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Abstract: Quasi-randomization approaches estimate latent participation
probabilities for units from a nonprobability / convenience sample. Es-
timation of participation probabilities for convenience units allows their
combination with units from the randomized survey sample to form a sur-
vey weighted domain estimate. One leverages convenience units for domain
estimation under the expectation that estimation precision and bias will
improve relative to solely using the survey sample; however, convenience
sample units that are very different in their covariate support from the
survey sample units may inflate estimation bias or variance. This paper de-
velops a method to threshold or exclude convenience units to minimize the
variance of the resulting survey weighted domain estimator. We compare
our thresholding method with other thresholding constructions in a simu-
lation study for two classes of datasets based on degree of overlap between
survey and convenience samples on covariate support. We reveal that ex-
cluding convenience units that each express a low probability of appearing
in both reference and convenience samples reduces estimation error.

Keywords and phrases: Survey sampling, Nonprobability sampling, Data
combining, Inclusion probabilities, Thresholding units, Bayesian hierarchi-
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1. Introduction

Declining response rates for randomized survey instruments administered by
government statistical agencies have encouraged the development of quasi-randomization
processes such as those of Wu (2022); Wang et al. (2021); Savitsky et al. (2023)
that leverage a nonrandom convenience sample that includes responses for co-
variates that overlap those measured by the randomized survey or reference
sample. Directly combining responses for units participating in the convenience
sample with those selected into the randomized or reference sample may be
expected to induce bias for inference about an underlying latent population
precisely because the convenience sample is not generally representative of that
population.

Quasi-randomization methods propose model formulations to estimate the
convenience sample unit marginal participation probabilities as if the conve-
nience sample is realized from a latent or unknown selection process. Quasi-
randomization uses the reference sample and associated known inclusion prob-
abilities to provide information about the underlying sampling frame that is, in
turn, used to estimate convenience sample inclusion probabilities. The goal in
using a statistical model to estimate the convenience sample inclusion probabil-
ities is to allow inclusion of the convenience sample units to produce a domain
estimator (e.g., employment for computer services in New York city) with min-
imal bias. Beresovsky et al. (2024) provides a comprehensive overview of quasi-
randomization methods and compares the variance performances of a collection
of methods for domain estimation.

Yet, because the convenience sample derives from an opt-in or self-initiated
participation process there will typically be some units in the realized conve-
nience sample that are very different from those represented in the randomized
reference sample. To be precise, there may be some units in the convenience
samples whose covariate values don’t well overlap those for the reference sam-
ple. The low overlap of covariate values for those convenience units with the
reference sample provides less information to estimate associated participation
probabilities for them, which produces estimates with large errors. Including
these low overlap convenience units along with reference units to formulate a
domain estimator would be expected to inflate bias and variance rather than
reduce it. The error inflating effect of these low overlap convenience units on the
domain estimator would partially offset the variance reduction benefit of incor-
porating high overlap convenience units along with the reference units discussed
in Savitsky et al. (2023).

This paper introduces an approach to identify and exclude a subset of conve-
nience sample units whose covariate values poorly overlap the reference sample
in order to further reduce the error in domain estimators that incorporate con-
venience units (and their estimated participation probabilities). Our approach
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for excluding or thresholding units uses estimated reference and convenience
sample inclusion and participation probabilities for the convenience units as a
uni-dimensional summary of the overlap of multivariate covariate values. In the
sequel we develop a set of alternative statistics used for thresholding where each
statistic represents distinct functional combinations of the estimated reference
and convenience sample inclusion and participation probabilities for the conve-
nience units. We note that Savitsky et al. (2023) specify a Bayesian modeling
approach that provides estimates both convenience and reference sample par-
ticipation and inclusion probabilities for the convenience units. The most simple
example of using these estimated probabilities to threshold units would be to
exclude convenience units with low reference sample inclusion probabilities be-
low some threshold quantile. The logic for such a thresholding statistic is that
convenience units with low values for estimated reference sample inclusion prob-
abilities may be expected to express a low degree of overlap in covariate values
with the reference sample.

We introduce a thresholding statistic for excluding convenience sample units
that arises by minimizing of the variance of a domain mean estimator that is a
function of the estimated reference and convenience sample inclusion and par-
ticipation probabilities for the convenience sample units in Section 2. We begin
by deriving the variance optimal thresholding statistic under the simpler set-up
that composes the domain mean estimator using solely estimated convenience
sample inclusion probabilities for convenience units (and excludes estimated ref-
erence sample inclusion probabilities for the convenience units). We then derive
our main result under a set-up that constructs a threshold statistic composed
of both estimated reference and convenience sample marginal probabilities for
the convenience units. Section 2.3 introduces an additional thresholding statis-
tic motivated by Beresovsky et al. (2024). We compare the reductions in bias
and means squared error offered by the alternative thresholding statistics with
a Monte Carlo simulation study in Section 3 and conclude with a discussion in
Section 4.

2. Optimal Variance Thresholding

2.1. Thresholding based solely on convenience sample probabilities

We begin this section using only convenience sample participation probabilities
(obtained from co-modeling with the reference sample) for convenience units to
construct our estimator to introduce our notation under a simpler thresholding
construction. This set-up contrasts with use of both estimated convenience and
reference participation and inclusion probabilities for the convenience units to
compose our domain mean estimator. We label the set-up that utilizes solely
convenience sample participation probabilities (for convenience sample units) to
define our thresholding statistic and set as “one-arm”. By contrast, our main
result will use the more general set-up that defines the thresholding statistic
from both estimated convenience and reference sample probabilities, which we
label as “two-arm”.
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Our main result defines a set subset of x ∈ X where units in the convenience
sample whose threshold statistic percentile (as a function of x) is less than a
some small value (α) will be excluded from the subset. Only convenience sample
units that are members of the subset will be used to render our weighted domain
mean estimator, µ̂.

Let δc ∈ {0, 1} index unit participation in the convenience sample where δc =
1 denotes participation in the sample and δc = 0 denotes a non-participating
unit from the population frame, U , where |U | = N . Define marginal partcipa-
tion probability πc(x) = Pr[δc = 1 | X = x] where X ∈ X is a random variable.
This construction for πc(x) defines a marginal participation probability (rather
than a propensity score). We proceed to extend and adapt a result of Crump
et al. (2009) that defines a threshold statistic and acceptance set for units con-
structed from a subset of x ∈ X where the value of the threshold statistic is
exceeded. The acceptance set formed by excluding units whose value lies below
some percentile of the threshold statistic constructed by Crump et al. (2009)
is guaranteed to produce a minimizing variance for the domain mean estimator
after excluding those x not in the acceptance set. We begin our extension of
their result with a simpler result that defines an acceptance set and formula-
tion for a thresholding statistic for units in a convenience sample that produces
a minimum variance for the domain mean estimator constructed solely from
convenience sample participation probabilities.

Our population quantity of inferential interest is µ = E(Y ) where Y denotes
a univariate response variable of interest. Define our domain mean estimator as,

µ̂ = µ+
1

N

N∑
i=1

ziδi
π̂c(xi)

, (1)

where we are assuming N is known and z = y − µ. Treating N as known may
be relaxed, in practice. Let

φ(Y, δ,X, µ, e) =
zδ

πc(X)
. (2)

µ̂ = µ+
1

N

N∑
i=1

φ(yi, δi, xi, µ, ei) (3)

Then φ(Y, δ,X, µ, e) has 0 expectation and variance (Hirano et al., 2003, p.
1182),

E
[
φ(Y, δ,X, µ, e)2

]
=

1

N
E
[
σ2
1(X)

πc(X)

]
, (4)

where σ2
1 = V (Y | δ = 1, X = x). The expectation on the LHS of Equation 4is

taken with respect to the joint distribution for X and the taking of a sample
from the underlying frame on which X is defined. The expectation on the RHS
is taken with respect to the distribution for X.

Equation 4 may be used in combination with Corollary 1 of Crump et al.
(2009) to produce the following result for the optimal threshold level, α.
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Theorem 2.1 (One-arm extension of Crump et al. (2009)). Assume πc(x) >
0 ∀x ∈ X Then set A = {x ∈ X : πc(x) > α} denotes the variance optimal subset
of X after thresholding units where A is defined based on thresholding conditional
inclusion probability, πc(X). The minimum variance quantile α is constructed
by,

1

α
= 2E

[
1

πc(X)

∣∣∣∣ 1

πc(X)
<

1

α

]
. (5)

For computation of α we approximate the expectation with sums over units i ∈
Sc, where Sc denotes the observed convenience sample,

1

α
= 2

∑
i∈Sc

1(π̂c(xi) > α) 1
π̂c(xi)∑

i∈Sc
1(π̂c(xi) > α)

. (6)

Proof. Plugging in πc(X) for e(X) into Theorem 1 of Crump et al. (2009) and
using the result of Equation 4 for the case of where we utilize solely the conve-
nience sample participation probabilities (for the convenience units) produces
the result.

Remark 1. The result of Theorem 2.1 utilizes a one-arm set-up that composes
the mean estimator from solely the convenience sample. A companion, sepa-
rate reference sample is required in order to estimate the convenience sample
inclusion probabilities, π̂c(xi), i ∈ (1, . . . , N). In the sequel, we will further
extend Theorem 2.1 by additionally estimating the reference sample inclusion
probabilities for the same convenience units, π̂r(xi), i ∈ (1, . . . , N) also using
the reference sample inclusion probabilities estimated on the convenience units.
See Savitsky et al. (2023) for more details on estimating (π̂c(xi), πr(xi)) (where
subscript “r” denotes reference sample) for convenience sample units.

Remark 2. In this one-arm case where the domain estimator is constructed
solely from the estimated convenience sample inclusion probabilities, the result-
ing thresholding is performed on the convenience sample inclusion probabilities,
πc(xi), i ∈ Sc ⊂ U (where Sc denotes units in frame U that participate in the
convenience sample), without accounting for the estimation quality of πc(X).
So, this is a traditional regularization approach used to stabilize the variance of
a survey domain estimator by excluding units with extreme weight values. This
approach trades some small increase in bias for a large decrease in variance.

Remark 3. We include an alternative, direct derivation for the result of Theo-
rem 2.1 in an Appendix ?? assuming Equation 4 is everywhere differentiable (on
x ∈ X. We also include an illustration to show that the result of the Theorem
does, indeed, produce a minimum variance estimator for µ̂.

Equation 4 can now be generalized in the manner of Section 3.1 of Crump
et al. (2009) to develop an alternative to their Theorem 1 and Corollary 1 un-
der a composite estimator that includes both reference and convenience sample
inclusion and participation probabilities.
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2.2. Thresholding using both reference and convenience sample
probabilities

Let δc and δr denote random inclusion indicators (governed by a survey design
distribution) for convenience and reference samples, respectively, and let πc(x) =
Pr[δc = 1 | X = x] and similarly for πr. Define our estimator as,

µ̂ = µ+
1

N

N∑
i=1

ziδci
π̂c(xi)

+
ziδri
πr(xi)

, (7)

Although the above estimator is defined disjointly on the reference sample
using πr(X) and the convenience sample using π̂c(X), the resulting optimal vari-
ance thresholding rule of Equation 11 applies to only units in the convenience
sample. So, as mentioned in Remark 4, below, we may use estimated π̂c(xi)
and π̂r(xi) for each unit i ∈ Sc to apply the thresholding rule of Equation 11.
To demonstrate that this trick works, we may generate an estimator identical
to Equation 7 that includes both convenience and reference sample probabili-
ties defined solely for convenience units. Use {πc(xi)}i∈Sc to generate a pseudo
population of size N (from units i ∈ Sc, allowing for replicates). Next take a
random / probability sample from this pseudo population using {πr(xi)} of the
same size as the reference sample. Now form the same estimator as Equation 7,
but the universe of units is actually confined to i ∈ Sc.

Let

φ(Y, δc, δr, X, µ, ec, er) =
zδc
πc(X)

+
zδr
πr(X)

(8)

µ̂ = µ+
1

N

N∑
i=1

φ (yi, δci, δri, xi, µ, πc(xi), πr(xi)) . (9)

Then, from Hirano et al. (2003) the variance of our estimator is

E
[
φ(Y, δ,X, µ, e)2

]
=

1

N
E
[
σ2
c (X)

πc(X)
+
σ2
r(X)

πr(X)

]
, (10)

where σ2
c = V (Y | δc = 1, X = x) and similarly for σ2

r . The expectation on the
LHS of Equation 4 is taken with respect to the joint distribution for X and
the taking of a sample from the underlying frame on which X is defined. The
expectation on the RHS is taken with respect to the distribution for X. We have
used the assumption of independence between the sampling arms with respect
to the design distribution.

We may now use Equation 10 to extend and generalize Corollary 1 of Crump
et al. (2009) in the case where σ2

c = σ2
r = σ2.

Theorem 2.2 (Two-arm extension of Crump et al. (2009)).
Assume (πc(x) > 0, πr(x) > 0), ∀x ∈ X.
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Then A =
{
x ∈ X :

√
πr(X)πc(X)/(πr(X) + πc(X)) > α

}
defines the optimal

subset of X where threshold α is obtained as a solution to,

1

α2
= 2E

[
1

πc(X)
+

1

πr(X)

∣∣∣∣ 1

πc(X)
+

1

πr(X)
≤ 1

α2

]
. (11)

Proof. Plugging in πc(x) for e(X) and πr(X) for 1 − e(X) into Theorem 1 of
Crump et al. (2009) and using the result of Equation 10 for the case of where
we utilize both the convenience sample and reference sample participation and
inclusion probabilities (for the convenience units) produces the result.

Remark 4. Defining variance optimal subset, A, by thresholding√
πr(xi)πc(xi)/(πr(xi) + πc(xi)) > α is a harmonic mean that tends to exclude

units i where πr(xi) is a very different value from πc(xi). We may even better
understand the behavior of this thresholding statistic by noting the result from
Beresovsky et al. (2024) that Pr[i ∈ Sc, i ∈ Sr | i ∈ S] = πriπci/(πri + πci),
where S = Sc

⊗
Sr denotes the pooled convenience and reference sample. This

result reveals that convenience units with low probabilities of being in both
the convenience and reference samples tend to be excluded. This thresholding
behavior matches intuition because units with low probabilities to appear in
both samples will tend to have low overlaps in their covariate supports. We
further note that our derivation of this variance minimizing threshold statistic
was done without explicit reference to this joint probability, which makes the
concordance of the two expressions (for the thresholding statistic, on the one
hand, and the joint probability of inclusion in both samples, on the other hand)
to be quite fortuitous.

Remark 5. This thresholding method can be used in practice solely directed to
units i ∈ Sc because we have both estimated (π̂c(xi), π̂r(xi)) available.

Remark 6. Theorem 2.2 assumes both (πr(x), πc(x)) are known for the conve-
nience units when, in fact, they are estimated. We explore the sensitivity to
the performance of the variance minimizing thresholding statistic (for the do-
main mean) of this theorem to estimation uncertainty for (π̂r(x), π̂c(x)) in the
simulation study to follow.

2.3. Thresholding statistic motivated by Beresovsky et al. (2024)

Our derivation of the thresholding statistic of Section 2.2 treats πc(x) as known.
By contrast, Beresovsky et al. (2024) suppose a linear model, logit(πci(β)) =
βTxi. They derive the variance of the domain mean, µ̂, that includes an additive
term for variance of the score function, S(β), which has two parts:

Var[S(β)] = Var[Sc(β)] + Var[Sr(β)] =: A + D

D = Vard

[∑
Sr

gi
1 + gi

(1− πci)xi
]
,
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where gi = πc(xi/πr(xi) and Vard denote the design variance. Motivated by the
dependence of D on gi, we propose to use this statistic as another thresholding
option.

In particular, in this paper we employ the Bayesian model formulation of Sav-
itsky et al. (2023) that estimates both (πr(xi), πc(xi)) , i ∈ Sc. So, we propose
the following acceptance set that uses g:

A = {x ∈ X : πr(x)/πc(x) > α} .

Remark 7. The use of πr(x)/πc(x) as a thresholding statistic may be intuitively
motivated by noting that it will tend to threshold or exclude units i ∈ Sc where
πr(xi) is relatively small for each unit and πc(xi) is relatively large, which may
occur if the value for xi for some i ∈ Sc is not well covered by or represented in
the reference sample, Sr.

3. Simulation study

We conduct a Monte Carlo simulation study that generates a finite population
on each iteration to include covariates x that govern both the convenience and
reference sample designs. The sample designs are size-based as a linear function
of x where we vary the coefficients of the linear function to draw two categories
of reference and convenience samples: 1. Where the covariate spaces of resulting
reference and convenience samples express a high degree of overlap; 2. Where the
two samples express a low degree of overlap. We also generate a response variable
of interest, y, for the finite population. A domain mean, µ, is constructed for the
population and estimated by a combined weighted estimator over the reference
and convenience samples. Finally, we compare the 3 thresholding methods we
developed in Section 2 in terms of their bias, error and coverage performances.
We expect that conducting thresholding of sampled convenience units using one
or more of our thresholding statistics will reduce estimation error.

We utilize the simulation data generation process of Savitsky et al. (2023).
We briefly summarize the procedure and refer the reader for a more detailed
exposition. We generate M = 30 distinct populations, each of size N = 4000.
Design covariates, X, of dimension K = 5 are generated (all binary, with one
continuous). Outcome variable, yi, is generated as log(yi) ∼ N (xiβ, 2) for i =
1, . . . , N .

A randomized reference sample of size nr = 400 is taken from the finite
population under a proportion-to-size (PPS) design with size variable, sri =
log(exp(xi × β) + 1).

For the convenience sample, we set nc ≈ 800, which is a relatively larger
sampling fraction that we choose to explore the full range of πc ∈ [0, 1] that we
would expect to see for business establishment data in the U.S. Bureau of Labor
Statistics. We use a size-based Poisson sample with πci = logit−1(xi×βc+offset).
We control ‘high’ and ‘low’ overlap by varying βc compared to the reference
sample.
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Fig 1: Distribution over M = 30 Monte Carlo iterations of the percentage of
units overlapping between realized reference and convenience samples (taken on
each Monte Carlo iteration).



T. Savitsky et al./Thresholding Nonprobability Units in Combined Data 10

L

L

L

L

L

L

H

H

H

H

H

H

L

L

L

L

L

L

H

H

H

H

H

H

L

L

L

L

L

L

H

H

H

H

H

H

L

L

L

L

L

L

H

H

H

H

H

H

Bias RMSE MAD Coverage

−2 −1 0 0 1 2 3 4 0 1 2 0.6 0.7 0.8 0.9

5% harmonic

5% harmonic two−step

5% pi_r

5% pi_r/pi_c

Ref + Con

Smoothed W_r
E

st
im

at
or

Fig 2: Performance of the weighted mean estimator between high (H) and low
(L) overlapping samples using variations of the two-arm method across Monte
Carlo Simulations for (top to bottom): True weights for both samples (Blue),
Smoothed weights for reference sample (Pink), πr/πc (Turquoise), πr only
(Green), minimum variance or harmonic

√
πr(x)πc(x)/(πr(x) + πc(x)) (Red),

harmonic based on posterior mean (Gold). Left to right: Bias, root mean square
error, mean absolute deviation, coverage of 90% intervals. Vertical reference line
corresponds to using the reference sample only.
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Fig 3: Comparison of the variance for the harmonic threshold,√
πr(x)πc(x)/(πr(x) + πc(x)) between high (H) and low (L) overlapping

samples for (top to bottom): True weights for both samples (Blue), Smoothed
weights for reference sample (Pink), 5% (Green) vs. 10% (Gold) and 1% (Red).
Left to right: Bias, root mean square error, mean absolute deviation, coverage
of 90% intervals. Vertical reference line corresponds to using the reference
sample only.
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4. Discussion

Appendix A: Direct derivation of variance minimizing threshold for
one-arm sample

Hajek mean estimator from convenience sample Sc:

ˆ̄y =

∑
Sc

y(x)
ê(x)∑

Sc

1
ê(x)

where ê (x) is estimated propensity score.
Model-based variance of this estimator

var
(
ˆ̄y
)

=

∑
Sc

σ2
y(x)

ê2(x)[∑
Sc

1
ê(x)

]2
Assume that all variance σ2

y (x) = σ2
y are equal. Order convenience sample

units by response propensity ê (x). Units can be listed by ê (x) with density
w(ê (x)) = ê (x). Variance estimated from full convenience sample Sc without
cut-off may be expressed as integral over the distribution of response propensity
ê (x)

var
(
ˆ̄y
)

=

∫ 1

0

σ2
y(x)

ê2(x)w (ê (x)) d (ê (x))[∫ 1

0
1

ê(x)w (ê (x)) d (ê (x))
]2 =

σ2
y

∫ 1

0
1

ê(x)d (ê (x))[∫ 1

0
d (ê (x))

]2
If sample units are trimmed by response propensity at level ε, then variance

depending on ε is

var
(
ˆ̄y, ε
)

=
σ2
y

∫ 1

ε
1

ê(x)d (ê (x))[∫ 1

ε
d (ê (x))

]2 =
σ2
yF (ε)

G2 (ε)
,

where F (ê(x)) is a primitive of f(ê(x)) = 1/ê(x) and G(ê(x)) is a primitive of
1.

Minimize the trimmed variance by ε

d var
(
ˆ̄y, ε
)

dε
=
σ2
yF
′ (ε)G2 (ε)− 2G′ (ε)G (ε)σ2

yF (ε)

G4 (ε)
= 0

Here we have:

F ′ (ε) =
d

dε
(F (1)− F (ε)) = 0− 1

ε
× 1

G′ (ε) =
d

dε
(G(1)−G(ε)) = G′(1)−G′(ε) = −1.
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Optimal propensity cut-off point ε can be estimated from the numerator null
condition

1

εc
G (εc)− 2F (εc) = 0

1

εc
=

2F (εc)

G (εc)
=

2
∑
Sc

1
ê(x) |ê (x) > εc∑

Sc
1 |ê (x) > εc

Results of simulations:

• Sample size n = 1, 400
• Propensity score ê ∼ Beta(1, 2)
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