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Abstract 
Many surveys estimate variances with the balance repeated replication (BRR) variance estimator. 
With the self-representing (SR) Primary Sample Units (PSUs), surveys sometimes split them into 
parts which are then paired into pseudo strata and then BRR is applied to the pseudo strata. However, 
there is not much guidance on the number of pseudo strata to split the SR strata into or how (or if) 
the sort order should be used to split the sample when the sample was selected with systematic 
random sampling. Our research considered twelve different applications of the BRR variance 
estimators that varied by the number of pseudo strata formed and by how the sort order of a 
systematic random sample was used to split the PSU. We also included variations of the delete-a-
group jackknife and successive difference replication variance estimators. Using simulations 
involving data from the Consumer Expenditures Survey, we found that the BRR variance estimator 
that split the sample of the SR PSUs into the most replicates possible and split the sample using the 
sort order was the best overall variance estimator for both national-level estimates and individual 
PSU-level estimates. 

Key Words: Variance estimation, self-representing strata, balanced-repeated replication, delete-a-
group jackknife, successive difference replication. 

1. Introduction

With a two-stage sample design for large household surveys, the first stage sample design often 
includes self-representing (SR) strata and non-self-representing strata (NSR), where the probability 
of selection for the Primary Sample Units (PSUs) of the SR strata is equal to 1.0 and the probability 
of selection for the PSUs of the NSR strata is less than 1.0. This means that the SR strata are 
comprised of one SR PSU, and it is in the first-stage sample with certainty and the NSR strata are 
comprised of more than one PSU and not all of them are selected. Then, within the sample PSUs of 
both the SR and NSR strata, a second-stage sample of households is selected. Within the NSR strata, 
the sample variance is due to the selection of PSUs and the selection of households, but with the SR 
strata the variance is only due to the selection of households.  

Many surveys estimate the variances of this type of two-stage sample design with the balanced 
repeated replication (BRR) variance estimator, which is also referred to as balanced half sample 
variance estimator (McCarthy 1966, 1969a, 1969b). The BRR variance estimator was designed to 
estimate the variances for NSR strata that select two PSUs per strata, where the two PSUs are 
referred to as half samples. However, BRR can also be used with sample designs that select one 
PSU per strata, collapse the strata into pseudo strata with two sample units (or two half samples), 
and then apply BRR to the pseudo strata as if the pseudo strata were strata with two sample units. 
See Judkins (1990), Wolter (2007), and Ash (2022) for more background on the adaptation of BRR 
to collapsed strata. 

For the SR strata, there are different replication variance estimators that are applied to estimate the 
variance that are compatible with BRR as used with the NSR strata. We say that a combination of 
replicate variance estimators is compatible, if we can produce replicate factors for the SR and NSR 
strata that are used with the same expression of the variance estimator. Compatibility is an important 
property of a variance estimator when we want a single expression for the replicate variance 
estimator that can be used to simultaneously estimate the variance of the SR and NSR strata. If the 



2 
 

two replicate variance estimators for the SR and NSR strata are not compatible, the overall variance 
needs to be estimated with separate expressions, and then the estimates from those separate 
expressions need to be added together to get the total variance, instead of using a single expression. 
 
One replication variance estimator that is compatible with BRR is BRR itself. To estimate the 
variance of the SR strata, some surveys apply BRR to pseudo strata that are formed by either splitting 
the second-stage sample of the SR PSUs into two even half samples or treating a pair of SR strata 
as a single pseudo stratum, where each SR PSU is a half sample (Lee and Forthofer 2006). 
Applications of these two strategies are described by several authors. Nixon et al. (1998) describes 
how the National Health Interview Survey (NHIS) splits the largest SR PSUs into two half samples 
(one pseudo stratum) and pairs the smallest SR PSUs into pseudo strata. Guciardo et al. (2004) 
describe how the Bureau of Labor Statistics’ National Compensation Survey, a survey of business 
establishments, splits the establishments selected within their SR strata into two half samples (one 
pseudo stratum) and then applies BRR. Johnson and Rust (1992) describe how the National 
Assessment of Educational Process, a survey of schools, assigned the largest SR schools to two 
pseudo strata and the smallest SR schools treated as one pseudo stratum. The schools were then 
assigned to one of two half-samples within the pseudo strata, with equal probability and 
systematically. 
 
Although we found descriptions of applications that either split or paired SR strata into pseudo 
strata, we did not find any theoretical justification of either strategy. Our paper addresses this gap. 
We show how splitting the sample into half samples of one or more pseudo strata and using the sort 
order to split the sample from a systematic random sample from an ordered list (SYS) sample design 
produces a type of collapsed-strata variance estimator. 
 
We also consider the impact of splitting the SR strata into more than one pseudo strata. Since the 
number of pseudo strata can range from one to the number of replicates R used by BRR, why not 
split the SR strata into R pseudo strata? Splitting the sample of the SR strata into an increasing 
number of pseudo strata should decrease the variance of the variance estimator because it increases 
the number of replicates for the SR strata, and increasing the number of replicates reduces the 
variance of the variance estimator. Because we suggest increasing the number of pseudo strata, we 
do not further consider the strategy of pairing SR strata since it results in fewer replicates than 
splitting SR PSUs.  
 
We compare splitting the SR strata into a varying number of pseudo strata with a simulation study 
using data from the Consumer Expenditures Survey (CE). The goal of the simulation is to compare 
variance estimators with varying number of pseudo strata with respect to bias and variance and 
determine which is best suited for CE’s national estimates and Metropolitan Statistical Area (MSA)-
level estimates. Note that all of CE’s 23 SR strata are an MSA, which means that we want to know 
how well the variance estimators perform for the national estimates (all 23 MSA together) and for 
the 23 separate MSA-level estimates. The simulation study also compares the impact of using the 
sort order to split the SR strata into pseudo strata with the simpler method of a random assignment.  
 
Our simulation study also includes other replication variance estimators that are compatible with 
BRR including five variations of the successive difference replication (SDR) estimator as described 
by Fay and Train (1995) and Ash (2014) and two variations of the delete-a-group jackknife 
(DAGJK) as described by Kott (1998, 2001).  
 
The simulation study shows that splitting the SR strata into an increasing number of pseudo strata 
reduces the bias of the variance estimator. This suggests that CE could improve its variance 
estimation procedures by splitting each of its SR strata into 44 pseudo strata rather than just one, as 
it currently does. The improvements in the variance of the variance estimator impact both the 
national and Metropolitan Statistical Area (MSA) estimates but were greater with the MSA-level 
estimates. The simulation study also shows that the BRR variance estimator that split the sample 
into 44 pseudo strata and the SDR variance estimator were the two best variance estimators overall. 
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The paper is organized as follows. Section 2 describes the variance estimators under consideration 
and further discusses compatible combinations of replication variance estimators. Section 3 reviews 
the CE sample design and how we produced the complete universe using past CE survey data, 
section 4 describes the results of our simulation, and section 5 provides our conclusions. 
 

2. Variance Estimators 
 
The first part of this section reviews the replication variance estimators that can be used to estimate 
the variance of NSR and SR strata and are included in our simulation study. The second part of this 
section reviews several combinations of compatible variance estimators and specifically, variance 
estimators for SR strata that are compatible with the BRR variance used with NSR strata. 
 
2.1 Review of Variance Estimators 
 
2.1.1 BRR Variance Estimator for Non-Self-Representing Collapsed Strata 
We define the BRR variance estimator as generally as possible using Fay’s method of BRR (Dippo, 
Fay, and Morganstein 1994) and adapted to collapsed strata (Judkins 1990). We define the total of 
a variable yk for a two-stage sample design as: 𝑌 = ∑ ∑ 𝑌௛௜௜∈௎೓௛  and 𝑌௛௜ = ∑ 𝑦௞௞∈௎೓೔

, where h is an 
index on the first-stage strata, 𝑈௛ is the first-stage universe of stratum h, i is an index on the PSUs 
in first-stage strata h, and 𝑈௛௜ is the second-stage universe of PSU i of stratum h. The mean of a 
variable 𝑦௞  is a ratio of two totals: 𝑌ത = 𝑌/𝑁, where 𝑁 = ∑ ∑ 𝑁௛௜௜∈௎೓௛  and 𝑁௛௜ = ∑ 1௞∈௎೓೔

. For a 

two-stage sample design, the estimator of Y is: 𝑌෠ = ∑ ∑ 𝑤௛௜𝑌෠௛௜௜∈௦೓௛  and the estimator of the PSU 

total 𝑌௛௜  is: 𝑌෠௛௜ = ∑ 𝑤௞𝑦௞௞∈௦೓೔
, where 𝑠௛ is the first-stage sample of PSUs in stratum h, 𝑠௛௜  is the 

second-stage sample of eligible units for PSU i in stratum h, 𝑤௛௜ is the first-stage weight for PSU i 
in stratum h, and 𝑤௞ is the second-stage weight for unit k. The survey weights are defined as the 
inverse of the probability of selection for each stage of the sample design or 𝑤௛௜ = 𝜋௛௜

ିଵ and 𝑤௞ =
𝜋௞

ିଵ, where the first- and second-stage probabilities of selection are defined as or 𝜋௛௜
 = 𝑃(𝑖 ∈ 𝑠௛) 

and 𝜋௞
 = 𝑃(𝑘 ∈ 𝑠௛௜), respectively. The BRR/CS variance estimator of the variance of 𝑌෠  that is 

adapted for two collapsed strata is: 
 

𝑣ො஻ோோ/஼ௌ൫𝑌෠൯ =
1

𝑅(𝜅 − 1)ଶ
෍൫𝑌෠௥ − 𝑌෠൯

ଶ
ோ

௥ୀଵ

, 

 
where r is an index on the replicates, R is the number of replicates, and the replicate estimator of Y 
can be alternatively defined as 𝑌෠௥ = ∑ ൫𝑌෠௥௚ + 𝑌෠௥௚ ൯஻

௚ୀଵ , where the estimator of the stratum total 𝑌௚௛ 
for the rth replicate is 𝑌෠௥௚௛ = ∑ 𝑤௛௜𝑌௥௚௛௜௞∈௦೒೓೔

 and the estimator of the PSU total 𝑌௚௛௜  for the rth 

replicate is 𝑌෠௥௚௛௜ = ∑ 𝐹௥௚ 𝑤௞𝑦௞௞∈௦೒೓೔
. 

 
With the BRR/CS variance estimator, g is the index on the pseudo strata, and B is the number of 
pseudo strata. The paired strata within a pseudo stratum are also referred to as half samples and this 
means that h is still an index on the strata, but it is used interchangeably with the term half sample. 
Following Judkins (1990), the replicate factor of half sample h = 1, pseudo strata g, and replicate r 
is defined as: 
 

𝐹௥௚
(஻ோோ/஼ௌ)

= 1 + 2𝑎௥௚(1 − 𝜅)𝑃௚ଶ 
 
and the replicate factor of half sample h = 2, pseudo strata g, and replicate r is defined as: 
 

𝐹௥௚
(஻ோோ/஼ௌ)

= 1 − 2𝑎௥௚(1 − 𝜅)𝑃௚ଵ, 
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where κ has values 0 ≤ 𝜅 < 1, 0 < 𝑃௚௛ < 1 and 𝑃௚ଵ + 𝑃௚ଶ = 1. The variable 𝑃௚௛  is customarily 
defined as 𝑃௚௛ = 𝑀𝑂𝑆௚௛/൫𝑀𝑂𝑆௚ଵ + 𝑀𝑂𝑆௚ଶ൯, where 𝑀𝑂𝑆௚௛ is defined as the measures of size for 
stratum h of pseudo strata g and is used to reduce the bias of the collapsed-strata variance estimator. 
Ash (2022) provides different solutions of 𝑃௚௛ that minimize the bias and the square of the bias of 

𝑣ො஻ோோ/஼ௌ൫𝑌෠൯. The values 𝑎௥௚ come from a Hadamard matrix of dimension R, where 𝑎௥௚ is the value 
of the rth row and gth column of the Hadamard matrix. The replicate factors are assigned to the units 
of the sample in PSU i by noting that 𝐹௥௜

 = 𝐹௥௚௛
 , if 𝑖 ∈  𝑠௚௛ which means that if  PSU i is known, 

then the pseudo strata g and half sample h are known too because each variance estimator assumes 
a specific assignment of the PSUs to the pseudo strata and half samples. 
 
CE’s application of BRR uses a Hadamard matrix with dimension R = 44 which produces 44 sets of 
replicate weights for variance estimation. Because CE also uses 𝜅 = 1, and 𝑃௚ଶ = ½, CE’s variance 
estimator is the same as BRR as originally suggested by McCarthy (1966, 1969a, 1969b) with 
replicate weights that are either 0 or 2.  
 
2.1.2 BRR Variance Estimator Applied to Self-Representing Strata 
As discussed in the introduction, the BRR variance estimator is sometimes used to estimate the 
variance of SR strata by splitting the SR strata into two half samples, treating the two half-samples 
as from one pseudo strata, and then applying BRR to the pseudo strata and half samples. In this 
section, we define a more general set-up where we split each SR stratum into 2G half sample and 
pseudo strata combinations, where G is the number of pseudo strata (1 ≤ G ≤ R) and each pseudo 
strata has 2 half samples in it. Each half sample and pseudo strata combination should have an 
approximately even number of sample units assigned to it. Since the first-stage strata are not 
functioning as pseudo strata (as with BRR applied to NSR strata), we add an index b for the half 
sample. 
 
The BRR variance estimator that splits the sample into G pseudo strata is 𝑌෠௥ = ∑ ∑ ൫𝑌෠௥௚௛ଵ +ீ

௚ୀଵ௛

𝑌෠௥௚௛ଶ൯, where the estimator of the stratum total for replicate r, strata h, pseudo strata g, and half 
sample b, is 𝑌෠௥௚௛௕ = ∑ 𝑤௛௜𝑌௥௚௛௕௞∈௦೒೓್೔

. The replicate factor of replicate r, strata h, pseudo strata g, 

and half sample b = 1 is: 
 

𝐹௥௛௚ଵ
(஻ோோ/ௌோ)

= 1 + 𝑎௥௚(1 − 𝜅) 

 
and the replicate factor of replicate r, strata h, pseudo strata g, and half sample b = 2 is: 
 

𝐹௥௛௚ଶ
(஻ோோ/ௌோ)

= 1 − 𝑎௥௚(1 − 𝜅) 

 

The term 𝑃௚௛௕ is not in our expressions for SR replicate factors 𝐹௥௛௚௕
(஻ோோ/ௌோ)

 because the half samples 
within a given pseudo stratum have approximately an equal number of second-stage sample units.  
 
Collapsed-strata variance estimator. We now explain how to split the SYS sample from an SR PSU 
so that it makes a collapsed-strata variance estimator. This idea is not new: similar reasoning has 
been suggested for other variance estimators of the SYS sample design by Hansen, Hurwitz, and 
Maddow (1953; Volume 1, Chapter 11, Section 8), Wolter (2007; p. 336), and Megill et al. (1987). 
First, consider the implicit strata defined by the SYS sample design which are defined by the length 
of the sampling interval. They can be thought of as implicit strata because one unit is selected within 
each of the implicit stratum defined by the length of the sampling interval. Figure 1 provides a 
representation of a SYS sample and the implicit strata with a sampling interval of length 6. 
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Figure 1: Representation of Systematic Random Sampling and Implicit Strata 

 
In Figure 1, the sampling interval of six selects every 6th unit of the sorted list. This also means that 
every six units define a different implicit stratum, where one unit is selected within each implicit 
stratum. The 2nd, 8th, 14th, and 20th units of the universe are one possible sample, where the 2nd unit 
was randomly selected within the first implicit stratum and the subsequent selections follow from 
the first selection with each subsequent selection located one sampling interval from the previous 
selection.  
 
We think of splitting the sample into half samples and pseudo strata as a making a collapsed-strata 
estimator by collapsing the 1st and 2nd sample units (or the 1st and 2nd implicit strata) into the 1st 
pseudo stratum, collapsing the 3rd and 4th selected units into the 2nd pseudo strata, etc. The odd 
numbered selections are assigned to the 1st half sample, and the even numbered selections are 
assigned to the 2nd half sample. Then, each pseudo stratum has two units allowing us to estimate the 
variance within each pseudo strata.  
 
Since CE is limited to only having R = 44 replicates and not n/2 replicates (for the n/2 possible 
pseudo strata, where n is the second-stage sample size within a SR PSU), and we “reuse” the 44 
replicates for multiple pseudo strata: 1 ≤ G ≤ R. With our simulation, we used the G = 1, 2, 4, 22, 
and 44 pseudo strata. 
 
An alternative way of splitting the sample into pseudo strata is to consider the larger implicit strata 
defined by the variables used in the sort order of the SYS sample design. For example, CE sorts the 
universe by state/county/STRATUM and then selects the sample using SYS. This ensures that the 
sample has approximately a proportional number of sample units from each state/county. With this 
way of thinking, we suggest that each state/county be treated as implicit strata from which we can 
split into two half samples. With the SYS sample design, we can assign the even number units of 
the ordered sample to one of the half samples of the pseudo strata and the odd number units to the 
other half sample. Since CE’s sort order uses both state/county and the variable STRATUM, this 
method of splitting the sample into pseudo strata could also be applied to the variable STRATUM. 
 
2.1.3 SDR Variance Estimator 
We include SDR in our simulation study because several large demographic surveys use it to 
estimate the variance of the SR strata including the Current Population Survey (U.S. Census Bureau 
2019), National Crime Victimization Survey (Bureau of Justice Statistics 2014, 2020), and the 
American Housing Survey (U.S. Census Bureau and Department of Housing and Urban 
Development 2022). We begin our discussion of SDR by beginning with its motivation – the 
successive difference (SD) variance estimator, which Yates (1953) and Wolter (2007) expressed as: 
 

𝑣ොௌ஽ଵ൫𝑌෠൯ = (1 − 𝑓)
𝑛

2(𝑛 − 1)
෍(𝑦෬௞ − 𝑦෬௞ିଵ)ଶ

௡

௞ୀଶ

. 
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As discussed by Ash (2014), 𝑣ොௌ஽ଵ൫𝑌෠൯ is a collapsed-strata variance estimator, where it collapses all 
possible pairs of adjacent implicit strata. A second form of the SD variance estimator “connects” 
the first implicit stratum of the sort order with the last implicit stratum, or: 
 

𝑣ොௌ஽ଶ൫𝑌෠൯ =
1

2
(1 − 𝑓) ൭෍(𝑦෬௞ − 𝑦෬௞ିଵ)ଶ

௡

௞ୀଶ

+ (𝑦෬ଵ − 𝑦෬௡)ଶ൱ 

 
Fay and Train (1995) suggested the SDR variance estimator, a replication form of the SDR, which 
is expressed as: 
 

𝑣ොௌ஽ோ൫𝑌෠൯ =
4

𝑅
෍൫𝑌෠௥ − 𝑌෠൯

ଶ
ோ

௥ୀଵ

, 

 

where the replicate estimator for group g is defined as: 𝑌෠௥ = ∑ ∑ 𝑤௛௜𝑤௞𝐹௥௞
(ௌ஽ோ)

𝑦௞௞∈௦೓೔௛ , and the 
replicate factors are defined as: 
 

𝐹௥௞
(ௌ஽ோ)

= 1 + 2ି
ଷ
ଶ𝑎௕ೖ,௥ − 2ି

ଷ
ଶ𝑎௖ೖ,௥ , 

 
The 𝑎௕ೖ,௥  represents the 𝑏௞

th row and rth column of a Hadamard matrix and 𝑏௞  and 𝑐௞  are an 
assignment of two rows of the Hadamard matrix to each unit k. The key to the row assignment 𝑏௞ 
and 𝑐௞ is that it uses the sort order of the SYS sample and the assignment “connects” adjacent units 
in the sort order. For example, the row assignments of the first four units of the SYS sample (𝑐ଵ, 𝑑ଵ), 
(𝑐ଶ, 𝑑ଶ), (𝑐ଷ, 𝑑ଷ), and (𝑐ସ, 𝑑ସ) are connected when 𝑑ଵ = 𝑐ଶ,  𝑑ଶ = 𝑐ଷ,  𝑑ଷ = 𝑐ସ, and 𝑑ସ = 𝑐ଵ . Ash 
(2014) says that this example row assignment is a connected loop because the last unit is linked 
back to the first thus completing a loop. See Sukasih and Jang (2003) and Ash (2014) for further 
discussion of the row assignment. 
 
We add that the variance estimator formed by splitting the SR PSUs and the SDR variance estimator 
are both a type of collapsed-strata variance estimator – see Ash (2014) for an explanation of how 
successive differences and SDR variance estimators are collapsed-strata variance estimators. With 
SDR, all possible (𝑛 − 1) pairs of implicit strata [(1,2), (2,3), (3,4),…] are used by the variance 
estimator, while the variance estimator that splits the SR strata into pseudo strata only uses 𝑛/2 
pairs of implicit strata [(1,2), (3,4), (5,6),…]. This suggests that SDR could be a better variance 
estimator since it uses more collapsed strata. 
 
2.1.4 Delete-a-Group Jackknife Variance Estimator 
 
Kott (1998, 2001) expressed the delete-a-group jackknife (DAGJK) variance estimator of 𝑌෠  as: 
 

𝑣ො஽஺ீ௃௄൫𝑌෠൯ =
𝑅 − 1

𝑅
෍൫𝑌෠௥ − 𝑌෠൯

ଶ
ோ

௥ୀଵ

. 

 
The units of the sample are evenly and randomly assigned to the R groups and r is an index on the 

groups. The replicate estimator for group r is defined as: 𝑌෠௥ = ∑ ∑ 𝑤௛௜𝑤௞𝐹௥௞
(஽஺ீ௃௄)

𝑦௞௜∈௦೓೔௛ ,  the 

DAGJK replicate factor for group r and sample unit k is defined as 𝐹௥௞
(஽஺ீ௃௄)

= ൫𝑅/(𝑅 − 1)൯𝐼௥௞
  and 

we define the following indicator variable for sample unit k and group r, which controls the group 
to delete – 𝐼௥௞

 = 1, if 𝑘 ∉ 𝑟, and 𝐼௥௞
 = 0, if 𝑘 ∈ 𝑟. 

 
Although Kott (2001) suggested assigning the groups at random, we consider whether the 
assignment of groups should use the sort order when a SYS sample is selected, especially with SYS 
is used with a highly informative sort order. We did this by assigning the 1st unit of the sort order to 
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the 1st group, the 2nd unit to the 2nd group, …, the Rth unit to the Rth group, and then repeat the pattern 
again with the (R+1)th unit to the 1st group, the (R+2)th unit to the 2nd group, etc.  
 
2.2 Compatible Replication Variance Estimators 
 
We next review three different compatible combinations (CC) of replication variance estimators, 
which are summarized in Table 1. For each CC, the separate replication variance estimators for the 
SR and NSR strata are represented in the bottom two rows of Table 1 in terms of their replicate 
factors and both replicate factors use the replicate variance estimator given at the top of Table 1. 
 

Table 1: Summary of Compatible Combinations of Replication Variance Estimators and 
their Replicate Factors  

Replicate 
Variance 
Estimator 

1. BRR and BRR/CS 2. SDR and BRR/CS 3. DAGJK and BRR/CS 

1

𝑅(1 − 𝜅)ଶ
෍൫𝑌෠௥ − 𝑌෠൯

ଶ
ோ

௥ୀଵ

 
4

𝑅
෍൫𝑌෠௥ − 𝑌෠൯

ଶ
ோ

௥ୀଵ

 
𝑅 − 1

𝑅(1 − 𝜅)ଶ
෍൫𝑌෠௥ − 𝑌෠൯

ଶ
ோ

௥ୀଵ

 

R
ep

li
ca

te
 F

ac
to

rs
 S
R

 S
tr

at
a 

BBR by splitting or pairing 
SR strata 

 

𝐹௥௚௛
(஻ோோ/ௌோ)

 

= 1 + 𝑎௥௚(1 − 𝜅) 
 

𝐹௥௚௛ଶ
(஻ோோ/ௌோ)

 

= 1 − 𝑎௥௚(1 − 𝜅) 

SDR 
 
 

𝐹௥௞
(ௌ஽ோ)= 

1 + 2ି
ଷ
ଶ𝑎௖ೖ,௥ + 2ି

ଷ
ଶ𝑎ௗೖ,௥ 

DAGJK 
 
 

𝐹௥௞
(஽஺ீ௃௄/஼஼ )

= 

(1 − 𝜅) ൬
𝑅

𝑅 − 1
൰ 𝐼௞௥ + 𝜅 

N
S

R
 S

tr
at

a 

BRR/CS 
 

𝐹௥௚ଵ
(஻ோோ/஼ௌ)

= 

1 + 2𝑎௥௚(1 − 𝜅)𝑃௚ଶ 
 

𝐹௥௚ଶ
(஻ோோ/஼ௌ)

= 

1 − 2𝑎௥௚(1 − 𝜅)𝑃௚ଵ 

BRR/CS with 𝜅 = 1/2 
 
 

𝐹௥௚ଵ
(஻ோோ/஼ௌ)

= 1 + 𝑎௥௚𝑃௚ଶ 
 

𝐹௥௚ଶ
(஻ோோ/஼ௌ)

= 1 − 𝑎௥௚𝑃௚ଵ 

BRR/CS 
 

𝐹௥௚ଵ
(஻ோோ/஼஼ଷ)

= 

1 + 2𝑎௚௥(1 − 𝜅)(𝑅 − 1)ି
ଵ
ଶ𝑃௚ଶ 

 

𝐹௥௚ଶ
(஻ோோ/஼஼ଷ)

= 

1 − 2𝑎௚௥(1 − 𝜅)(𝑅 − 1)ି
ଵ
ଶ𝑃௚ଵ 

BRR/CS has R replicates and DAGJK has R groups 

 
2.2.1 BRR and BRR/CS 
The simplest CC of replicate variance estimators the application of BRR to both the NSR and SR 

strata. This CC uses the expression 𝑣ො஻ோோ/஼ௌ൫𝑌෠൯, where the NSR strata use replicate factors 𝐹௥௛௚
(஻ோோ/஼ௌ)

 

and the NSR strata use replicate factors 𝐹௥௛௚௕
(஻ோோ/ௌோ)

. 

 
2.2.2 SDR and BRR/CS 
As mentioned earlier, several major household surveys use the combination of BRR with 𝜅 = 1/2  
and SDR together to estimate the variance of the NSR and SR strata, respectively. Both the BRR 
and SDR variance estimators can use the same expression because 𝑣ොௌ஽ோ൫𝑌෠൯ = 𝑣ො஻ோோ/஼ௌ൫𝑌෠൯, when 
𝜅 = 1/2. 
 
2.2.3 DAGJK and BRR/CS  
We derived a BRR version of the DAGJK variance estimator that is compatible with the BRR/CS 
variance estimator for the NSR strata. The expression of the variance estimator and its replicate 
factors are provided in Table 1 and Result A1 of the Appendix shows that using the replicate factors 

𝐹௜௥
(஽஺ீ௃௄/஼ௌ )

 with variance estimator in Table 1 is equivalent to 𝑣ො஽஺ீ௃௄൫𝑌෠൯, and using the replicate 

factors 𝐹௜௥
(஻ோோ/஼ௌଶ)

 with variance estimator in Table 1 is equivalent to 𝑣ො஻ோோ/஼ௌ൫𝑌෠൯. 
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3. Data for the Simulation 
 
This section describes the CE Survey and how we used CE data to create a universe for our 
simulation study. 
 
3.1 CE Background 
CE employs a two-stage sample design. In the first stage, both the Interview and Diary Surveys use 
the same first-stage sample design, which is selected once every ten years and shortly after the 
decennial census. In the first stage, the counties of the U.S. are grouped into Primary Sample Units 
(PSUs), which can be a single county or a group of contiguous counties. In urban areas, PSUs were 
defined as the Core-Based Statistical Areas (CBSA) as defined by the Office of Management and 
Budget. In rural areas, where counties are not grouped into CBSAs, PSUs were formed by grouping 
counties so that each PSU had a minimum of 7,500 or more people and a maximum of 3,000 square 
miles (King 2012). The PSUs were then grouped into strata that are either self-representing (SR) or 
non-self-representing (NSR). In the first stage, one PSU was selected within each stratum with 
probability proportion to the measure of size (MOS), where the MOS is the most recent decennial 
census population estimates. The current first-stage sample, which we refer to as the 2010 sample 
design, has a total of 91 sample PSUs, where 23 are SR and 68 are NSR.  
 
In the second stage of the sample design, the Interview and Diary Surveys both select separate equal 
probability SYS samples of addresses. To do this, the address frame, maintained by the Census 
Bureau, is sorted and a SYS sample of addresses is selected from the frame within each of the first-
stage sample PSUs. The address frame is sorted by state/county and STRATUM, a CE specific 
stratum code. For more details about CE’s overall sample design and estimation methods, see 
Neiman et al. (2015) and Bureau of Labor Statistics (2024).  
 
3.2 Simulation Universe 
The goal of the simulation is to compare alternative variance estimators of the estimate of mean 
total expenditures with respect to the bias, variance, MSE, and the accuracy of the confidence 
intervals that are produced with the variance estimators. To measure the bias and the MSE, we 
need to calculate the actual variance and to do this we needed a universe, where total expenditures 
was known for every CU in the universe.  
 
To create our universe, we started with the 122,782 eligible CUs available from all 23 SR strata of 
the 2016-2022 Interview survey and enlarged it by creating 25 CUs for each of the 122,782 
eligible CUs. The 25 CUs had the same sort variables, but they had a different modeled value of 
total expenditures – we added a random term to the model prediction corresponding to the 
standard error of the model. The model included variables related to tenure, property value/rent, 
number of people in the CU, and urban/rural status. At the end, we produced a universe of 3M+ 
CUs, where we know the sort variables and total expenditures for every CU. 
 

4. Simulation Study 
 
4.1 Simulation Details 
With the universe described in section 3, we selected 20,000 SYS random samples for the three 
different sort orders: a random sort, CE’s sort order, and sorting by the total expenditures of the CU, 
where the least informative sort order was a random sort order and the most informative was the 
sorting by total expenditures. In practice, the total expenditures of a CU is not available when the 
second-stage sample is selected, but we used it to select our simulation samples in order to examine 
the extreme case of having a “perfect” sort order, where the universe is sorted by the survey’s 
variable of interest. CE’s approximate sort order is in between the extremes in terms of being an 
informative sort order.  
 
Table 2 lists the alternative variance estimators examined with the simulation that are applied to 
each of the 20,000 simulated samples within each of the eight sort orders. 
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Table 2: Variance Estimators of the Simulation 

Variance Estimator Description 
𝑣ො௦௥௦௪௢௥൫𝑌෠൯ *1-SRSWOR 

𝑣ොௌ஽ଵ൫𝑌෠൯ *2-SD1 | sort order | 0 loops 

𝑣ො஻஻ோ൫𝑌෠൯ 

01-BRR | sort order | 1 pseudo stratum 
02-BRR | sort order | 2 p-strata 
03-BRR | sort order | 4 p-strata 
04-BRR | sort order | 22 p-strata 
05-BRR | sort order | 44 p-strata 
06-BRR | random order | 1 p-stratum 
07-BRR | random order | 2 p-strata 
08-BRR | random order | 4 p-strata 
09-BRR | random order | 22 p-strata 
10-BRR | random order | 44 p-strata 
11-BRR | random order | split county 
12-BRR | random order | split strata 

𝑣ොௌ஽ோ൫𝑌෠൯ 

13-SDR | sort order | 0 loops 
14-SDR | sort order | 4 loops 
15-SDR | sort order | 8 loops 
16-SDR | sort order | 16 loops 
17-SDR | sort order | 44 loops 

𝑣ො஽஺ீ௃௄൫𝑌෠൯ 
18-DAGJK | sort order | 44 groups 
19-DAGJK | random order | 44 groups 

 
The first two variance estimators 𝑣ො௦௥௦௪௢௥൫𝑌෠൯ and 𝑣ොௌ஽ଵ൫𝑌෠൯ are labeled ‘*1’ and ‘*2’ in Table 2 and 
are the SRSWOR and SD1 variance estimators, respectively. We include an asterisk in their labels 
because, as mentioned previously, they are not a replication variance estimator or compatible with 
BRR, but we included them because they provide simple reference estimates that we can compare 
with the other replication variance estimators.  
 
The BRR variance estimators 𝑣ො஻஻ோ൫𝑌෠൯ that split the sample into half samples and pseudo strata are 
labeled 01 to 12 in Table 2. The BRR variance estimators 01 to 10 vary by how many pseudo strata 
the SR strata is split into (1, 2, 4, 22, or 44) and by whether the units of the sample are split into half 
samples either randomly or by using the sort order. The number of pseudo strata ranged from the 
smallest possible or 1 to the largest possible or 44, the number of replicates that CE uses.  
 
The BRR variance estimators labeled 11 and 12 split the CUs into half samples within state/county 
or STRATUM, respectively. The idea is that the individual variables of the sort order, like CE’s 
state/county and STRATUM sort variables, define implicit strata when used with the SYS sample 
design. Therefore, it made sense to estimate the variance within the implicit strata formed by these 
variables, which means treating the different values of the sort variables as implicit strata (pseudo 
strata) and splitting them into two half samples. With this strategy, variance estimator 11 treated 
each state/county as a pseudo stratum, split it into two half samples, and then spread the 
state/counties across the 44 replicates. Similarly, variance estimator 12 treated the values of 
STRATUM as pseudo strata, split them into two half samples, and spread the values of STRATUM 
across 44 replicates. Although splitting the implicit strata seemed reasonable, it was not simple to 
enact because the sample counts within each PSU by either state/county or STRATUM were 
sometimes very small or even zero. For this reason, we collapsed some values of the state/county 
and STRATUM on an ad hoc basis prior to splitting them into half samples.  
 
The SDR variance estimators 𝑣ොௌ஽ோ൫𝑌෠൯ are labeled 13 to 17 in Table 2 and varied by the number of 
CUs in a connected loop – either 0, 4, 8, 16, or 44. The DAGJK variance estimators 𝑣ො஽஺ீ௃௄൫𝑌෠൯ are 
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labeled 18 and 19 in Table 2 and varied by whether the units of the sample were assigned to the 44 
groups either randomly or by using the sort order.  
 
With each of the 𝑛௦௜௠ = 20,000 simulated samples that are indexed by t, we estimated the mean 
total expenditures for all of the SR PSUs (national estimate) and for each of the SR PSUs (MSA-

level estimate) as 𝑌ത෠௧ = 𝑌෠௧/𝑁 , where 𝑌෠௧ is the estimator of total expenditures. We also estimated the 

variance of 𝑌ത෠௧ with the 19 variance estimators, which is represented as 𝑣ොቀ𝑌ത෠௧ቁ.  

 
4.2 Simulation Results 
We defined the simulation expectation of the estimator of the mean 𝑌ത෠  as 𝐸௦௜௠ቀ𝑌ത෠ቁ = 𝑛௦௜௠

ିଵ ∑ 𝑌ത෠௧
௡ೞ೔೘
௧ୀଵ , 

the simulation variance of 𝑌ത෠  as: 𝑣௦௜௠ቀ𝑌ത෠ቁ = 𝑛௦௜௠
ିଵ ∑ ቀ𝑌ത෠௧ − 𝑌തቁ

ଶ௡ೞ೔೘
௧ୀଵ , and simulation standard error of 

𝑌ത෠  as 𝑠𝑒௦௜௠ቀ𝑌ത෠ቁ = ට𝑣௦௜௠ቀ𝑌ത෠ቁ. The simulation coefficient of variation is defined as a percent as 

𝑐𝑣௦௜௠ቀ𝑌ത෠ቁ = ቀ𝑠𝑒௦௜௠ቀ𝑌ത෠ቁ / 𝑌തቁ × 100 . Table 3 presents the simulation standard errors and 

coefficients of variation for the combination of all SR PSU by the nine different sort orders. 
 
Table 3: Standard Errors of Estimated Mean Total Expenditures for Each Sort Order 

Sort Order 
All SR PSUs 

𝑠𝑒௦௜௠ቀ𝑌ത෠ቁ 𝑐𝑣௦௜௠ቀ𝑌ത෠ቁ 

Random 625 1.0 
CE’s Sort Order 576 0.9 
Expenditures 133 0.2 

 
The standard errors of mean total expenditures of Table 3 are also represented in Figure 2, which 

presents boxplots to provide a graphical representation of the distribution of 𝑌ത෠  for all the SR PSUs. 
 

  
Figure 2: Distributions of the Estimators of Mean Total Expenditures for Varying Sort Orders 
 

In both Table 3 and Figure 2, we see that the variances of 𝑌ത෠  get smaller as the sort order becomes 
more informative: the standard error of the random sort is about five times larger than the standard 
error with the sort by the value of expenditures.  
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We considered the simulated standard errors of Table 3 as the target for our variance estimators, and 
therefore, they are used to measure the bias of the alternative estimators. The bias ratio is a simple 

measure of the bias and for 𝑠𝑒ෞቀ𝑌ത෠ቁ, we define bias ratio as𝐵𝑖𝑎𝑠 𝑅𝑎𝑡𝑖𝑜 ቀ𝑠𝑒ෞቀ𝑌ത෠ቁ
 
ቁ = ට𝐸௦௜௠ ൬𝑣ොቀ𝑌ത෠ቁ൰ /

𝑠𝑒௦௜௠ቀ𝑌ത෠ቁ,  where the simulation expectation of 𝑣ොቀ𝑌ത෠ቁ  is defined as: 𝐸௦௜௠ ൬𝑣ොቀ𝑌ത෠ቁ൰ =

𝑛௦௜௠
ିଵ ∑ 𝑣ොቀ𝑌ത෠௧ቁ

௡ೞ೔೘
௧ୀଵ .  We chose the bias ratios to measure the bias of 𝑠𝑒ෞቀ𝑌ത෠ቁ because they are simple to 

interpret: values less than one indicate that 𝑠𝑒ෞቀ𝑌ത෠ቁ is underestimating 𝑠𝑒ቀ𝑌ത෠ቁ and values greater than 

one indicate that that 𝑠𝑒ෞቀ𝑌ത෠ቁ is underestimating 𝑠𝑒ቀ𝑌ത෠ቁ. A simple measure of the variance of an 

estimator is the coefficient of variation. For 𝑠𝑒ෞቀ𝑌ത෠ቁ, the simulation coefficient of variation is defined 

as a percent as: 
 

𝑐𝑣௦௜௠ ቀ𝑠𝑒ෞቀ𝑌ത෠ቁ
 
ቁ =

ට𝑣௦௜௠ ൬𝑣ොቀ𝑌ത෠ቁ൰

𝑠𝑒௦௜௠ቀ𝑌ത෠ቁ
× 100, 

 

where the simulation variance of 𝑠𝑒ෞቀ𝑌ത෠ቁ  is 𝑣௦௜௠ ൬𝑠𝑒ෞቀ𝑌ത෠ቁ൰ = 𝑛௦௜௠
ିଵ ∑ ቆ𝑠𝑒ෞቀ𝑌ത෠௧ቁ −

௡ೞ೔೘
௧ୀଵ

𝐸௦௜௠ ൬𝑠𝑒ෞቀ𝑌ത෠ ቁ൰ቇ

ଶ

.  We chose to use the coefficient of variation because they are all on the same scale 

– the coefficient of variation for each variance estimator was divided by the same value 𝑠𝑒௦௜௠ቀ𝑌ത෠ቁ, 

and this makes them easy to compare.  
 

Figure 3 presents the distributions of 𝑠𝑒ෞቀ𝑌ത෠௧ቁ/ 𝑠𝑒௦௜௠ቀ𝑌ത෠ቁ for the random sort or sort order 1.  

 

 
Figure 3: Distributions of the Ratio of the Standard Error Estimators – Random Sort Order 
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We make the following observations about the bias and variance of the estimators represented in 
Figure 3: 
 
(1) All the variance estimators are nearly unbiased for the random sort order. A majority of the bias 

ratios were 1.01, where the bias ratios ranged from 0.96 for the for the BRR variance estimator 
that split STRATUM (12) to 1.03 for the DAGJK variance estimators (17 and 18). 

(2) The variances of the BRR variance estimators that used the sort order (01, 02, 03, and 04) and 
the BRR variance estimators that randomly split the half samples (05, 06, 07, and 08) all 
decreased with increasing number of replicates. For the BRR variance estimators that used the 
sort order, the coefficients of variation decreased from 19.0 percent to 11.1 percent and for the 
BRR variance estimators that randomly split the half samples, the coefficients of variation 
decreased from 19.2 percent to 11.0 percent. This is expected because as the number of 
replicates increases the variance of the variance estimators decreases. 

(3) The variance estimators that split STRATUM (12) had the largest variance with a coefficient 
of variation of 26.9 percent. This may have occurred because we collapsed values of 
STRATUM with small sample counts in some PSUs. If this is the case, it might be improved 
by a different collapsing strategy.  

(4) With the SDR variance estimators (13, 14, 15, 16, and 17), their biases and variances were all 
roughly the same. The bias ratios for all five estimators were 1.01 and their coefficients of 
variation ranged from 13.2 percent to 13.5 percent.  

(5) The DAGJK variance estimators (18 and 19) had the largest bias ratios with 1.03. Their 
variances of 11.5 percent for the DAGJK variance estimator that used the sort order to assign 
the groups and 11.4 for DAGJK variance estimator that randomized the assignment of the 
groups were not the smallest, but they were in a group of six variance estimators with 
coefficients of variation less than 12.0 percent. 

 

Next, Figure 4 presents the distributions of 𝑠𝑒ෞቀ𝑌ത෠௧ቁ/ 𝑠𝑒௦௜௠ቀ𝑌ത෠ቁ for the approximate CE sort order or 

sort order 4. 
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Figure 4: Distributions of the Ratio of the Standard Error Estimators – Approximate CE 

Sort Order 
 
We remind the reader that we consider sort order 4 to be the closest to CE’s current sort order and 
make the following observations about the bias and variance of the estimators represented in Figure 
4: 
 
(1) The BRR variance estimators that used the sort order (01, 02, 03, 04 and 05) were among the 

variance estimators with the smallest biases with bias ratios ranging from 1.00 to 1.01. We also 
see that their variances decreased as their number of pseudo strata increased: the coefficients of 
variation decreased from 18.8 percent for variance estimator 01 to 11.2 percent for variance 
estimator 05.  

(2) The SDR variance estimators (13, 14, 15, 16, and 17) all had similar bias ratios ranging from 
1.02 percent to 1.03 percent and they all had similar coefficients of variation ranging from 13.0 
to 13.5. 

(3) The DAGJK variance estimator that randomly assigned the groups (18) had the largest bias 
ratio of the 19 replication variance estimators with a bias ratio of 1.12 and the DAGJK variance 
estimator that used the sort order to assigned groups (17) did better with a bias ratio of 1.09, 
but both variance estimators were among the variance estimators with the largest values of the 
bias ratio. 

 

Figure 5 presents the distributions of 𝑠𝑒ෞቀ𝑌ത෠௧ቁ/ 𝑠𝑒௦௜௠ቀ𝑌ത෠ቁ for the sort by total expenditures or sort 

order 8. 
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Figure 5: Distributions of the Ratio of the Standard Error Estimators – Sort by 

Expenditures 
 
We make the following observations about the bias and variance of the estimators represented in 
Figure 5: 
 
(1) The BRR variance estimators that used the sort order (01, 02, 03, 04 and 05) had both the 

smallest biases and variances of all the variance estimators. The bias ratios ranged from 1.18 to 
1.43 and the coefficients of variation ranged from 19.9 percent to 22.4 percent.  

(2) The variance estimators that randomly assigned the sample to half samples, including the BRR 
variance estimators (06, 07, 08, 09, and 10), the BRR variance estimator that split STRATUM, 
and the DAGJK variance estimator (19), all overestimated the variance because they estimated 
the variance as if it came from a SRSWOR sample. We know this because the bias ratios for all 
of these variance estimators ranged from 4.71 to 4.83, which includes the bias ratio for the 
SRSWOR variance estimator (*1) with a bias ratio of 4.71.  

(3) The biases of the SDR variance estimators (13, 14, 15, 16, and 17) increased as the number of 
units in a connected loop increased. The SDR variance estimator with no connected loops (13) 
had the smallest bias ratio with 1.36 and the SDR variance estimator with 44 units in a 
connected loop (17) had the largest bias ratio with 2.70. The SDR variance estimator with no 
connected loops (13) had the smallest variance of the SDR variance estimators with a 
coefficient of variation of 16.4 percent. The coefficients of variation of the other SDR variance 
estimators (14, 15, 16, and 17) ranged from 21.0 percent to 21.9 percent.  

 
Table 4 brings together the bias, variance, MSE, and coverage ratios for the variance estimators of 
mean total expenditures for all SR PSUs and includes their rankings for easy comparisons. In Table 
12, the top five ranked variance estimators in terms of MSE, bias, variance, and coverage ratios are 
highlighted in bold.  
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Table 4: Rankings of the Variance Estimators for CE’s Sort Order for All Self-Representing 
Primary Sampling Units 

Variance Estimator 

Rankings Values 

M
S

E
 

B
ias 

(B
ias R

atios) 

V
ariance 

(C
V

s of S
E

s) 

C
overage 
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atio 

M
S

E
 

B
ias 

(B
ias R
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V
ariance 
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V

s of S
E

s) 

C
overage 
R

atio 

04-BRR | sort order | 22 p-strata 1 6 1 5 11.2 1.01 11.2 90.5 

05-BRR | sort order | 44 p-strata 2 5 2 7 11.2 1.01 11.2 90.4 

03-BRR | sort order | 4 p-strata 3 3 7 2 12.8 1.01 12.8 90.2 

11-BRR | sort order | split county 4 4 10 1 13.1 1.01 13.1 90.0 

16-SDR | sort order | 16 loops 5 8 9 4 13.1 1.02 13.1 90.4 

15-SDR | sort order | 8 loops 6 12 8 10 13.2 1.03 13.0 90.7 

17-SDR | sort order | 44 loops 7 10 11 9 13.4 1.03 13.3 90.6 

14-SDR | sort order | 4 loops 8 9 12 6 13.4 1.02 13.4 90.5 

13-SDR | sort order | 0 loops 9 11 13 8 13.7 1.03 13.5 90.6 

02-BRR | sort order | 2 p-strata 10 1 14 3 13.9 1.00 13.9 89.8 

18-DAGJK | sort order | 44 groups 11 13 3 15 14.5 1.09 12.0 92.7 

10-BRR | rand order | 44 p-strata 12 15 4 17 14.7 1.09 12.0 92.7 

09-BRR | rand order | 22 p-strata 13 17 5 16 14.8 1.09 12.1 92.7 

08-BRR | rand order | 4 p-strata 14 18 15 14 16.3 1.09 14.0 92.5 

19-DAGJK | rand order | 44 groups 15 19 6 19 16.7 1.12 12.4 93.4 

07-BRR | rand order | 2 p-strata 16 16 16 13 17.4 1.09 15.4 92.3 

01-BRR | sort order | 1 p-strata 17 2 17 11 18.8 1.01 18.8 88.8 

06-BRR | rand order | 1 p-strata 18 14 18 12 21.9 1.09 20.7 91.3 

12-BRR | sort order | split strata 19 7 19 18 28.6 1.02 28.5 86.8 

 
For the bias, we ranked the absolute value of the difference between the bias ratio and 1.0 and for 
the coverage ratio, we ranked the absolute value of the difference between the coverage ratio and 
90 percent.  
 
From Table 4, we make the following observations about the variance estimators of mean total 
expenditures of all SR PSUs: 
 
(1) The variance estimators with the smallest five rankings of MSEs were the BRR variance 

estimators that used the sort order and used 4, 22, 44 pseudo strata (03, 04, and 05), the BRR 
variance estimator that split by county (11), and the SDR variance estimator that used 16 
connected loops (11). 

(2) The variance estimators with the smallest five rankings of bias were the BRR estimators that 
used the sort order and split the sample into 1, 2, 4, and 44 pseudo strata (01, 02, 04, and 05) and 
the BRR variance estimator that split by state/county (11). We add that all of these variance 
estimators were close in terms of bias since they and several other variance estimators all had 
average bias ratios ranging from 1.00 to 1.01. 

(3) The variance estimators with the smallest five rankings of variance used 22 or 44 replicates and 
included the BRR variance estimators with 22 or 44 pseudo strata (04, 05 09, and 10) and the 
DAGJK variance estimator that used the sort order with 44 groups (18).  



16 
 

(4) The variance estimators with the smallest five rankings of the confidence intervals were the BRR 
estimators that used the sort order and split the sample into 2, 4, and 22 pseudo strata (02 and 
03) or the BRR variance estimator that split by state/county (11), and the SDR variance estimator 
that used 16 connected loops (16). We add that all of these variance estimators were close in 
terms of coverage ratios since they and several other variance estimators all had average 
coverage ratios ranging from 89.8 to 90.5 percent. 

 
Recommendation for CE’s national estimates. We recommend estimating variances for the SR 
PSUs with the BRR estimators that used the sort order and split the sample into 22 or 44 pseudo 
strata (04 or 05) because they had the smallest MSEs and variances and their rankings for bias, and 
confidence intervals were all in the top 7.  
 
We also produced the same rankings as shown in Table 5 for each of the 23 MSA-level estimates 
(or equivalently the 23 SR PSUs) and then averaged the MSA-level rankings and values of the bias, 
variance, MSE, and coverage ratios across all of the MSAs. Table 5 summarizes the averages for 
the variance estimators of mean total expenditures applied to CE’s sort order. The top five ranked 
variance estimators in terms of MSE, bias, variance, and coverage ratios are highlighted in bold. 
 

Table 5: Average Rankings of the Metropolitan Statistical Areas by Measures of the 
Variance Estimators for the Consumer Expenditure Survey’s Sort Order 

 Average Rankings Average Values 

Variance Estimator 
M

S
E

 

B
ias 

(B
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atios) 

V
ariance 
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V

s of S
E

s) 

C
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S
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V
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E

s) 
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05-BRR | sort order | 44 p-strata 1.0 6.7 1.1 3.4 16.8 1.02 16.7 90.0 

15-SDR | sort order | 8 loops 3.1 8.1 5.0 3.6 18.0 1.03 17.9 89.8 

16-SDR | sort order | 16 loops 3.2 8.0 5.4 4.0 18.0 1.02 17.9 90.1 

17-SDR | sort order | 44 loops 4.8 6.0 7.1 4.5 18.1 1.02 18.1 90.1 

14-SDR | sort order | 4 loops 5.6 8.2 7.9 4.4 18.2 1.02 18.1 90.6 

13-SDR | sort order | 0 loops 5.8 8.1 8.1 4.1 18.3 1.02 18.2 91.6 

18-DAGJK | sort order | 44 groups 5.9 14.5 2.3 8.4 18.8 1.08 17.2 90.2 

10-BRR | rand order | 44 p-strata 7.4 15.9 3.0 9.5 19.3 1.09 17.4 89.2 

04-BRR | sort order | 22 p-strata 8.6 6.3 10.0 5.9 19.7 1.02 19.6 93.0 

19-DAGJK | rand order | 44 groups 9.6 19.0 5.1 11.0 20.8 1.12 17.8 93.5 

09-BRR | rand order | 22 p-strata 11.0 16.0 11.0 7.7 22.2 1.09 20.8 92.3 

12-BRR | sort order | split strata 12.0 5.0 12.1 12.3 31.4 1.02 31.2 85.0 

03-BRR | sort order | 4 p-strata 13.1 6.3 13.1 14.2 36.4 1.02 36.0 83.2 

08-BRR | rand order | 4 p-strata 14.3 15.7 14.3 12.5 39.0 1.09 38.8 86.5 

11-BRR | sort order | split county 15.1 5.1 15.1 15.4 45.1 1.02 44.0 81.0 

02-BRR | sort order | 2 p-strata 15.7 5.1 15.7 16.7 48.7 1.01 47.5 77.0 
07-BRR | rand order | 2 p-strata 16.8 15.7 16.8 15.7 51.6 1.09 51.5 80.3 
01-BRR | sort order | 1 p-strata 17.9 5.2 17.9 18.9 64.3 1.01 61.2 66.2 
06-BRR | rand order | 1 p-strata 19.0 15.3 19.0 17.8 67.7 1.09 66.4 69.5 

 
The results from Table 5 tell a slightly different story as compared with the results from Table 4.  
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(1) The variance estimators with the smallest five rankings of MSEs were the BRR variance 

estimators that used 44 replicates (05) and the SDR variance estimators that used 4, 8, 16, and 
44 connected loops (14, 15, 16, and 17). 

(2) The variance estimators with the smallest five rankings of bias were the BRR variance estimators 
that split state/county or STRATUM (11 or 12) and the BRR variance estimator that used the 
sort order and two pseudo strata (02). We add that all of these variance estimators were close in 
terms of bias since they and several other variance estimators all had average bias ratios ranging 
from 1.01 to 1.02. 

(3) The variance estimators with the smallest rankings of variances were the BRR variance 
estimators with 44 pseudo strata (05 and 10), the DAGJK variance estimator with 44 groups (18 
and 19), and BRR variance estimators that used the sort order and split the sample into 8 pseudo 
strata (04). 

(4) The variance estimators with the smallest five rankings of confidence intervals were the BRR 
variance estimators that used the sort order and split the sample into 44 pseudo strata (05) and 
the SDR variance estimators that used 0, 8, 16, and 44 connected loops (13, 15, 16, and 17). We 
add that all of these variance estimators were close in terms of coverage ratios since they all had 
average coverage ratios ranging from 89.8 to 90.2 percent. 

 
Recommendation for CE’s MSA-level estimates. We recommend the BRR variance estimator 
that used the sort order and split the sample into 44 pseudo strata (05). This estimator had the 
smallest average ranking for the MSE, variance, and coverage ratio. Although variance estimators 
05 was not the best in terms of bias, it was in the top 5 in terms of bias. 
 
Overall Recommendation for CE: We recommend the BRR variance estimator that used the sort 
order and split the sample into 44 pseudo strata (05). It was one of the best variance estimators for 
the national estimates and the best for the MSA-level estimates. The main reason why variance 
estimator 05 does well is that it uses 44 replicates, which reduces the variance of the variance 
estimator.  
 

6. Conclusions 
 
The simulation study showed that splitting the SR strata into an increasing number of pseudo strata 
reduces the bias of the variance estimator. This suggests that CE could improve its variance 
estimates by splitting each of its SR strata into 44 pseudo strata rather than just one, as it currently 
does. The improvements in the variance of the variance estimator impacted both the national and 
MSA estimates but were more impactful to the MSA estimates. 
 
Both the BRR that split the SR strata into pseudo strata and half samples and SDR performed the 
best overall. We suggest that this happened because both are constructed as collapsed-strata variance 
estimators. Although we expected SDR to perform better because it includes more pairs of implicit 
strata, we did not see an appreciable difference, and we think this happened because there might not 
be much difference between using 𝑛/2 implicit strata with BRR and (𝑛 − 1) implicit strata with 
SDR, when the within PSU sample sizes 𝑛 are reasonably large as was the case with our simulation 
study. We do not know what would happen with smaller samples sizes. 
 

7. Disclaimer 
 
This paper provides a summary of research results. The information is being released for statistical 
purposes, to inform interested parties, and to encourage discussion of work in progress. The 
presentation does not represent an existing, or a forthcoming new, official BLS statistical data 
product or production series. 
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Appendix 
 
Result A1: The replication variance estimator: 
 

𝑣ො஼஼ଷ൫𝑌෠൯ =
𝑅 − 1

𝑅(1 − 𝜅)ଶ
෍൫𝑌෠௥ − 𝑌෠൯

ଶ
ோ

௥ୀଵ

 

 
used with the replicate factors: 
 

𝐹௥௚ଵ
(஻ோோ/஼஼ଷ)

= 1 + 2(1 − 𝜅)(𝑅 − 1)ି
ଵ
ଶ𝑃௚ଶ𝑎௚௥  

 

𝐹௥௚ଶ
(஻ோோ/஼஼ଷ)

= 1 − 2(1 − 𝜅)(𝑅 − 1)ି
ଵ
ଶ𝑃௚ଵ𝑎௚௥  

 
is equivalent to 𝑣ො஻ோோ൫𝑌෠൯ and when 𝑣ො஼஼ଷ൫𝑌෠൯ is used with replicate factors: 
 

𝐹௥௞
(஽஺ீ௃௄/஼஼ଷ)

= (1 − 𝜅) ൬
𝑅

𝑅 − 1
൰ 𝐼௥௞ + 𝜅 

 
is equivalent to 𝑣ො஽஺ீ௃௄൫𝑌෠൯. Note that neither set of replicate factors produces negative replicate 
weights. 
 

With 𝐹௚௛௥
(஻ோோ/஼஼ଷ)

, we start with the difference: 
 

𝑌෠௥ − 𝑌෠ = ෍ ቎ ෍ 𝑤௛௜𝑤௞𝐹௥௚ଵ
(஻ோோ/஼஼ଷ)

𝑦௞

௞∈௦భ೔

+ ෍ 𝑤௛௜𝑤௞𝐹௥௚ଶ
(஻ோோ/஼஼ଷ)

𝑦௞

௞∈௦మ೔

቏

஻

௚ୀଵ

− ෍ ෍ ෍ ෍ 𝑤௛௜𝑤௞𝑦௞

௞∈௦೓೔௜∈௦೓௛

஻

௚ୀଵ

 

= ෍ ቎ ෍ 𝑤௛௜𝑤௞ ൬1 + 2(1 − 𝜅)(𝑅 − 1)ି
ଵ
ଶ𝑃௚ଶ𝑎௚௥൰ 𝑦௞

௞∈௦భ೔

஻

௚ୀଵ

− ෍ 𝑤௛௜𝑤௞ ൬1 − 2(1 − 𝜅)(𝑅 − 1)ି
ଵ
ଶ𝑃௚ଵ𝑎௚௥൰ 𝑦௞

௞∈௦మ೔

቏

− ෍ ቎ ෍ 𝑤௛௜𝑤௞𝑦௞

௞∈௦భ೔

+ ෍ 𝑤௛௜𝑤௞𝑦௞

௞∈௦మ೔

቏

஻

௚ୀଵ

 

= ෍ ቎ ෍ 𝑤௛௜𝑤௞ ൬2(1 − 𝜅)(𝑅 − 1)ି
ଵ
ଶ𝑃௚ଶ𝑎௚௥൰ 𝑦௞

௞∈௦భ೔

஻

௚ୀଵ

− ෍ 𝑤௛௜𝑤௞ ൬2(1 − 𝜅)(𝑅 − 1)ି
ଵ
ଶ𝑃௚𝑎௚௥൰ 𝑦௞

௞∈௦మ೔

቏ 

= 2(1 − 𝜅)(𝑅 − 1)ି
ଵ
ଶ ෍ ൦𝑎௚௥ ൮ቌ𝑃௚ଶ ෍ 𝑤௛௜𝑤௞𝑦௞

௞∈௦భ೔

ቍ − ቌ𝑃௚ଵ ෍ 𝑤௛௜𝑤௞𝑦௞

௞∈௦మ೔

ቍ൲൪

஻

௚ୀଵ

 

= 2(1 − 𝜅)(𝑅 − 1)ି
ଵ
ଶ ෍ൣ𝑎௚௥൫𝑃௚ଶ𝑌෠௚ଵ − 𝑃௚ଵ𝑌෠௚ଶ൯൧

஻

௚ୀଵ
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where 𝑎௚௥ is the value from the gth row and rth column of a Hadamard matrix. Then 𝑣ො஼஼ଷ൫𝑌෠൯ can 
be expressed as: 
 

𝑣ො஼஼ଷ൫𝑌෠൯ =
𝑅 − 1

𝑅(1 − 𝜅)ଶ
෍൫𝑌෠௥ − 𝑌෠൯

ଶ
ோ

௥ୀଵ

 

=
𝑅 − 1

𝑅(1 − 𝜅)ଶ
෍ ቌ2(1 − 𝜅)(𝑅 − 1)ି

ଵ
ଶ ෍ൣ𝑎௚௥൫𝑃௚ଶ𝑌෠௚ଵ − 𝑃௚ଵ𝑌෠௚ଶ൯൧

஻

௚ୀଵ

ቍ

ଶ
ோ

௥ୀଵ

 

=
4

𝑅
෍

⎝

⎜
⎛

෍ ቂ𝑎௚௥
ଶ ൫𝑃௚ଶ𝑌෠௚ଵ − 𝑃௚ଵ𝑌෠௚ଶ൯

ଶ
ቃ

ீ

௚ୀଵ

ோ

௥ୀଵ

+ ෍ ෍ ൣ𝑎௚௥𝑎௚ᇲ௥൫𝑃௚ଶ𝑌෠௚ଵ − 𝑃௚ଵ𝑌෠௚ଶ൯൫𝑃௚ᇲଶ𝑌෠௚ᇲଵ − 𝑃௚ᇲଵ𝑌෠௚ᇲଶ൯൧

஻

௚ᇲୀଵ

௚ᇲஷ௚

஻

௚ୀଵ

⎠

⎟
⎞

 

=
4

𝑅

⎝

⎜
⎛

෍ ൥൭෍ 𝑎௚௥
ଶ

ோ

௥ୀଵ

൱ ൫𝑃௚ଶ𝑌෠௚ଵ − 𝑃௚ଵ𝑌෠௚ଶ൯
ଶ

൩

ீ

௚ୀଵ

+ ෍ ෍ ൥൭෍ 𝑎௚௥𝑎௚ᇲ௥

ோ

௥ୀଵ

൱ ൫𝑃௚ଶ𝑌෠௚ଵ − 𝑃௚ଵ𝑌෠௚ଶ൯൫𝑃௚ᇲଶ𝑌෠௚ᇲଵ − 𝑃௚ᇲଵ𝑌෠௚ᇲଶ൯൩

஻

௚ᇲୀଵ

௚ᇲஷ௚

஻

௚ୀଵ

⎠

⎟
⎞

 

= 4 ෍൫𝑃௚ଶ𝑌෠௚ଵ − 𝑃௚ଵ𝑌෠௚ଶ൯
ଶ

஻

௚ୀଵ

 

= 𝑣ො஼ௌ൫𝑌෠൯ 

= 𝑣ො஻ோோ൫𝑌෠൯ 

 
where ∑ 𝑎௚௥𝑎௚ᇲ௥

ோ
௥ୀଵ = 0 and ∑ 𝑎௚௥

ଶோ
௥ୀଵ = 𝑅 because the rows of the Hadamard matrix are 

orthogonal. Next with 𝐹௜௥
(஽஺ீ௃௄/஼஼ଷ)

, we start with the difference: 
 

𝑌෠௥ − 𝑌෠ = ෍ ෍ 𝑤௛௜𝑤௞𝐹௥௞
(஽஺ீ௃௄/஼஼ )

𝑦௞

௞∈௦೓೔௛

− ෍ ෍ 𝑤௛௜𝑤௞𝑦௞

௞∈௦೓೔௛

 

= ෍ ෍ 𝑤௛௜𝑤௞ ቆ(1 − 𝜅) ൬
𝑅

𝑅 − 1
൰ 𝐼௥௞ + 𝜅ቇ 𝑦௞

௞∈௦೓೔௛

− ෍ ෍ 𝑤௛௜𝑤௞𝑦௞

௞∈௦೓೔௛

 

= ෍ ෍ 𝑤௛௜𝑤௞ ቆ(1 − 𝜅) ൬
𝑅

𝑅 − 1
൰ 𝐼௥௞ + ൫1 − (1 − 𝜅)൯ቇ 𝑦௞

௞∈௦೓೔௛

− ෍ ෍ 𝑤௛௜𝑤௞𝑦௞

௞∈௦೓೔௛

 

= ෍ ෍ 𝑤௛௜𝑤௞ ቆ(1 − 𝜅) ൬
𝑅

𝑅 − 1
൰ 𝐼௥௞ − (1 − 𝜅)ቇ 𝑦௞

௞∈௦೓೔௛

 

= (1 − 𝜅) ቌ෍ ෍ 𝑤௛௜𝑤௞ ൬
𝑅

𝑅 − 1
൰ 𝐼௥௞𝑦௞

௞∈௦೓೔௛

− ෍ ෍ 𝑤௛௜𝑤௞𝑦௞

௞∈௦೓೔௛

ቍ 

= (1 − 𝜅)൫𝑌෠௥ − 𝑌෠൯ 

 
Then 𝑣ො஼஼ ൫𝑌෠൯ can be expressed as: 
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𝑣ො஼஼ଷ൫𝑌෠൯ =
𝑅 − 1

𝑅(1 − 𝜅)ଶ
෍ ቀ(1 − 𝜅)൫𝑌෠௥ − 𝑌෠൯ቁ

ଶ
ோ

௥ୀଵ

 

=
𝑅 − 1

𝑅
෍൫𝑌෠௥ − 𝑌෠൯

ଶ
ோ

௥ୀଵ

 

= 𝑣ො஽஺ீ௃௄൫𝑌෠൯ 

 
References 

 
Ash, S. (2014). Using successive difference replication for estimating variances, Survey 

Methodology, 40, 47-59. Available at: https://www150.statcan.gc.ca/n1/en/pub/12-001-x/
2014001/article/14029-eng.pdf?st=JKP7GRPp (accessed September 2024). 

Ash, S. (2022). Evaluating the First-Stage Sample Design for the 2020 Redesign of the Consumer 
Expenditures Surveys, JSM, Section on Survey Research Methods. Available at: 
https://ww2.amstat.org/meetings/proceedings/2015/data/assets/pdf/234097.pdf (accessed 
September 2024). 

Bureau of Justice Statistics. (2014). National Crime Victimization Survey Technical 
Documentation NCJ 247252 September 2014. Available at: https://bjs.ojp.gov/sites
/g/files/xyckuh236/files/media/document/ncvstd13.pdf (accessed September 2024).  

Bureau of Justice Statistics. (2020). National Crime Victimization Survey, 2016 Technical 
Documentation NCJ 251442 12/8/2017. Available at: https://bjs.ojp.gov/sites/g/
files/xyckuh236/files/media/document/ncvstd16.pdf (accessed September 2024). 

Bureau of Labor Statistics. (2023). Handbook of Methods, Available at: https://www.bls.gov
/opub/hom/home.htm (accessed September 2024). 

Dippo, C.S., R.E. Fay, and R.H. Morganstein. (1994). Computing Variances for Complex Survey 
Designs with Replication, JSM, Section on Survey Research Methods, 489-494. Available at: 
http://www.asasrms.org/Proceedings/papers/1984_094.pdf (accessed September 2024). 

Fay, R.E. and G.F. Train. (1995). “Aspects of Survey and Model-Based Postcensal Estimation of 
Income and Poverty Characteristics for States and Counties.” In Proceedings of the Section on 
Government Statistics, American Statistical Association. Available at: https://www.census.
gov/content/dam/Census/library/working-papers/1995/demo/faytrain95.pdf (accessed 
September 2024). 

Guciardo, C.J., A.H. Dorfman, L.R. Ernst, and M. Sverchkov. (2004). Variance Estimation for the 
National Compensation Survey When PSUs are Clustered Prior to the Second Phase of 
Sampling, JSM, Section on Survey Research Methods. Available at: https://www.bls.gov
/osmr/research-papers/2004/pdf/st040230.pdf (accessed September 2024). 

Hansen, M.H., W.M. Hurwitz, and W.G. Maddow. (1953). Sample Survey Methods and Theory, 
John Wiley & Sons. 

Johnson, E.G. and K.F. Rust. (1992). Population Inferences and Variance Estimation for NAEP 
Data, Journal of Educational Statistics. 17, 175-190. Available at: 
https://doi.org/10.2307/1165168 (accessed September 2024). 

Judkins, D.R. (1990). Fay’s method for Variance Estimation, Journal of Official Statistics, 6, 223-
239. Available at: https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/
fay39s-method-for-variance-estimation.pdf (accessed September 2024). 

Kott, P.S. (1998). Using the Delete-a-Group Jackknife Variance Estimator in Practice, JSM, 
Section on Survey Research Methods. Available at: 
http://www.asasrms.org/Proceedings/papers/1998_130.pdf (accessed September 2024). 



21 
 

Kott, P.S. (2001). The Delete-a-Group Jackknife, Journal of Official Statistics, 17, 4, 521-526. 
Available at: https://www.scb.se/contentassets/ca21efb41fee47d293bbee5bf7be7fb3/the-
delete-a-group-jackknife.pdf (accessed September 2024). 

Lee, E.S. and R.N. Forthofer. (2006). Analyzing Complex Survey Data, Sage. 
McCarthy, P.J. (1966). Replication: An Approach to the Analysis of Data from Complex Surveys, 

Vital and Health Statistics: Series 2, No. 14, National Center for Health Statistics, Public 
Health Service, Washington D.C. Available at: https://stacks.cdc.gov/view/cdc/13018/cdc_
13018_DS1.pdf (September 2024). 

McCarthy, P.J. (1969a). Pseudoreplication: Further Evaluation and Application of the Balanced 
Half-Sample Technique, Vital and Health Statistics: Series 2, No. 31, National Center for 
Health Statistics, Public Health Service, Washington D.C. Available at: https://www.cdc.gov/
nchs/data/series/sr_02/sr02_031acc.pdf (accessed September 2024). 

McCarthy, P.J. (1969b). Pseudo-Replication: Half Samples, Review of the International Statistical 
Institute 37(3): 239-264. DOI: https://doi.org/10.2307/1402116 (accessed September 2024). 

Megill, D.J., E.E. Gomez, A. Balmaceda, and M. Castillo, Measuring Efficiency of Implicit 
Stratification in Multistage Sample Surveys, JSM, Section on Survey Research Methods. 
Available at: http://www.asasrms.org/Proceedings/papers/1987_024.pdf (accessed September 
2024). 

Neiman, D., S. King, D. Swanson, S. Ash. J. Enriquez, and J. Rosenbaum. (2015). Review of the 
2010 Sample Redesign of the Consumer Expenditure Survey, JSM, Section on Survey 
Research Methods. Available at: http://www.asasrms.org/Proceedings/y2015/files/234097.pdf 
(accessed September 2024). 

Nixon, M.G., J.M. Brick, G. Kalton, and H. Lee. (1998). Alternative Variance Estimation for the 
NHIS, JSM, Section on Survey Research Methods. Available at: http://www.asasrms.org
/Proceedings/papers/1998_052.pdf (accessed September 2024). 

Sukasih, A.S. and D. Jang. (2003). Monte Carlo Study on the Successive Difference Replication 
Method for Non-Linear Statistics, JSM, Section on Survey Research Methods. Available at: 
http://www.asasrms.org/Proceedings/y2003/Files/JSM2003-000867.pdf (accessed September 
2024). 

U.S. Census Bureau. (2019). Current Population Survey Design and Methodology Technical Paper 
77. Available at: https://www2.census.gov/programs-surveys/cps/methodology/CPS-Tech-
Paper-77.pdf (accessed September 2024). 

U.S. Census Bureau and Department of Housing and Urban Development. (2022). 2021 AHS 
Integrated National Sample: Sample Design, Weighting, and Error Estimation. Available at: 
https://www2.census.gov/programs-surveys/ahs/2021/2021%20AHS%20National%20
Sample%20Design,%20Weighting,%20and%20Error%20Estimation.pdf (accessed September 
2024). 

Wolter, K.M. (2007). Introduction to Variance Estimation. 2nd Ed., Springer. 
Yates, F. (1953). Sampling Methods for Censuses and Surveys, 2nd Edition, Hafner Publishing 

Company, New York, NY. 




