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Abstract
We present a gross flows estimation approach which builds off the paper of Stasny and Fienberg
(1985). Our method uses population weighted estimates from two consecutive months of matched
data from the Current Population Survey (CPS) using the sampling weights from each of the
two matched months to produce two sets of partial gross flows tables. We then use a modeling
approach from Stasny and Fienberg to reconcile the two partial tables to produce an estimate of
the population gross flows table. Closed form solutions are presented which require an optimization
solution to determine Lagrange parameters. We use the method to produce estimated gross flows
tables for CPS from 2003-2023 and estimate the variance of the estimates by replication.
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1. Introduction

The Current Population Survey (CPS) is a household survey conducted for the Bureau of
Labor Statistics by the Unites States Census Bureau. It is the source of monthly estimates
Unemployment and other labor force measures by demographic groups and regions of the
United States. Primary interest is on the monthly stock estimates and changes in the those
estimates over time. There is also an interest in the changes between labor force states over
time which are called labor force gross flows. An example of such analyses is discussed in
Ilg (2005).

The CPS is well suited to examine transitions between labor force states between month
because it attempts to interview some of the same households in consecutive months. In
particular, the CPS uses a 4-8-4 rotation sampling design, which means that once a house-
hold is sampled in their first month, they are in sample the next three months then exit
the sample for 8 months and then interviewed again for 4 consecutive months before exiting
the sample. Note that by design the household is interviewed in the same 4 months in two
consecutive years. The design insures that approximating 75% of the sample overlaps from
month-to-month. For more on the CPS and its design see Technical Paper 77 (2019).

1.1 Population Gross Flows Table

We begin by defining the population gross flows table for two consecutive months in Table 1.
The table classifies all those people who are in the civilian noninstitutional population aged
16 and older (CNP ) in either of two consecutive months. The columns and rows labeled
E, U and N stand for those people classified as Employed, Unemployed or Not in Labor
Force respectively. The column labeled F denotes those people who were in the CNP in
the previous month t − 1 but were not in the CNP in the current month t . We refer to
those as outflows. The row labeled F denotes those people who were in the CNP in the
current month t but were not in the CNP in the previous month t− 1. We refer to those
as inflows. Note that the intersection of the column and row labeled F is zero since the
people in the table were in the CNP at least one of the two months. The column and row
labeled T are the totals.

∗Views expressed are those of the authors and do not necessarily reflect the views or policies of the U.S.
Bureau of Labor Statistics.



Table 1: Population Gross Flows Table.
time period t

E U N F T
E TEE TEU TEN TEF TET

time period U TUE TUU TUN TUF TUT

t− 1 N TNE TNU TNN TNF TNT

F TFE TFU TFN 0 TFT

T TTE TTU TTN TTF TTT

If we denote the total CNP for time periods t− 1 and t by CNPt−1 and CNPt respec-
tively, then the following relationships hold among the elements of Table 1.

CNPt−1 = TET + TUT + TNT (1.1)

CNPt = TTE + TTU + TTN

TTT = CNPt−1 + TFT = CNPt + TTF

CNPt − CNPt−1 = TFT − TTF

where the last equation says the change in CNP from time period t − 1 to t is the inflow
minus the outflow. Our goal is to estimate the Population Gross Flows table each month
in such a way that the row and column margins match the official monthly cross-sectional
estimates.

1.2 Estimated Partial Gross Flows Tables

We begin with some notation. Let St denote the CPS sample for month t and let St−1

denote the sample for month t− 1 . We will work with the merged sample St ∪ St−1 which
contains units which were collected in either or both months. Let wt,i denote the sample
weight for unit i in month t and similarly wt−1,i for unit i in month t−1 . In both cases we
will assume we are using the CPS composite weights used to compute the official monthly
CPS estimates, which implies that

CNPt =
∑

i∈St∪St−1

wt,i (1.2)

CNPt−1 =
∑

i∈St∪St−1

wt−1,i

Also note that by definition

if i ∈ St and i /∈ St−1 then wt−1,i = 0 (1.3)

if i /∈ St and i ∈ St−1 then wt,i = 0

Now define the following indicator variables at the unit level

DE∗ = 1 if unit i is E in month t− 1 and 0 otherwise (1.4)

DU∗ = 1 if unit i is U in month t− 1 and 0 otherwise

DN∗ = 1 if unit i is N in month t− 1 and 0 otherwise

D∗E = 1 if unit i is E in month t and 0 otherwise

D∗U = 1 if unit i is U in month t and 0 otherwise

D∗N = 1 if unit i is N in month t and 0 otherwise



Then

Êt−1 =
∑

i∈St∪St−1

wt−1,iDE∗,i (1.5)

Ût−1 =
∑

i∈St∪St−1

wt−1,iDU∗,i

N̂t−1 =
∑

i∈St∪St−1

wt−1,iDN∗,i

are the official estimates of E, U and N for month t− 1 while

Êt =
∑

i∈St∪St−1

wt,iD∗E,i (1.6)

Ût =
∑

i∈St∪St−1

wt,iD∗U,i

N̂t =
∑

i∈St∪St−1

wt,iD∗N,i

are the official estimates of E, U and N for month t . Also note that

CNPt = Êt + Ût + N̂t (1.7)

CNPt−1 = Êt−1 + Ût−1 + N̂t−1

Next we define some indicator variables based on the classification in both months. We
begin by defining

Row E

DEE,i = 1 if unit i is E at time t− 1 and E at time t and 0 otherwise (1.8)

DEU,i = 1 if unit i is E at time t− 1 and U at time t and 0 otherwise

DEN,i = 1 if unit i is E at time t− 1 and N at time t and 0 otherwise

DEF,i = 1 if unit i is E at time t− 1 and F at time t and 0 otherwise

Row U

DUE,i = 1 if unit i is U at time t− 1 and E at time t and 0 otherwise (1.9)

DUU,i = 1 if unit i is U at time t− 1 and U at time t and 0 otherwise

DUN,i = 1 if unit i is U at time t− 1 and N at time t and 0 otherwise

DUF,i = 1 if unit i is U at time t− 1 and F at time t and 0 otherwise

Row N

DNE,i = 1 if unit i is N at time t− 1 and E at time t and 0 otherwise (1.10)

DNU,i = 1 if unit i is N at time t− 1 and U at time t and 0 otherwise

DNN,i = 1 if unit i is N at time t− 1 and N at time t and 0 otherwise

DNF,i = 1 if unit i is N at time t− 1 and F at time t and 0 otherwise

Row F

DFE,i = 1 if unit i is F at time t− 1 and E at time t and 0 otherwise (1.11)

DFU,i = 1 if unit i is F at time t− 1 and U at time t and 0 otherwise

DFN,i = 1 if unit i is F at time t− 1 and N at time t and 0 otherwise

Next we define two additional categories that are relevant for the sample estimates that
were not needed for defining the population gross flows table. We let M denote if a unit is
missing from the sample at either time t − 1 or t. We will let R denote if a unit has been



rotated in or out of the sample at either time t− 1 or t. For example, a unit who was MIS4
or MIS8 at time t− 1 would be R at time t, while a unit that was MIS1 or MIS5 at time t
would be R at time t− 1. It is important to distinguish those that are M from those that
are R. Those that are M should have been eligible to be interviewed while those who are R
could not have been interviewed by virtue of the 4-8-4 sample rotation design. This allows
us to define the following additional indicator variables,

Row E

DEM,i = 1 if unit i is E at time t− 1 and M at time t and 0 otherwise (1.12)

DER,i = 1 if unit i is E at time t− 1 and R at time t and 0 otherwise

Row U

DUM,i = 1 if unit i is U at time t− 1 and M at time t and 0 otherwise (1.13)

DUR,i = 1 if unit i is U at time t− 1 and R at time t and 0 otherwise

Row N

DNM,i = 1 if unit i is N at time t− 1 and M at time t and 0 otherwise (1.14)

DNR,i = 1 if unit i is N at time t− 1 and R at time t and 0 otherwise

Row M

DME,i = 1 if unit i is M at time t− 1 and E at time t and 0 otherwise (1.15)

DMU,i = 1 if unit i is M at time t− 1 and U at time t and 0 otherwise

DMN,i = 1 if unit i is M at time t− 1 and N at time t and 0 otherwise

(1.16)

Row R

DRE,i = 1 if unit i is R at time t− 1 and E at time t and 0 otherwise (1.17)

DRU,i = 1 if unit i is R at time t− 1 and U at time t and 0 otherwise

DRN,i = 1 if unit i is R at time t− 1 and N at time t and 0 otherwise

(1.18)

We can construct weighted estimates based on these indicator variables. We illustrate
this in Table 2 and Table 3 below.

Table 2: Sample Estimate Gross Flows Table A based upon weighting from time t− 1.
time period t

E U N F M R
time period E AEE AEU AEN AEF AEM AER

t− 1 U AUE AUU AUN AUF AUM AUR

N ANE ANU ANN ANF ANM ANR

Table 3: Sample Estimate Gross Flows Table B based upon weighting from time t.
time period t

E U N
E BEE BEU BEN

U BUE BUU BUN

time period N BNE BNU BNN

t− 1 F BFE BFU BFN

M BME BMU BMN

R BRE BRU BRN



These tables can be constructed by month-in-sample group or by aggregating over those
groups. For example the first five columns of A can be computed for A(i) for i = 1, 2, 3, 5, 6, 7
and the last column for i = 4, 8, and with the first five rows of B(i) for i = 2, 3, 4, 6, 7, 8
and the last row for i = 1, 5. We discuss modeling and estimation of both cases in the next
section. The current BLS gross flows estimation method only uses the agregate form.

1.3 Current Official Gross Flows Estimates

BLS uses a method of raking described in Frazis, Robison, Evans and Duff (2005) to estimate
the population gross flows table each month. In addition to the CPS their method also uses
data on death rates from the National Center for Health Statistics (NCHS) to improve death
estimates (flows out of the civilian non-institutional population) obtained directly from the
CPS. In addition they specifically account for those persons who are inflows who turned 16
in the current month and whose labor force status was know the previous month. They use
only a portion of the partial flow tables A and B discussed earlier. In particular the first
four rows of B and the flow column of A is used. They also use the stock estimates for E,U
and N for both the current and previous time period for raking.

Our approach uses all the elements of the A and B matrices and ties it to the population
gross flows table with a statistical model similar to that described in Stasny and Feinberg
(1985) and Stasny (1988). We do not incorporate death rate information from NCHS and
rely entirely on data from the CPS. Stasny and Fienberg did not directly model the A and
B matrices as we do but we still apply their modeling approach. This is discussed in the
next section.

2. Modeling the Partial Gross Flows Tables

We will use an approach which is similar to models in Stasny (1988). A key aspect of the
modeling is that we define parameters which control the flow into the missing category
as well as parameters which account for differences by month-in-sample. We consider two
cases. The first is modeling the aggregated tables, and the second for the tables constructed
by month-in-sample.

2.1 Modeling the Aggregate Partial Gross Flows Tables

We next define the following expectations in terms of the rows of matrix A for each month-
in-sample. We begin with row E.

Row E month-in-sample i = 1,2,3,5,6,7

E{A(i)
EE} = θAEi(1− PAE)TEE (2.1)

E{A(i)
EU} = θAEi(1− PAE)TEU

E{A(i)
EN} = θAEi(1− PAE)TEN

E{A(i)
EF } = θAEi(1− PAE)TEF

E{A(i)
EM} = θAEiPAETET

Row E summed over i = 1,2,3,5,6,7

E{AEE} = (1− θAE48)(1− PAE)TEE (2.2)

E{AEU} = (1− θAE48)(1− PAE)TEU

E{AEN} = (1− θAE48)(1− PAE)TEN

E{AEF } = (1− θAE48)(1− PAE)TEF

E{AEM} = (1− θAE48)PAETET

Row E month-in-sample i = 4,8

E{A(i)
ER} = θAEiTET (2.3)



Row E summed over i = 4,8

E{AER} = θAE48TET (2.4)

The parameters θAEi for i = 1, 2, 3, 5, 6, 7 are the month-in-sample effects for Employment
in month t− 1 where by definition

8∑
i=1

θAEi = 1 (2.5)

We define θAE48 = θAE4 + θAE4. The parameters PAE represent what percent of the totals
TEE , TEU , TEN , TEF flow into the missing category from employed. When modeling the
aggregate partial gross flows tables we do not let PAE vary by month-in-sample, but we will
allow for PAEi i = 1, 2, 3, 5, 6, 7 to vary when we model the tables at the month-in-sample
level. For convenience we define

TET = TEE + TEU + TEN + TEF (2.6)

We similarly define row U .
Row U month-in-sample i = 1,2,3,5,6,7

E{A(i)
UE} = θAUi(1− PAU )TUE (2.7)

E{A(i)
UU} = θAUi(1− PAU )TUU

E{A(i)
UN} = θAUi(1− PAU )TUN

E{A(i)
UF } = θAUi(1− PAU )TUF

E{A(i)
UM} = θAUiPAUTUT

Row U summed over i = 1,2,3,5,6,7

E{AUE} = (1− θAU48)(1− PAU )TUE (2.8)

E{AUU} = (1− θAU48)(1− PAU )TUU

E{AUN} = (1− θAU48)(1− PAU )TUN

E{AUF } = (1− θAU48)(1− PAU )TUF

E{AUM} = (1− θAU48)PAUTUT

Row U month-in-sample i = 4,8

E{A(i)
UR} = θAUiTUT (2.9)

Row U summed over i = 4,8

E{AUR} = θAU48TUT (2.10)

We similarly define row N .
Row N month-in-sample i = 1,2,3,5,6,7

E{A(i)
NE} = θANi(1− PAN )TNE (2.11)

E{A(i)
NU} = θANi(1− PAN )TNU

E{A(i)
NN} = θANi(1− PAN )TNN

E{A(i)
NF } = θANi(1− PAN )TNF

E{A(i)
NM} = θANiPANTNT

Row N summed over i = 1,2,3,5,6,7

E{ANE} = (1− θAN48)(1− PAN )TNE (2.12)

E{ANU} = (1− θAN48)(1− PAN )TNU

E{ANN} = (1− θAN48)(1− PAN )TNN

E{ANF } = (1− θAN48)(1− PAN )TNF

E{ANM} = (1− θAN48)PANTNT



Row N month-in-sample i = 4,8

E{A(i)
NR} = θANiTNT (2.13)

Row N summed over i = 4,8

E{ANR} = θAN48TNT (2.14)

We next define the following expectations in terms of the columns of matrix B for each
month-in-sample. We begin with column E.

Column E month-in-sample i = 2,3,4,6,7,8

E{B(i)
EE} = θBEi(1− PBE)TEE (2.15)

E{B(i)
UE} = θBEi(1− PBE)TUE

E{B(i)
NE} = θBEi(1− PBE)TNE

E{B(i)
FE} = θBEi(1− PBE)TFE

E{B(i)
ME} = θBEiPBETTE

Column E summed over i = 2,3,4,6,7,8

E{BEE} = (1− θBE15)(1− PBE)TEE (2.16)

E{BUE} = (1− θBE15)(1− PBE)TUE

E{BNE} = (1− θBE15)(1− PBE)TNE

E{BFE} = (1− θBE15)(1− PBE)TFE

E{BME} = (1− θBE15)PBETTE

Column E month-in-sample i = 1,5

E{B(i)
RE} = θBEiTTE (2.17)

Column E summed over i = 1,5

E{BRE} = θBE15TTE (2.18)

We define θBE15 = θBE1 + θBE5. We similarly define column U .
Column U month-in-sample i = 2,3,4,6,7,8

E{B(i)
EU} = θBUi(1− PBU )TEU (2.19)

E{B(i)
UU} = θBUi(1− PBU )TUU

E{B(i)
NU} = θBUi(1− PBU )TNU

E{B(i)
FU} = θBUi(1− PBU )TFU

E{B(i)
MU} = θBUiPBUTTU

Column U summed over i = 2,3,4,6,7,8

E{BEU} = (1− θBU15)(1− PBU )TEU (2.20)

E{BUU} = (1− θBU15)(1− PBU )TUU

E{BNU} = (1− θBU15)(1− PBU )TNU

E{BFU} = (1− θBU15)(1− PBU )TFU

E{BMU} = (1− θBU15)PBUTTU

Column U month-in-sample i = 1,5

E{B(i)
RU} = θBUiTTU (2.21)



Column U summed over i = 1,5

E{BRU} = θBU15TTU (2.22)

We similarly define column N .
Column N month-in-sample i = 2,3,4,6,7,8

E{B(i)
EN} = θBNi(1− PBN )TEN (2.23)

E{B(i)
UN} = θBNi(1− PBN )TUN

E{B(i)
NN} = θBNi(1− PBN )TNN

E{B(i)
FN} = θBNi(1− PBN )TFN

E{B(i)
MN} = θBNiPBNTTN

Column N summed over i = 2,3,4,6,7,8

E{BEN} = (1− θBN15)(1− PBN )TEN (2.24)

E{BUN} = (1− θBN15)(1− PBN )TUN

E{BNN} = (1− θBN15)(1− PBN )TNN

E{BFN} = (1− θBN15)(1− PBU )TFN

E{BMN} = (1− θBN15)PBNTTN

Column N month-in-sample i = 1,5

E{B(i)
RN} = θBNiTTN (2.25)

Column N summed over i = 1,5

E{BRN} = θBN15TTU (2.26)

2.2 Modeling the Partial Gross Flows Tables by Month-in-Sample

We next define the following expectations in terms of the rows of matrix A for each month-
in-sample. We begin with row E.

Row E month-in-sample i = 1,2,3,5,6,7

E{A(i)
EE} = θAEi(1− PAEi)TEE (2.27)

E{A(i)
EU} = θAEi(1− PAEi)TEU

E{A(i)
EN} = θAEi(1− PAEi)TEN

E{A(i)
EF } = θAEi(1− PAEi)TEF

E{A(i)
EM} = θAEiPAEiTET

Row E month-in-sample i = 4,8

E{A(i)
ER} = θAEiTET (2.28)

The parameters θAEi for i = 1, 2, 3, 5, 6, 7 are the month-in-sample effects for Employ-
ment in month t− 1 where by definition

8∑
i=1

θAEi = 1 (2.29)

The parameters PAEi represent what percent of the totals TEE , TEU , TEN , TEF flow into
the missing category for employed. For convenience we define

TET = TEE + TEU + TEN + TEF (2.30)



We similarly define row U .
Row U month-in-sample i = 1,2,3,5,6,7

E{A(i)
UE} = θAUi(1− PAUi)TUE (2.31)

E{A(i)
UU} = θAUi(1− PAUi)TUU

E{A(i)
UN} = θAUi(1− PAUi)TUN

E{A(i)
UF } = θAUi(1− PAUi)TUF

E{A(i)
UM} = θAUiPAUiTUT

Row U month-in-sample i = 4,8

E{A(i)
UR} = θAUiTUT (2.32)

Row N month-in-sample i = 1,2,3,5,6,7

E{A(i)
NE} = θANi(1− PANi)TNE (2.33)

E{A(i)
NU} = θANi(1− PANi)TNU

E{A(i)
NN} = θANi(1− PANi)TNN

E{A(i)
NF } = θANi(1− PANi)TNF

E{A(i)
NM} = θANiPANiTNT

Row N month-in-sample i = 4,8

E{A(i)
NR} = θANiTNT (2.34)

We next define the following expectations in terms of the columns of matrix B for each
month-in-sample. We begin with column E.

Column E month-in-sample i = 2,3,4,6,7,8

E{B(i)
EE} = θBEi(1− PBEi)TEE (2.35)

E{B(i)
UE} = θBEi(1− PBEi)TUE

E{B(i)
NE} = θBEi(1− PBEi)TNE

E{B(i)
FE} = θBEi(1− PBEi)TFE

E{B(i)
ME} = θBEiPBEiTTE

Column E month-in-sample i = 1,5

E{B(i)
RE} = θBEiTTE (2.36)

Column U month-in-sample i = 2,3,4,6,7,8

E{B(i)
EU} = θBUi(1− PBUi)TEU (2.37)

E{B(i)
UU} = θBUi(1− PBUi)TUU

E{B(i)
NU} = θBUi(1− PBUi)TNU

E{B(i)
FU} = θBUi(1− PBUi)TFU

E{B(i)
MU} = θBUiPBUiTTU

Column U month-in-sample i = 1,5

E{B(i)
RU} = θBUiTTU (2.38)



Column N month-in-sample i = 2,3,4,6,7,8

E{B(i)
EN} = θBNi(1− PBNi)TEN (2.39)

E{B(i)
UN} = θBNi(1− PBNi)TUN

E{B(i)
NN} = θBNi(1− PBNi)TNN

E{B(i)
FN} = θBNi(1− PBNi)TFN

E{B(i)
MN} = θBNiPBNiTTN

Column N month-in-sample i = 1,5

E{B(i)
RN} = θBNiTTN (2.40)

3. Estimating the Model Parameters

We define an objective function F which resembles a log-likelihood equation for a multino-
mial distribution as Stasny (1988) used. We do not assume a multinomial distribution but
still employ the form as a useful objective function. We will obtain parameter estimates by
maximizing the objective function under the constraints that the gross flow table param-
eters match the row and column stock totals. We define two distinct objective function:
F for the aggregate partial gross flows tables and F ∗ for the partial gross flows tables by
month-in-sample.

3.1 Defining the Objective Function for the Aggregated Partial Gross Flows
Tables

Define F as

F = AEE ln(E{AEE}) +AEU ln(E{AEU}) +AEN ln(E{AEN}) + (3.1)

AEF ln(E{AEF }) +AEM ln(E{AEM}) +AER ln(E{AER}) +
AUE ln(E{AUE}) +AUU ln(E{AUU}) +AUN ln(E{AUN}) +
AUF ln(E{AUF }) +AUM ln(E{AUM}) +AUR ln(E{AUR}) +
ANE ln(E{ANE}) +ANU ln(E{ANU}) +ANN ln(E{ANN}) +
ANF ln(E{ANF }) +ANM ln(E{ANM}) +ANR ln(E{ANR}) +
BEE ln(E{BEE}) +BUE ln(E{BUE}) +BNE ln(E{BNE}) +
BFE ln(E{BFE}) +BME ln(E{BME}) +BRE ln(E{BRE}) +
BEU ln(E{BEU}) +BUU ln(E{BUU}) +BNU ln(E{BNU}) +
BFU ln(E{BFU}) +BMU ln(E{BMU}) +BRU ln(E{BRU}) +
BEN ln(E{BEN}) +BUN ln(E{BUN}) +BNN ln(E{BNN}) +
BFN ln(E{BFN}) +BMN ln(E{BMN}) +BRN ln(E{BRN})
+λ1(TEE + TEU + TEN + TEF −AET −AER)

+λ2(TUE + TUU + TUN + TUF −AUT −AUR)

+λ3(TNE + TNU + TNN + TNF −ANT −ANR)

+λ4(TEE + TUE + TNE + TFE −BTE −BRE)

+λ5(TEU + TUU + TNU + TFU −BTU −BRU )

+λ6(TEN + TUN + TNN + TFN −BTN −BRN )



where

AET = AEE +AEU +AEN +AEF +AEM (3.2)

AUT = AUE +AUU +AUN +AUF +AUM

ANT = ANE +ANU +ANN +ANF +ANM

BTE = BEE +BUE +BNE +BFE +BME

BTU = BEU +BUU +BNU +BFU +BMU

BTN = BEN +BUN +BNN +BFN +BMN

Note that F is a function of the parameters

TEE , TEU , TEN , TEF (3.3)

TUE , TUU , TUN , TUF

TNE , TNU , TNN , TNF

TFE , TFU , TFN

θAE48, θAU48, θAN48, θBE15, θBU15, θBN15

PAE , PAU , PAN , PBE , PBU , PBN

λ1, λ2, λ3, λ4, λ5, λ6

where the λi are the Lagrange multipliers to ensure the gross flows table matches the row
and column stock estimates. With some algebra we can decompose F into

F = F1 + F2 + F3 (3.4)

where

F1 = AET ln(1− θAE48) +AER ln(θAE48) + (3.5)

AUT ln(1− θAU48) +AUR ln(θAU48) +

ANT ln(1− θAN48) +ANR ln(θAN48) +

BTE ln(1− θBE15) +BRE ln(θBE15) +

BTU ln(1− θBU15) +BRU ln(θBU15) +

BTN ln(1− θBN15) +BRN ln(θBN15)

F2 = (AEE +AEU +AEN +AEF ) ln(1− PAE) +AEM ln(PAE) (3.6)

(AUE +AUU +AUN +AUF ) ln(1− PAU ) +AUM ln(PAU )

(ANE +ANU +ANN +ANF ) ln(1− PAN ) +ANM ln(PAN )

(BEE +BUE +BNE +BFE) ln(1− PBE) +BME ln(PBE)

(BEU +BUU +BNU +BFU ) ln(1− PBU ) +BMU ln(PBU )

(BEN +BUN +BNN +BFN ) ln(1− PBN ) +BMN ln(PBN )



F3 = (AEE +BEE) ln(TEE) + (AEU +BEU ) ln(TEU ) + (3.7)

(AEN +BEN ) ln(TEN ) +AEF ln(TEF ) +

(AEM +AER) ln(TET ) +

(AUE +BUE) ln(TUE) + (AUU +BUU ) ln(TUU ) +

(AUN +BUN ) ln(TUN ) +AUF ) ln(TUF ) +

(AUM +AUR) ln(TUT ) +

(ANE +BNE) ln(TNE) + (ANU +BNU ) ln(TNU ) +

(ANN +BNN ) ln(TNN ) +ANF ) ln(TNF ) +

(ANM +ANR) ln(TNT ) +

BFE ln(TFE) + (BME +BRE) ln(TTE) +

BFU ln(TFU ) + (BMU +BRU ) ln(TTU ) +

BFN ln(TFN ) + (BMN +BRE) ln(TTN ) +

+λ1(TEE + TEU + TEN + TEF −AET −AER)

+λ2(TUE + TUU + TUN + TUF −AUT −AUR)

+λ3(TNE + TNU + TNN + TNF −ANT −ANR)

+λ4(TEE + TUE + TNE + TFE −BTE −BRE)

+λ5(TEU + TUU + TNU + TFU −BTU −BRU )

+λ6(TEN + TUN + TNN + TFN −BTN −BRN )

3.2 Defining the Objective Function for the Partial Gross Flows Tables by
Month-in-Sample

We can also write a second objective function F ∗. First define

SA = {1, 2, 3, 5, 6, 7} (3.8)

Sc
A = {4, 8}

SB = {2, 3, 4, 6, 7, 8}
Sc
B = {1, 5}



Now define

F ∗ =
∑
i∈SA

A
(i)
EE ln(E{A(i)

EE}) +
∑
i∈SA

A
(i)
EU ln(E{A(i)

EU}) + (3.9)

∑
i∈SA

A
(i)
EN ln(E{A(i)

EN}) +
∑
i∈SA

A
(i)
EF ln(E{A(i)

EF }) +∑
i∈SA

A
(i)
EM ln(E{A(i)

EM}) +
∑
i∈Sc

A

A
(i)
ER ln(E{A(i)

ER}) +∑
i∈SA

A
(i)
UE ln(E{A(i)

UE}) +
∑
i∈SA

A
(i)
UU ln(E{A(i)

UU}) +∑
i∈SA

A
(i)
UN ln(E{A(i)

UN}) +
∑
i∈SA

A
(i)
UF ln(E{A(i)

UF }) +∑
i∈SA

A
(i)
UM ln(E{A(i)

UM}) +
∑
i∈Sc

A

A
(i)
UR ln(E{A(i)

UR}) +∑
i∈SA

A
(i)
NE ln(E{A(i)

NE}) +
∑
i∈SA

A
(i)
NU ln(E{A(i)

NU}) +∑
i∈SA

A
(i)
NN ln(E{A(i)

NN}) +
∑
i∈SA

A
(i)
NF ln(E{A(i)

NF }) +∑
i∈SA

A
(i)
NM ln(E{A(i)

NM}) +
∑
i∈Sc

A

A
(i)
NR ln(E{A(i)

NR}) +∑
i∈SB

B
(i)
EE ln(E{B(i)

EE}) +
∑
i∈SB

B
(i)
UE ln(E{B(i)

UE}) +∑
i∈SB

B
(i)
NE ln(E{B(i)

NE}) +
∑
i∈SB

B
(i)
FE ln(E{B(i)

FE}) +∑
i∈SB

B
(i)
ME ln(E{B(i)

ME}) +
∑
i∈Sc

B

B
(i)
RE ln(E{B(i)

RE}) +∑
i∈SB

B
(i)
EU ln(E{B(i)

EU}) +
∑
i∈SB

B
(i)
UU ln(E{B(i)

UU}) +∑
i∈SB

B
(i)
NU ln(E{B(i)

NU}) +
∑
i∈SB

B
(i)
FU ln(E{B(i)

FU}) +∑
i∈SB

B
(i)
MU ln(E{B(i)

MU}) +
∑
i∈Sc

B

B
(i)
RU ln(E{B(i)

RU}) +∑
i∈SB

B
(i)
EN ln(E{B(i)

EN}) +
∑
i∈SB

B
(i)
UN ln(E{B(i)

UN}) +

∑
i∈SB

A
(i)
NN ln(E{B(i)

NN}) +
∑
i∈SB

B
(i)
FN ln(E{B(i)

FN}) +

∑
i∈SB

B
(i)
MN ln(E{B(i)

MN}) +
∑

i∈SBc

B
(i)
RN ln(E{B(i)

RN})

+λ1(TEE + TEU + TEN + TEF −AET −AER)

+λ2(TUE + TUU + TUN + TUF −AUT −AUR)

+λ3(TNE + TNU + TNN + TNF −ANT −ANR)

+λ4(TEE + TUE + TNE + TFE −BTE −BRE)

+λ5(TEU + TUU + TNU + TFU −BTU −BRU )

+λ6(TEN + TUN + TNN + TFN −BTN −BRN )



Note that F ∗ is a function of the parameters

TEE , TEU , TEN , TEF (3.10)

TUE , TUU , TUN , TUF

TNE , TNU , TNN , TNF

TFE , TFU , TFN

θAEi, θAUi, θANi for i = 1, 2, 3, 4, 5, 6, 7, 8

θBEi, θBUi, θBNi for i = 1, 2, 3, 4, 5, 6, 7, 8

PAEi, PAUi, PANi for i = 1, 2, 3, 5, 6, 7

PBEi, PBUi, PBNi for i = 2, 3, 4, 6, 7, 8

λ1, λ2, λ3, λ4, λ5, λ6

where the λi are the Lagrange multipliers to ensure the gross flows table matches the row
and column stock estimates. F ∗ can be decomposed as

F ∗ = F ∗
1 + F ∗

2 + F3 (3.11)

where F3 remains the same as the decomposition of F , while F ∗
1 and F ∗

2 are given by

F ∗
1 =

∑
i∈SA

A
(i)
ET ln(θAEi) +

∑
i∈Sc

A

A
(i)
ER ln(θAEi) + (3.12)

∑
i∈SA

A
(i)
UT ln(θAUi) +

∑
i∈Sc

A

A
(i)
UR ln(θAUi) +

∑
i∈SA

A
(i)
NT ln(θANi) +

∑
i∈Sc

A

A
(i)
NR ln(θANi) +

∑
i∈SB

B
(i)
TE ln(θBEi) +

∑
i∈Sc

B

B
(i)
RE ln(θBEi) +

∑
i∈SB

B
(i)
TU ln(θBUi) +

∑
i∈Sc

B

B
(i)
RU ln(θBUi) +

∑
i∈SB

B
(i)
TN ln(θBNi) +

∑
i∈Sc

B

B
(i)
RN ln(θBNi)+

F ∗
2 =

∑
i∈SA

[
(A

(i)
EE +A

(i)
EU +A

(i)
EN +A

(i)
EF ) ln(1− PAEi) +A

(i)
EM ln(PAEi)

]
(3.13)

∑
i∈SA

[
(A

(i)
UE +A

(i)
UU +A

(i)
UN +A

(i)
UF ) ln(1− PAUi) +A

(i)
UM ln(PAUi)

]
∑
i∈SA

[
(A

(i)
NE +A

(i)
NU +A

(i)
NN +A

(i)
NF ) ln(1− PANi) +A

(i)
NM ln(PANi)

]
∑
i∈SB

[
(B

(i)
EE +B

(i)
UE +B

(i)
NE +B

(i)
FE) ln(1− PBEi) +B

(i)
ME ln(PBEi)

]
∑
i∈SB

[
(B

(i)
EU +B

(i)
UU +B

(i)
NU +B

(i)
FU ) ln(1− PBUi) +B

(i)
MU ln(PBUi)

]
∑
i∈SB

[
(B

(i)
EN +B

(i)
UN +B

(i)
NN +B

(i)
FN ) ln(1− PBNi) +B

(i)
MN ln(PBNi)

]

3.3 Estimation of Month-in-Sample Effects

F1 defined in 3.5 and F ∗
1 defined in 3.12 are the two functions we need to maximize to

obtain the estimated month-in-sample effects. We begin with F1 and the parameter θAE48.

∂F1

∂θAE48
= −AET (1− θAE48)

−1 +AERθ
−1
AE48 (3.14)



Setting that derivative equal to zero yields the estimator θ̂AE48, and the others follow in a
similar way.

θ̂AE48 = (AET +AER)
−1AER (3.15)

θ̂AU48 = (AUT +AUR)
−1AUR

θ̂AN48 = (ANT +ANR)
−1ANR

θ̂BE15 = (BTE +BRE)
−1BRE

θ̂BU15 = (BTU +BRU )
−1BRU

θ̂BN15 = (BTN +BRN )−1BRN

Similarly for F ∗
1 we obtain

θ̂AEi = (AET +AER)
−1A

(i)
ET for i ∈ SA (3.16)

θ̂AEi = (AET +AER)
−1A

(i)
ER for i ∈ Sc

A

θ̂AUi = (AUT +AUR)
−1A

(i)
UT for i ∈ SA

θ̂AUi = (AUT +AUR)
−1A

(i)
UR for i ∈ Sc

A

θ̂ANi = (ANT +ANR)
−1A

(i)
NT for i ∈ SA

θ̂ANi = (ANT +ANR)
−1A

(i)
NR for i ∈ Sc

A

θ̂BEi = (BTE +BRE)
−1B

(i)
TE for i ∈ SB

θ̂BEi = (BTE +BRE)
−1B

(i)
RE for i ∈ Sc

B

θ̂BUi = (BTU +BRU )
−1B

(i)
TU for i ∈ SB

θ̂BUi = (BTU +BRU )
−1B

(i)
RU for i ∈ Sc

B

θ̂BNi = (BTN +BRN )−1B
(i)
TN for i ∈ SB

θ̂BNi = (BTN +BRN )−1B
(i)
RN for i ∈ Sc

B

3.4 Estimation of Missing Rates

F2 defined in 3.6 and F ∗
2 defined in 3.13 are the two functions we need to maximize to

obtain the estimated missing rates. We begin with F2 and the parameter PAE .

∂F2

∂PAE
= −(AEE +AEU +AEN +AEF )(1− PAE)

−1 +AEMP−1
AE (3.17)

Setting that derivative equal to zero yields the estimator P̂AE , and the others follow in a
similar way.

P̂AE = A−1
ETAEM (3.18)

P̂AU = A−1
UTAUM

P̂AN = A−1
NTANM

P̂BE = B−1
TEBME

P̂BU = B−1
TUBMU

P̂BN = B−1
TNBMN

Similarly for F ∗
2 we obtain

P̂AEi = (A
(i)
ET )

−1A
(i)
EM for i ∈ SA (3.19)

P̂AUi = (A
(i)
UT )

−1A
(i)
UM for i ∈ SA

P̂ANi = (A
(i)
NT )

−1A
(i)
NM for i ∈ SA

P̂BEi = (B
(i)
TE)

−1B
(i)
ME for i ∈ SB

P̂BUi = (B
(i)
TU )

−1B
(i)
MU for i ∈ SB

P̂BNi = (B
(i)
TN )−1B

(i)
MN for i ∈ SB



3.5 Estimation of Population Flows

In this section we need to maximize the function F3 in 3.7. We begin with the parameter
TEE ,

∂F3

∂TEE
= T−1

EE(AEE +BEE) + T−1
ET (AEM +AER) + T−1

TE(BME +BRE)− λ1 − λ4 (3.20)

Setting this derivative equal to 0 gives

T̂−1
EE(AEE +BEE) + T̂−1

ET (AEM +AER) + T̂−1
TE(BME +BRE) = λ̂1 + λ̂4 (3.21)

By constraint

T̂ET = AET +AER (3.22)

T̂TE = BTE +BRE

After some algebra we obtain

T̂EE =
AEE +BEE

λ̂1 − 1 + (1− θ̂AE48)(1− P̂AE) + λ̂4 − 1 + (1− θ̂BE15)(1− P̂BE)
(3.23)

Derivation of expressions for the other parameters follow in a similar way. The complete
set of expressions is as follows.



T̂EE =
AEE +BEE

λ̂1 − 1 + (1− θ̂AE48)(1− P̂AE) + λ̂4 − 1 + (1− θ̂BE15)(1− P̂BE)
(3.24)

T̂EU =
AEU +BEU

λ̂1 − 1 + (1− θ̂AE48)(1− P̂AE) + λ̂5 − 1 + (1− θ̂BU15)(1− P̂BU )

T̂EN =
AEN +BEN

λ̂1 − 1 + (1− θ̂AE48)(1− P̂AE) + λ̂6 − 1 + (1− θ̂BN15)(1− P̂BN )

T̂UE =
AUE +BUE

λ̂2 − 1 + (1− θ̂AU48)(1− P̂AU ) + λ̂4 − 1 + (1− θ̂BE15)(1− P̂BE)

T̂UU =
AUU +BUU

λ̂2 − 1 + (1− θ̂AU48)(1− P̂AU ) + λ̂5 − 1 + (1− θ̂BU15)(1− P̂BU )

T̂UN =
AUN +BUN

λ̂2 − 1 + (1− θ̂AU48)(1− P̂AU ) + λ̂6 − 1 + (1− θ̂BN15)(1− P̂BN )

T̂NE =
ANE +BNE

λ̂3 − 1 + (1− θ̂AN48)(1− P̂AN ) + λ̂4 − 1 + (1− θ̂BE15)(1− P̂BE)

T̂NU =
ANU +BNU

λ̂3 − 1 + (1− θ̂AN48)(1− P̂AN ) + λ̂5 − 1 + (1− θ̂BU15)(1− P̂BU )

T̂NN =
ANN +BNN

λ̂3 − 1 + (1− θ̂AN48)(1− P̂AN ) + λ̂6 − 1 + (1− θ̂BN15)(1− P̂BN )

T̂EF =
AEF

λ̂1 − 1 + (1− θ̂AE48)(1− P̂AE)

T̂UF =
AUF

λ̂2 − 1 + (1− θ̂AU48)(1− P̂AU )

T̂NF =
ANF

λ̂3 − 1 + (1− θ̂AN48)(1− P̂AN )

T̂FE =
BFE

λ̂4 − 1 + (1− θ̂BE15)(1− P̂BE)

T̂FU =
BFU

λ̂5 − 1 + (1− θ̂BU15)(1− P̂BU )

T̂FN =
BFN

λ̂6 − 1 + (1− θ̂BN15)(1− P̂BN )

The form of the estimates in 3.24 suggests an alternative parameterization and estima-
tion method. We can write



T̂EE = (α̂E + β̂E)
−1(AEE +BEE) (3.25)

T̂EU = (α̂E + β̂U )
−1(AEU +BEU )

T̂EN = (α̂E + β̂N )−1(AEN +BEN )

T̂UE = (α̂U + β̂E)
−1(AUE +BUE)

T̂UU = (α̂U + β̂U )
−1(AUU +BUU )

T̂UN = (α̂U + β̂N )−1(AUN +BN )

T̂NE = (α̂N + β̂E)
−1(ANE +BNE)

T̂NU = (α̂N + β̂U )
−1(ANU +BNU )

T̂NN = (α̂N + β̂N )−1(ANN +BNN )

T̂EF = (α̂E)
−1(AEF )

T̂UF = (α̂U )
−1(AUF )

T̂NF = (α̂N )−1(ANF )

T̂FE = (β̂E)
−1(BFE)

T̂FU = (β̂U )
−1(BFU )

T̂FN = (β̂N )−1(BFN )

where (̂αE , α̂U , α̂U , β̂E , β̂U , β̂N ) are derived by solving the equations

AET +AER =
AEE +BEE

αE + βE
+

AEU +BEU

αE + βU
+

AEN +BEN

αE + βN
+

AEF

αE
(3.26)

AUT +AUR =
AUE +BUE

αU + βE
+

AUU +BUU

αU + βU
+

AUN +BUN

αU + βN
+

AUF

αU

ANT +ANR =
ANE +BNE

αN + βE
+

ANU +BNU

αN + βU
+

ANN +BNN

αN + βN
+

ANF

αN

BTE +BRE =
AEE +BEE

αE + βE
+

AUE +BUE

αU + βE
+

ANE +BNE

αN + βE
+

BFE

βE

BTU +BRU =
AEU +BEU

αE + βU
+

AUU +BUU

αU + βU
+

ANU +BNU

αN + βU
+

BFU

βU

BTN +BRN =
AEN +BEN

αE + βN
+

AUN +BUN

αU + βN
+

ANN +BNN

αN + βN
+

BFN

βN

These could be solved by non-linear least squares for example.



3.6 Model Testing and Initial Starting Values

Under both models for the partial gross flows tables, we can show that

E

{
∂F3

∂TEE

}
= 2− λ1 − λ4 (3.27)

E

{
∂F3

∂TEU

}
= 2− λ1 − λ5

E

{
∂F3

∂TEN

}
= 2− λ1 − λ6

E

{
∂F3

∂TUE

}
= 2− λ2 − λ4

E

{
∂F3

∂TUU

}
= 2− λ2 − λ5

E

{
∂F3

∂TUN

}
= 2− λ2 − λ6

E

{
∂F3

∂TNE

}
= 2− λ3 − λ4

E

{
∂F3

∂TNU

}
= 2− λ3 − λ5

E

{
∂F3

∂TNN

}
= 2− λ3 − λ6

E

{
∂F3

∂TEF

}
= 1− λ1

E

{
∂F3

∂TUF

}
= 1− λ2

E

{
∂F3

∂TNF

}
= 1− λ3

E

{
∂F3

∂TFE

}
= 1− λ4

E

{
∂F3

∂TUE

}
= 1− λ5

E

{
∂F3

∂TFN

}
= 1− λ6

Therefore a test of model adequacy would test the null hypothesis

H0 : λ1 = λ2 = λ3 = λ4 = λ5 = λ6 = 1 (3.28)

We will discuss this further in the Results section. Reasonable starting values for the
nonlinear maximization of F3 is to set

λ̂
(0)
1 = λ̂

(0)
2 = λ̂

(0)
3 = λ̂

(0)
4 = λ̂

(0)
5 = λ̂

(0)
6 = 1 (3.29)



which yields

T̂
(0)
EE =

AEE +BEE

(1− θ̂AE48)(1− P̂AE) + (1− θ̂BE15)(1− P̂BE)
(3.30)

T̂
(0)
EU =

AEU +BEU

(1− θ̂AE48)(1− P̂AE) + (1− θ̂BU15)(1− P̂BU )

T̂
(0)
EN =

AEN +BEN

(1− θ̂AE48)(1− P̂AE) + (1− θ̂BN15)(1− P̂BN )

T̂
(0)
UE =

AUE +BUE

(1− θ̂AU48)(1− P̂AU ) + (1− θ̂BE15)(1− P̂BE)

T̂
(0)
UU =

AUU +BUU

(1− θ̂AU48)(1− P̂AU ) + (1− θ̂BU15)(1− P̂BU )

T̂
(0)
UN =

AUN +BUN

(1− θ̂AU48)(1− P̂AU ) + (1− θ̂BN15)(1− P̂BN )

T̂
(0)
NE =

ANE +BNE

(1− θ̂AN48)(1− P̂AN ) + (1− θ̂BE15)(1− P̂BE)

T̂
(0)
NU =

ANU +BNU

(1− θ̂AN48)(1− P̂AN ) + (1− θ̂BU15)(1− P̂BU )

T̂
(0)
NN =

ANN +BNN

(1− θ̂AN48)(1− P̂AN ) + (1− θ̂BN15)(1− P̂BN )

T̂
(0)
EF =

AEF

(1− θ̂AE48)(1− P̂AE)

T̂
(0)
UF =

AUF

(1− θ̂AU48)(1− P̂AU )

T̂
(0)
NF =

ANF

(1− θ̂AN48)(1− P̂AN )

T̂
(0)
FE =

BFE

(1− θ̂BE15)(1− P̂BE)

T̂
(0)
FU =

BFU

(1− θ̂BU15)(1− P̂BU )

T̂
(0)
FN =

BFN

(1− θ̂BN15)(1− P̂BN )

For the alternative estimation method described in 3.27 we can use these starting values.

α̂
(0)
E = (1− θ̂AE48)(1− P̂AE) (3.31)

α̂
(0)
U = (1− θ̂AU48)(1− P̂AU )

α̂
(0)
N = (1− θ̂AN48)(1− P̂AN )

β̂
(0)
E = (1− θ̂BE15)(1− P̂BE)

β̂
(0)
U = (1− θ̂BU15)(1− P̂BU )

β̂
(0)
N = (1− θ̂BN15)(1− P̂BN )

3.7 Construction of Gross Flows Weights

Recall that

AEE +BEE =
∑

i∈St∪St−1

(wt−1,i + wt,i)DEE,i (3.32)



Now we define the gross weight for the EE transition as

wEE,i = (α̂E + β̂E)
−1(wt−1,i + wt,i)DEE,i for i ∈ St ∪ St−1 (3.33)

which implies

T̂EE =
∑

i∈St∪St−1

wEE,i (3.34)

Similarly the entire set of gross flows weights are defined as

wEE,i = (α̂E + β̂E)
−1(wt−1,i + wt,i)DEE,i for i ∈ St ∪ St−1 (3.35)

wEU,i = (α̂E + β̂U )
−1(wt−1,i + wt,i)DEU,i for i ∈ St ∪ St−1

wEN,i = (α̂E + β̂N )−1(wt−1,i + wt,i)DEN,i for i ∈ St ∪ St−1

wUE,i = (α̂U + β̂E)
−1(wt−1,i + wt,i)DUE,i for i ∈ St ∪ St−1

wUU,i = (α̂U + β̂U )
−1(wt−1,i + wt,i)DUU,i for i ∈ St ∪ St−1

wUN,i = (α̂U + β̂N )−1(wt−1,i + wt,i)DUN,i for i ∈ St ∪ St−1

wNE,i = (α̂N + β̂E)
−1(wt−1,i + wt,i)DNE,i for i ∈ St ∪ St−1

wNU,i = (α̂N + β̂U )
−1(wt−1,i + wt,i)DNU,i for i ∈ St ∪ St−1

wNN,i = (α̂N + β̂N )−1(wt−1,i + wt,i)DNN,i for i ∈ St ∪ St−1

wEF,i = (α̂E)
−1(wt−1,i)DEF,i for i ∈ St ∪ St−1

wUF,i = (α̂U )
−1(wt−1,i)DUF,i for i ∈ St ∪ St−1

wNF,i = (α̂N )−1(wt−1,i)DNF,i for i ∈ St ∪ St−1

wFE,i = (β̂E)
−1(wt,i)DFE,i for i ∈ St ∪ St−1

wFU,i = (β̂U )
−1(wt,i)DFU,i for i ∈ St ∪ St−1

wFN,i = (β̂N )−1(wt,i)DFN,i for i ∈ St ∪ St−1

4. Results

In this section we present our empirical results. We examined Monthly data from December
2002 to December 2023.



4.1 Population Flows

In this section we examine the Gross flows Tables estimates. We first present a panel graph
in Figure 1. This shows graphs of each of the cells in the gross flows table for the total CNP.
We see that our estimates match the official estimates very closely except for the outflow
column and inflow row.

Figure 1: New Flows versus Official Flows for 2003 to 2023 for Total CNP.

We can examine this more carefully in Table 4 by computing the percent relative absolute
differences between our estimates and the official estimates. We do this over the period
January 2003 thru January 2023 broken out by Sex and for Total CNP. Again we see
that our estimates match the official estimates very closely except for the outflows and the
inflows. There appears to be greater difference in the outflows.

Finally in Table 5 we compute the average coefficient of variation for the year 2023
by Sex and Total CNP for each of the entries of the gross flows table. We do not have
comparable estimates to present for the official estimates.



Table 4: % Relative Absolute Difference Compared to Official Estimates for the Monthly
Gross Flows Table Estimates (averaged over 2003-2023).

Men
E U N F T

E 0.02% 0.49% 0.73% 62.84% 0.00%
time period U 0.39% 0.13% 0.54% 142.07% 0.01%

t− 1 N 0.75% 0.49% 0.07% 34.17% 0.00%
F 42.52% 30.20% 15.31% − 13.67%
T 0.00% 0.01% 0.00% 25.12% −

Women
E U N F T

E 0.02% 0.47% 0.56% 68.26% 0.00%
time period U 0.39% 0.16% 0.39% 139.95% 0.01%

t− 1 N 0.58% 0..40% 0.06% 38.50% 0.00%
F 41.45% 31.07% 19.17% − 18.07%
T 0.00% 0.01% 0.00% 31.31% −

Total
E U N F T

E 0.02% 0.48% 0.57% 58.23% 0.00%
time period U 0.36% 0.10% 0.41% 119.59% 0.01%

t− 1 N 0.61% 0.43% 0.06% 35.01% 0.00%
F 41.82% 23.38% 16.78% − 15.70%
T 0.00% 0.00% 0.00% 27.98% −

Table 5: Average %CV for 2023 of Monthly Gross Flows Table Estimates.
Men

E U N F T
E 0.34% 9.53% 5.99% 68.19% 0.32%

time period U 8.89% 5.66% 9.64% 40.36% 3.92%
t− 1 N 6.53% 9.55% 0.65% 26.14% 0.64%

F 28.59% 77.41% 15.83% − 10.77%
T 0.32% 3.90% 0.64% 20.41% −

Women
E U N F T

E 0.42% 10.44% 5.89% 74.33% 0.40%
time period U 9.40% 6.59% 9.71% 28.28% 4.18%

t− 1 N 6.35% 9.51% 0.51% 29.46% 0.51%
F 29.75% 67.26% 16.08% − 11.48%
T 0.41% 4.16% 0.52% 23.91% −

Total
E U N F T

E 0.28% 7.24% 4.41% 46.60% 0.27%
time period U 6.56% 4.47% 6.77% 53.37% 2.99%

t− 1 N 4.86% 6.70% 0.42% 19.71% 0.42%
F 23.00% 65.94% 11.68% − 8.45%
T 0.27% 2.97% 0.43% 16.48% −



4.2 Month-in-Sample Effects

In this section we examine the month-in-sample effects. Since month-in-sample indexes are
a common way to examine month-in-sample effects we chose to look at them here. They are
the same as the θ defined in 3.16 except they are multiplied by 8, which means that a value of
1.0 indicates the MIS effect is no different that the average of all 8 MIS groups. We present
the MIS indexes for annual averages for the years 2003 thru 2023 in order to reduce the
variability of the estimates. In Figure 2 we plot the MIS indexes for total employment. We
see that the indexes are relatively stable over the 20 years except for the Covid-19 pandemic
period. The pandemic effect is also apparent in Figure 4 for not-in-labor force, while less
apparent but still there for Unemployed in Figure 3. Similar impacts have previously been
discussed in McIllece (2020).

Figure 2: Annual Average Month-in-Sample Indexes for Total Employed 2003-2023.



Figure 3: Annual Average Month-in-Sample Indexes for Total Unemployed 2003-2023.

Figure 4: Annual Average Month-in-Sample Indexes for Total Not-in-Labor Force 2003-
2023.



4.3 Missing Rates

In this section we examine the missing rates. We present estimates of the missing rate as
defined in equation 3.19. We plot the missing rates for each of the six month-in-sample
pairs and the graphs each are 12-month moving averages of the missing rates to smooth
them out and reduce the variability. We begin by examining Figure 5. The monthly missing
rates are plotted along with a solid red line indicating the 12-month moving average. If we
look first at MIS 1-2 we see a steady increasing in the missing rate over time, which mimics
the type-A non response rate increase we have seen in CPS overall. If we examine MIS 2-3
we see an decreasing response rate but overall the missing rate is lower than for MIS 1-2.
To help see that there is a faint blue line also included in the MIS 2-3 graph which is the
12-month moving average for MIS 1-2, so you can see the red line for MIS 2-3 is shifted
down relative to that of MIS 1-2. Likewise for the MIS 3-4 pair the faint blue line is the
12-month moving average for MIS 2-3 while the red is the 12-month moving average for
MIS 3-4. Again we see a decrease in the overall missing rate as you go from MIS 2-3 to MIS
3-4. We treat MIS 5-6, MIS 6-7 and MIS 7-8 similarly. MIS 5-6 is presented as MIS 1-2 was
(by itself) and then MIS 6-7 is shown relative to MIS 5-6, and MIS 7-8 is shown relative
to MIS 6-7. Again we see an overall decrease in the missing rates once housing units have
reentered the sample after an 8 month absence. We see similar patterns in the reaming
5 sets of panels graphs in Figures 6 thru Figure 10. Overall flows to missing greatest for
Unemployed while the missingness for Employed is greater than for Non-in-Labor Force.

Figure 5: Missing Rates for Table A Employed.



Figure 6: Missing Rates for Table A Unemployed.

Figure 7: Missing Rates for Table A Not-in-Labor-Force.



Figure 8: Missing Rates for Table B Employed.

Figure 9: Missing Rates for Table B Unemployed.



Figure 10: Missing Rates for Table B Not-n-Labor-Force.



4.4 Lagrange Multipliers

In this section we examine the Lagrange multipliers discussed in equation 3.28. In Figure 11
we present six panel graphs for the six lambda values which we label L1, L2, L3, L4, L5, L6.
These panels are different than the style of the ones presented previously. Here we plot
estimates for 2003 through 2023 but since the estimates appear to have seasonal behavior
we plot them as schematic plots for each of the twelve months. In order to better understand
the plots, it is important to recall that L1 corresponds to the constraint for total employed
for the previous month, L2 corresponds to the constraint for total unemployed for the
previous month and L3 corresponds to the constraint for total not-in-labor force for the
previous month. Similarly, L4 corresponds to the constraint for total employed for the
current month, L5 corresponds to the constraint for total unemployed for the current month
and L6 corresponds to the constraint for total not-in-labor force for the current month.
Another way to think about it is that L1 and L4 pair off as constraints for employed, L2

and L5 pair off as constraints for unemployed while L3 and L6 pair off as constraints for
not-in-labor force. With that in mind we can make several observations. Note that January
has the widest dispersion of any month, and that corresponds to the annual population
control adjustment CPS undergoes each year. Also note that the labor force pairs (L1, L4),
(L2, L5), (L3, L6) tend to balance each other out around one. For example L1 tends to
be below 1 while L4 tends to be above 1 on average. We did not perform a formal test
as was suggested in 3.28, but we can see that Lagrange multipliers do balance out around
one between pairs. One interesting phenomena occurs in July in which the lambdas for all
three labor force categories in the previous time period are significantly below 1 on average,
while the lambdas are all significantly above 1 in the current time period. It is not readily
apparent what is causing this but it could reflect an annual revision of population controls
around that time of year.
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Figure 11: Lagrange Multipliers for Total.



5. Conclusion

We have examined an alternative gross flows estimation method and compared it to the
official method used by the U.S. Bureau of Labor Statistics. We find that our method
produces estimates which are very close to the main entries of the table of official estimates
but differ for the outflow column and inflow row. The differences in the inflows and outflows
reflect in part the fact that we do not use any external information to model them, while the
official estimates do use external data. Future research could explore incorporating some
external data either directly or in bounding the estimates.

An interesting result of our research is the development of missing rates by month-in-
sample (MIS) groups. Our results indicate in general that the labor category with the
largest missing rate is unemployed, followed by employed, while not-in-labor force tends to
have the smallest missing rate. In addition, the MIS pair (1, 2) has the largest missing rates
for all labor force categories, and the missing rates diminish monotonically for the pairs
(2, 3) and (3, 4). Upon reentry into the CPS, the pairs (5, 6), (6, 7), (7, 8) also exhibit a
general monotonic decreasing missing rate.

In future research we intend to use our method to expand the rows of the gross flows
table to break out Employed into Full-time and Part-time and to break out Not-in-labor
Force into marginally attached and the remainder. It is hoped that such an expansion of
the table could yield further insights into the dynamics of the labor force.
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