We take each formula’s inflation rate (as calculated from the full simulated population) as a target and 
measure the difference with inflation rates in individual small-sample simulations using all the different 
formulae.  We call this difference error, and we calculate root mean squared error (RMSE) for each pairing 
of a target index and an evaluated index.  For all targets, the time-dummy index has the lowest RMSE, as 

shown in Table 4.   

 

Table 4. 2017 Q3 – 2017 Q4 RMSE 

 
  Evaluated Index   

Target index 
Matched-

model 
Time 

dummy 

Time 
dummy 
w/exit 

& entry 

Jevons 
index 

Jevons 
w/exit & 

entry 

Time dummy 0.0163 0.0113 0.0151 0.0146 0.0160 

Time dummy w/exit & entry 0.0208 0.0123 0.0142 0.0146 0.0158 

Jevons index 0.0178 0.0115 0.0147 0.0145 0.0158 

Jevons index w/exit & entry 0.0182 0.0116 0.0146 0.0144 0.0158 

Minimum in Bold      
 
 

4.2. Simulated data with varying sample sizes 
The time-dummy hedonic warrants greater attention because it is currently used in the PPI 

microprocessors index.  To better understand why the time-dummy hedonic consistently outperforms the 

other hedonics, we created simulations of different sample sizes using 2017 Q3 – 2017 Q4 data to see 

how the variance and bias (and accordingly, the RMSE) change as the sample size changes.  We also 

include the time-dummy with exit and entry indicators in this second set of simulations because this index 

shows greater price change than the time-dummy, but worse performance when measured by their 

respective RMSEs.  This greater price change is consistent with the exit and entry indicators capturing 

quality adjusted price change missed by the time-dummy alone, as we would expect from the data 

generation process. 
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Figure 2. RMSE with Time, Exit, and Entry Dummy Target, 2017 Q3 – 2017 Q4 

 

 

Starting with the time-dummy with exit and entry indicators as the target, Figure 2 shows the RMSE for 

both the time-dummy and time-dummy with exit and entry indicators rises as the sample size decreases, 

with the time-dummy with exit and entry indicators having better performance until about a sample size 

of 500 observations. 

 

 

 

 

 

 

 

 

 

 

 

 



13 
 

Figure 3. Comparison of Variance for Simulated Populations, 2017 Q3 – 2017 Q4 

 

Looking at the variance for different sample sizes for the two types of indexes, Figure 3 shows the time-

dummy always has a lower variance for a given sample size, and as sample size decreases, the variance of 

the time dummy with exit and entry indicators increases at a faster rate.   

Figure 4. Comparison of Finite Sample Bias for Simulated Populations, 2017 Q3 – 2017 Q4 
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Both hedonics in Figure 4 show bias against their simulated population target as sample size decreases, 

but the size of the bias is relatively small. 

The superior performance of the time dummy hedonic, even measured against target indexes produced 

by other hedonics, is because of the time dummy’s relatively low variance.  As sample size increases and 

variance decreases, this advantage disappears. 

4.3. Simulations based on other periods 
To verify the robustness of the above results, we repeated the simulations on three additional pairs of 

quarters. In 2015 Q3 – Q4, 2014 Q2 – Q3, and 2012 Q2 – Q3, similar patterns are found. Tables 5, 6, and 

7 parallel Table 3 in giving price changes calculated by the various formulas on actual data, on a simulated 

population (calibrated as described in Section 3, like before), and on small samples drawn from the 

simulated population (as before).   

 

Matched-model indexes register no price change when there are no prices change on continuing goods, 

as in 2015 Q3-Q4 (Table 5) and 2012 Q2-Q3 (Table 7). As mentioned in section 3.1, in 2014 Q2-Q3, two 

continuing products had price change, and so a matched model calculated actual data has a small decrease 

(leftmost column in Table 6). Because we evaluate static pricing scenarios, we replace the 2014 Q2 and 

2014 Q3 prices for these products with their two-period mean price before calibrating the simulations.   

 

Table 5. 2015 Q3 – 2015 Q4 Actual, Target, and Means of Simulation Indexes 

 Price change computed from: 

 Formula Actual data  
Simulated 
population 

Means of 
small-sample 
simulations 

Matched-model 0.0000 0.0000 0.0000 

Time dummy -0.0163 -0.0165 -0.0159 

Time dummy w/ exit and entry -0.0194 -0.0195 -0.0194 

Jevons index -0.0159 -0.0160 -0.0159 

Jevons index w/ exit and entry -0.0186 -0.0188 -0.0188 

 

Table 6. 2014 Q2 – 2014 Q3 Actual, Target, and Means of Simulation Indexes 

 Price change calculated from: 

 Formula 
Actual 
data  

Simulated 
population 

Means of 
small-sample 
simulations 

Matched-model -0.0026 0.0000 0.0000 

Time dummy -0.0108 -0.0083 -0.0078 

Time dummy w/ exit and entry -0.0112 -0.0092 -0.0093 

Jevons index -0.0122 -0.0111 -0.0112 

Jevons index w/ exit and entry -0.0112 -0.0100 -0.0103 
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Table 7. 2012 Q3 – 2012 Q4 Actual, Target, and Means of Simulation Indexes 

 Price change calculated from: 

 Formula 
Actual 
data 

Simulated 

population 

Means of 
small-

sample 
simulations 

Matched-model 0.0000 0.0000 0.0000 

Time dummy -0.0391 -0.0390 -0.0356 

Time dummy w/ exit and entry -0.0414 -0.0410 -0.0402 

Jevons index -0.0352 -0.0359 -0.0348 

Jevons index w/ exit and entry -0.0361 -0.0365 -0.0358 

 

 

The rest of the index formulae show price deflation, with magnitudes differing by a several tenths of a 

percentage point. In 2015 Q3-Q4, deflation measurements vary from -1.59 to -1.94 percent among the 

four hedonic indexes (Table 5). In 2012 Q2-Q3, deflation is steeper and measures diverge more, ranging 

from -3.52 to -4.14 percent (Table 7).  The time dummy with exit and entry indicators indicates the 

steepest deflation in 2015 Q3-Q4 and 2014 Q2-Q3.  

 

Simulations reveal how the imprecision of small sample estimates also varies between models.  Tables 8, 

9, and 10 parallel Table 4 in displaying the root mean square of difference between the inflation rate 

calculated by the target index formula on the full simulated population and rate calculated the evaluated 

index on a small sample. In the simulations based on 2015 data (displayed in Table 8) and 2012 data 

(displayed in Table 10) the simpler time dummy index has the lowest mean squared error for all target 

indexes. In all periods adding entry and exit indicators to our time-dummy index increased mean squared 

error, even for targets based on formulae with entry and exit indicators (compare the second and third 

columns in Tables 8, 9, and 10). In the 2015-based simulations, adding entry and exit indicators to the 

Jevons specification increases mean squared error no matter the target from which it is computed. In the 

2014-based simulation (displayed in Table 9), deflation was small enough that the matched model, with 

its zero inflation, was sometimes closer to the full population rates than any of the small sample hedonic 

index estimates. Only when the target index was the full population Jevons index did one of the hedonic 

indexes have a lower mean squared error. That hedonic index was the simple time dummy rather than 

the small sample Jevons index itself. Thus, in all periods we analyzed the time dummy hedonic had the 

lowest squared error of any of the hedonics run on small samples.  
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Table 8. 2015 Q3 – 2015 Q4 RMSE 

  Evaluated Index   

Target index 
Matched-

model 
Time 

dummy 

Time dummy 
w/exit & 

entry 

Jevons 
index 

Jevons index 
w/exit & 

entry 

Time dummy 0.0165 0.0076 0.0101 0.0089 0.0103 

Time dummy w/exit & entry 0.0195 0.0084 0.0096 0.0095 0.0101 

Jevons index 0.0160 0.0076 0.0102 0.0089 0.0104 

Jevons index w/exit & entry 0.0188 0.0081 0.0097 0.0093 0.0100 

Minimum in Bold      
 

 

 

Table 9. 2014 Q2 – 2014 Q3 RMSE 

  Evaluated Index   

Target index 
Matched-

model 
Time 

dummy 

Time 
dummy 
w/exit & 

entry 

Jevons 
index 

Jevons 
index 

w/exit & 
entry 

Time dummy 0.0083 0.0098 0.0118 0.0167 0.0156 

Time dummy w/exit & entry 0.0092 0.0099 0.0117 0.0165 0.0155 

Jevons index 0.0111 0.0103 0.0118 0.0164 0.0155 

Jevons index w/exit & entry 0.0100 0.0101 0.0117 0.0165 0.0155 

Minimum in Bold      
 

 

Table 10. 2012 Q3 – 2012 Q4 RMSE 

  Evaluated Index   

Target index 
Matched-

model 
Time 

dummy 

Time dummy 
w/exit & 

entry 

Jevons 
index 

Jevons index 
w/exit & entry 

Time dummy 0.0390 0.0154 0.0160 0.0196 0.0194 

Time dummy w/exit & entry 0.0410 0.0159 0.0159 0.0202 0.0198 

Jevons index 0.0359 0.0150 0.0165 0.0192 0.0192 

Jevons index w/exit & entry 0.0365 0.0150 0.0163 0.0193 0.0192 

Minimum in Bold      
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5. Conclusion 
Static pricing is a central feature of the microprocessor market we study. The lack of price changes on 

continuing products violates the assumptions of some common models. Instead, a data generating 

process that allows for static pricing is needed to evaluate price index performance. 

For small sample sizes (like those often found in the PPI), the pure time-dummy hedonic has lower 

variance and lower MSE than other specifications, regardless of the population index benchmark from 

which that error is computed. If it is thought that entry and exit indicators control for unobserved quality 

changes, then the time dummy with entry and exit indicators calculated on the full simulated population 

might be the preferred benchmark. Such a benchmark reveals a bias-variance tradeoff. If that were the 

true inflation rate, then the pure time-dummy hedonic would be biased, but on small samples would give 

lower MSE than even the time-dummy with entry and exit itself. 

With the multitude of different hedonic methods and potential combinations of variables, judgmental 

selection of a hedonic is difficult.  Monte Carlo simulations can bring new facts to light and add 

transparency to the evaluation of different hedonic options. Simulations allow different hedonic methods 

and specifications to be evaluated against a range of target indexes. For microprocessors during this 

period, sample size affects performance of different specifications so greatly that even the choice of which 

formula’s benchmark to target became secondary. In our case, a much larger sample would be needed 

for a time-dummy with entry and exit indicators to have lower MSE even if the model with entry and exit 

indicator is assumed to better fit the data generating process.  Because the performance of hedonic index 

variations is so situationally specific, Monte Carlo simulations can be a valuable tool in evaluating and 

applying hedonics for price index analysts, such as those in the PPI.   
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