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1. Introduction

The Bureau of Labor Statistics (BLS) Consumer Price Index for all urban consumers (CPI-U) is a

measure of the average change over time in the prices paid by urban consumers for a representative

basket of consumer goods and services. It measures inflation as experienced by consumers in their

day-to-day living expenses. The CPI-U is used to adjust income eligibility levels for government

assistance, federal tax brackets, federally mandated cost-of-living increases, private sector wage

and salary increases, and consumer and commercial rent escalations. Consequently, the BLS CPI

products directly affects hundreds of millions of Americans (Bureau of Labor Statistics, 2023,

Handbook of Methods, Consumer Price Index).

The estimation of the CPI is divided into two stages: lower-level and upper-level process-

ing. Lower-level processing calculates basic item-area indexes. The Consumer Expenditure (CE)

household survey serves as the source for sampled outlets, and sampled quotes are weighted based

on the CE survey. The same lower-level basic indexes are used for all CPI products. Upper-level

aggregate index formulas apply different weights to these lower-level indexes to create a final in-

dex product. CPI products differ by their corresponding weights and index formulas. The Chained

CPI (C-CPI-U) uses monthly weights and the Tornqvist index formula, which is a geometric aver-

age where the weights are a two-month moving average for the corresponding index month. The

C-CPI-U is a superlative index where both prices and weights are from the corresponding current

and previous periods. However, monthly weights are available for index estimation approximately

one year after the publication of the CPI. Due to the lag in the availability of monthly weights,

the C-CPI-U is calculated retrospectively and is then revised quarterly, with up to four revisions

(Bureau of Labor Statistics, 2023, Handbook of Methods, Consumer Price Index).

Unofficial CPI research series use different reference period weights and weight revisions occur

at different frequencies. For example, the Quarterly CPI (CPI-q), Annual CPI (CPI-a), and Bien-

nial CPI (CPI-b), use quarterly, annual, and biennial weights, respectively. The different weights

correspond to varying lengths of time between the period when household data is collected and

when it is used in index calculation. This time period is referred to as the reference period weight

lag. The biennial weight lags the index by an average of three years, the annual weight by two
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years, and the quarterly weight by one year (Klick and Park, 2022). In addition, CPI-q, CPI-a, and

CPI-b apply the CPI Lowe formula, a modified Laspeyres formula, to calculate their cost weights.

CPI cost weights are the product of indexes and weights. The month-to-month price change is

the ratio of cost weights from month t to t− 1. The following is the CPI cost weight Lowe formula

where quarterly, annual, and biennial weights are used:

CPILOt,0 =
∑

k∈j

(

IXtk × P̂αkQ̂βk

)

where

k : basic level element,

j : aggregate level,

t : period,

IXtk : basic level index,

P̂αkQ̂βk : fixed quantity weights,

α : index average for the reference period,

β : associated weight (e.g., biennial, annual, or quarterly weight).

For a detailed description of the CPI Lowe formula and the Chained CPI formula, see Klick and

Park (2022) and references therein.

Our focus is to analyze the seasonal components of Chained CPI and CPI research series. Our

analysis is limited to the urban population as CPI-U or C-CPI-U unless otherwise indicated. The

initial investigation is conducted through frequency analysis using the Discrete Fourier Transform.

We also examine CPI series with regard to trends, rate changes, jump discontinuities, and outliers.

2. Seasonality of Indexes and Weights of Major Groups

In the Consumer Price Index, urban areas in the United States are divided into 32 geographic

regions, called index areas. The set of all goods and services purchased by consumers is divided

into 211 categories, known as item strata: 209 commodity and service (CS) item strata, and 2

housing item strata. The number of basic items used for the calculation of aggregate indexes

is larger, at 243, because entry-level items are used for the calculation of basic cells for health

insurance retained earnings (item code SEME) rather than the higher item stratum level. This

results in 7,776 (32 × 243) item-area combinations. The CPI calculates subaggregate indexes by

averaging across subsets of item-area combinations. (Bureau of Labor Statistics, 2023, Handbook

of Methods, Consumer Price Index). It is notable the CPI is additive so that the sum of component

cost weights equals the final cost weights.

The data series consists of 108 monthly indexes from January 2014 to December 2022, ag-

gregated into eight major groups: Apparel (A), Education&Communication (E), Food (F), Other



Goods (G), Housing (H), Medical (M), Recreation (R), and Transportation (T). We conducted anal-

ysis on the Chained CPI, CPI-q, CPI-a, and CPI-b, with their associated weights: monthly, quar-

terly, annual, and biennial, respectively. In this section, we present some results from the Chained

CPI and its monthly weights for the major groups.

Table 1 presents the correlations of the Chained CPI between the major groups and shows that

the Food, Other Goods, Housing, and Medical groups are highly positively correlated with each

other. Education&Communication, however, is negatively correlated with all other major groups,

except Apparel. Figure 1 shows the following for the Chained CPI of the major groups: the Food,

Other Goods, Housing, and Medical groups move together in a similar manner; Recreation shows a

moderate increase; Education&Communication remains flat with a mild decrease; Apparel exhibits

seasonality; and Transportation displays high variability.

Figure 2 plots the associated monthly weights of the Chained CPI major groups. These weights

sum to 1 and are used when computing the final weight for All Items.

2.1 Discrete Fourier Transform

The Fourier transform is a mathematical formula that transforms a signal sampled in time to the

same signal sampled in temporal frequency. In signal processing, the Fourier transform can reveal

the frequency components of the signal. If the series is a sum of several different frequency compo-

nents, the Fourier transform will show all the frequencies. The Discrete Fourier Transform (DFT)

takes a vector of length n and transforms it into a vector of length n. More precisely, it is a linear

transformation from Rn to Cn that preserves the inner product. In applications, the input X is a

vector of n values representing a signal sampled at times t = 0, . . . , n − 1. The transform of X ,

denoted as T (X), is a vector of n complex values. The j-th component of T (X) is given by:

∑

k

ωkjXk

where ω = exp(2πi/n) is the n-th root of unity, and i is the imaginary unit defined by its property

i2 = −1. The j-th component of T (X) represents the frequency j component of X . It is a

complex number, whose absolute value relates to the strength of the component, and the square

of the absolute value is referred to as the power. Power as a function of frequency is a common

metric used in signal processing. Despite the presence of noise, the signal’s frequencies can still be

identified due to the spikes in power. Instead of using the power values in their original scale, we

divide the power by the sum of the power to improve comparability. We then plot the scaled power

against the period, where the period is the reciprocal of the frequency.

In Matlab, T = fft(X) computes the DFT of X using a fast Fourier transform (FFT) al-

gorithm. T is the same size as X . If X is a vector, fft(X) returns the Fourier transform of

the vector. If X is a matrix, fft(X) treats the columns of X as vectors and returns the Fourier

transform of each column (Matlab, 2024).

For each major group, we apply the Discrete Fourier Transform (DFT) to the Chained CPI and

plot the scaled power in the upper part of the graph. Additionally, we apply the DFT to the monthly



weight and plot the scaled power in the lower part of the graph. As we are analyzing the seasonal

components of Chained CPI and CPI research series, we limit our examination to periods up to 12

months in the graph.

2.2 Data Analysis

For the Chained CPI of major groups, we did not observe much seasonality, except in Apparel. It is

consistent with our observation in Figure 1 where the Chained CPI of Apparel exhibits seasonality.

The scaled-power plot of the Chained CPI for Apparel, shown in the upper part of Figure 3,

exhibits a significant peak at a 6-month period. Although the plot does not provide information

about the specific months causing the peak, one may identify these months by pairing calendar

months with a 6-month interval (e.g., January and July, February and August, and so on), and

comparing the six paired groups. Figure 4 displays boxplots where the pair of April and October

has the largest median, followed by the pair of March and September. In each boxplot, the central

mark indicates the median, while the bottom and top edges of the box indicate the 25th and 75th

percentiles, respectively. The whiskers extend to the most extreme data points not considered

outliers, and the outliers are plotted individually using the ’+’ marker symbol (Matlab, 2024). We

also note that the pair of April and October has a longer box than the pair of March and September,

indicating greater variability. The pair of March and September has the largest mean, as shown in

Table 2.

Note that weights are relative to the sum of all item weights. The scaled-power plot of the

monthly weight of Apparel, shown in the lower part of Figure 3, reveals a notable peak at a 12-

month period. Figure 5 displays boxplots of monthly weights, where December has the largest

median. Table 3 shows that December has the largest mean as well as the largest median.

From Table 1, we observe that Education&Communication is negatively correlated with all

other major groups except Apparel. Another interesting aspect of Education&Communication is

that between November 2018 and June 2020, CPI-q, CPI-a, and CPI-b appear to move in the

opposite direction to the Chained CPI, as shown in Figure 6. Table 4 also shows that CPI-q, CPI-a,

and CPI-b have very low or negative correlations with the Chained CPI, while CPI-q, CPI-a, and

CPI-b have highly positive correlations between each other.

The scaled-power plot of the Chained CPI for Education&Communication, shown in the upper

part of Figure 7, reveals minimal seasonality in the Chained CPI. However, the scaled-power plot of

the monthly weight for Education&Communication in the lower part of Figure 7 displays a notable

peak at a 6-month period. As with the Apparel Chained CPI, we identify these months by pairing

calendar months with a 6-month interval, and comparing the six paired groups. Figure 8 shows that

the pair of February and August has the largest median. The pair of February and August also has

the largest mean, as shown in Table 5.

The Chained CPI for Transportation exhibits the most variability among the major groups, as

measured by the coefficient of variation. The scaled-power plot of the Chained CPI for Trans-

portation, shown in the upper part of Figure 9, reveals minimal seasonality in the Chained CPI.

However, the scaled-power plot of the monthly weight for Transportation, in the lower part of Fig-



ure 9, shows a significant peak at a 12-month period. We note that July has the largest median,

followed by August (Figure 10), while August has the largest mean, as shown in Table 6. Figure

11 of monthly weights for July and August shows that the monthly weight for August has mostly

been larger than for July, except in 2018, 2019, and 2022.

For CPI-q, minimal seasonality is observed in most major groups, except for Apparel. For quar-

terly weights, mild to considerable seasonality is observed in Apparel, Education&Communication,

Food, and Transportation.

For CPI-a, minimal seasonality is observed in most major groups, except for Apparel. For

annual weights, minimal seasonality is observed in all major groups.

3. CPI Products at the Final Aggregation Level

We now analyze CPI values at the final aggregation level. Figure 12 shows that, except for the

first few months, the Chained CPI remains the lowest, followed by CPI-q, CPI-a, and CPI-b, in

that order. In other words, the CPI values are consistently ordered from largest to smallest: CPI-

b ≥ CPI-a ≥ CPI-q ≥ Chained CPI. Correlation analysis reveals that they are highly positively

correlated each other, with each correlation value being 1 to two decimal places. Singular Value

Decomposition (SVD) analysis also indicates high correlation among them: the first singular value

is exceptionally large, while the others are close to zero. In general, the values of Chained CPI,

CPI-q, CPI-a, and CPI-b increase steadily up to approximately two-thirds of the series, and then

rise sharply thereafter.

3.1 Linear Fitting of Chained CPI

To locate the slope change point, we fit the Chained CPI linearly against time (month), compute

the residuals, and locate the lowest point as shown in Figures 13, 14, and 15. Since the CPIs are

highly correlated, one may use CPI-q, CPI-a, or CPI-b instead of Chained CPI to locate the slope

change point. Figure 15 shows a magenta line indicating the slope change point, May 2020. Figure

16 displays both the magenta line, indicating the slope change point, and a cyan line, indicating the

official COVID-19 shutdown point, March 2020.

Table 7 presents the coefficient values of Chained CPI and CPI research series before and after

the slope change month. We observe that the slope coefficients are significantly larger after the

slope change month than before. Overall, the slope coefficients of CPI-b and CPI-a are larger than

those of CPI-q and the Chained CPI.

Figure 17 displays the differences between the CPI research series and the Chained CPI. Note

that the Chained CPI is considered the gold standard. The differences seem to increase after the

slope change month. The histogram in Figure 18 also shows that the differences between the

CPI research series and the Chained CPI increase after the slope change month. We compute the

Relative Absolute Difference (RAD) of the CPI research series from the Chained CPI, and compare

the values before and after the slope change month. For example, consider the difference between



CPI-b and Chained CPI. Let d represent the difference between CPI-b and Chained CPI:

norm(d) =
∑

|d| ,

RAD(d) =
norm(d)

norm(Chained CPI)
.

Table 8 shows that the RAD value of CPI-b is the largest, while CPI-q has the smallest RAD value.

RAD values are twice as large after the slope change month compared to before.

3.2 Wavelet Application

A wavelet means a small wave. That is, it is a wave-like function of time that vanishes outside

a finite closed interval. Though some wavelets are not exactly zero, they become essentially zero

as time approaches positive or negative infinity. Examples include the Mexican hat, Gabor, and

Morlet wavelets. This property, localized in time, contrasts with Fourier basis functions, which

extend infinitely in time. Wavelets are localized in frequency. They oscillate and have average

values of zero:
∫

∞

−∞

ψ(t) dt = 0.

The Fourier basis, consisting of sines and cosines, is perfectly localized in frequency but does not

decay as time approaches positive or negative infinity. A time series with frequency changes over

time, abrupt jump discontinuities, and nonstationary variances is better analyzed using suitable

wavelets rather than Fourier basis functions. Wavelets are constructed from a function ψ(t) called

the “mother wavelet” by dilation and translation in time and frequency:

ψa,b(t) = ψ

(

t− b

a

)

,

where the parameters for dilation, a, and translation, b. In wavelet applications, the scale parameter

controls the stretching or compressing of the function. A smaller scale factor compresses the

wavelet, while a larger scale stretches it. As the scale increases, the wavelet becomes wider and

includes more of the time series, but finer details become less distinct. The “optimal” choice of a

wavelet basis depends on the application.

Figure 19 displays a few examples of wavelets, which decay to zero as time approaches positive

or negative infinity, with average values of zero and norms of 1. The first example, (1,1), in Figure

19 is the Laplacian wavelet. We apply the Laplacian wavelet to the residuals from the linear fit of

the Chained CPI. Its shape allows it to capture breakpoints well where the means on the left and

right differ from the central mean.

We consider the Laplacian wavelet applied to the residuals from the linear fitting where the

scale base is s = 2
6

n , and n = 32. si represents the window size, where i = 1, . . . , 6. Naturally,

the maximum window size is determined by the number of data points, which is 108 months in our

case. As i goes from 1 to 6, the window size increases at each iteration: 1.30, 1.68, 2.18, . . . , 64.00.



Figure 21 shows the Laplacian wavelet applied to the residuals, with a color bar. The lighter the

color, the greater the intensity. We observe the color gets lighter starting at the 25th level, and

becomes intensely lighter in the later stages. Note the concentrated brightness around the slope

change month.

The Haar wavelet, located below the Laplacian wavelet at (2,1) in Figure 19, is applied to

the differences of the Chained CPI. The Haar wavelet is known for capturing jump points well,

where the right mean differs from the left mean. A series with a break point as in our data example

becomes a series with a jump point when the difference of the series is taken. We take the difference

of the Chained CPI, Xt − Xt−1, as shown in Figure 20. For the Haar wavelet application on

differences, Figure 22 shows that the color becomes lighter starting at the 20th level, intensifying

in the later stages.

In both the Laplacian and Haar applications, we do not find any other abnormalities except in

the area of the slope change point.

4. Summary

Fourier transform can be useful to detect the seasonality of time series data such as CPI products

and weights. Methods can be applied at any levels of aggregation. Wavelet analysis is partic-

ularly well-suited for analyzing time series with characteristics like changing frequencies over

time, sudden jumps (discontinuities), and nonstationary variances because it provides a localized

time-frequency representation. It allows us to examine how different frequencies behave at specific

points in time, making it ideal for capturing transient events and variations in signal behavior across

different scales.
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Table 1: Chained CPI Correlation Coefficients between Major Groups

A E F G H M R T

A 1.00 0.30 -0.19 -0.28 -0.29 -0.38 -0.09 0.20

E 0.30 1.00 -0.57 -0.70 -0.72 -0.75 -0.51 -0.38

F -0.19 -0.57 1.00 0.96 0.95 0.90 0.97 0.81

G -0.28 -0.70 0.96 1.00 1.00 0.98 0.91 0.72

H -0.29 -0.72 0.95 1.00 1.00 0.98 0.90 0.71

M -0.38 -0.75 0.90 0.98 0.98 1.00 0.83 0.58

R -0.09 -0.51 0.97 0.91 0.90 0.83 1.00 0.88

T 0.20 -0.38 0.81 0.72 0.71 0.58 0.88 1.00

Table 2: (Apparel) Paired Chained CPI Average

(1,7) (2,8) (3,9) (4,10) (5,11) (6,12)

Median 98.38 100.73 103.05 103.23 101.58 99.03

Mean 98.05 99.96 102.10 102.04 100.51 98.42

Table 3: (Apparel) Monthly Weight Average

Jan Feb Mar Apr May Jun

Median 0.034 0.025 0.026 0.029 0.028 0.027

Mean 0.033 0.026 0.028 0.028 0.029 0.027

Jul Aug Sep Oct Nov Dec

Median 0.026 0.030 0.029 0.028 0.033 0.038

Mean 0.027 0.029 0.029 0.029 0.033 0.037

Table 4: (Education&Communication) Correlation Coefficients between Indexes

Chained CPI CPI-q CPI-a CPI-b

Chained CPI 1.000 0.248 0.018 -0.183

CPI-q 0.248 1.000 0.924 0.861

CPI-a 0.018 0.924 1.000 0.977

CPI-b -0.183 0.861 0.977 1.000

Table 5: (Education&Communication) Paired Monthly Weight Average

(1,7) (2,8) (3,9) (4,10) (5,11) (6,12)

Median 0.070 0.078 0.070 0.061 0.060 0.062

Mean 0.072 0.078 0.073 0.063 0.060 0.064



Table 6: (Transportation) Monthly Weight Average

Jan Feb Mar Apr May Jun

Median 0.156 0.154 0.161 0.165 0.168 0.168

Mean 0.154 0.153 0.159 0.165 0.167 0.169

Jul Aug Sep Oct Nov Dec

Median 0.176 0.176 0.169 0.164 0.159 0.155

Mean 0.174 0.176 0.170 0.164 0.161 0.157

Table 7: CPI Coefficients (before and after slope change month)

Overall Before After

B0 B1 B0 B1 B0 B1

Chained CPI 96.77 0.19 99.36 0.11 105.39 0.61

CPI-q 96.78 0.21 99.24 0.13 106.25 0.64

CPI-a 96.57 0.22 99.17 0.14 107.06 0.66

CPI-b 96.57 0.22 99.13 0.15 107.26 0.66

Table 8: Relative Absolute Difference from Chained CPI (before and after slope change month)

Overall Before After

CPI-q 0.008 0.006 0.011

CPI-a 0.012 0.009 0.021

CPI-b 0.014 0.010 0.022



Figure 1: Chained CPI by Major Group
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Figure 2: Monthly Weight by Major Group
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Figure 3: (Apparel) Scaled Power Plot
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Figure 4: (Apparel) Boxplot of Paired Chained CPI
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Figure 5: (Apparel) Boxplot of Monthly Weight
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Figure 6: (Education&Communication) Chained CPI and CPI Research Series
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Figure 7: (Education&Communication) Scaled Power Plot
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Figure 8: (Education&Communication) Boxplot of Paired Monthly Weight
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Figure 9: (Transportation) Scaled Power Plot
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Figure 10: (Transportation) Boxplot of Monthly Weight
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Figure 11: (Transportation) Monthly Weight of July and August
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Figure 12: Chained CPI and CPI Research Series at the Final Aggregation Level
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Figure 13: Chained CPI Linear Fit
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Figure 14: Residual
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Figure 15: Locating Slope Change Point
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Figure 16: Chained CPI and CPI Research Series (with COVID and Slope Change Lines)
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Figure 17: Differences between Chained CPI and CPI research series (with a slope change point)
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Figure 18: Histogram of Differences between Chained CPI and CPI research series
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Figure 19: Plots of Wavelets
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Figure 20: Difference of Chained CPI: Xt −Xt−1
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Figure 21: Laplacian Wavelet on Residual
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Figure 22: Haar Wavelet on Difference
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