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Abstract

We present a gross flows estimation approach which builds off the paper of Stasny and Fienberg
(1985). Our method uses population weighted estimates from two consecutive months of matched
data from the Current Population Survey (CPS) using the sampling weights from each of the
two matched months to produce two sets of partial gross flows tables. We then use a modeling
approach from Stasny and Fienberg to reconcile the two partial tables to produce an estimate of
the population gross flows table. Closed form solutions are presented which require an optimization
solution to determine Lagrange parameters. We use the method to produce estimated gross flows
tables for CPS from 2003-2023 and estimate the variance of the estimates by replication.
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1. Introduction

The Current Population Survey (CPS) is a household survey conducted for the Bureau of
Labor Statistics by the Unites States Census Bureau. It is the source of monthly estimates
Unemployment and other labor force measures by demographic groups and regions of the
United States. Primary interest is on the monthly stock estimates and changes in the those
estimates over time. There is also an interest in the changes between labor force states over
time which are called labor force gross flows. An example of such analyses is discussed in
Ilg (2005).

The CPS is well suited to examine transitions between labor force states between month
because it attempts to interview some of the same households in consecutive months. In
particular, the CPS uses a 4-8-4 rotation sampling design, which means that once a house-
hold is sampled in their first month, they are in sample the next three months then exit
the sample for 8 months and then interviewed again for 4 consecutive months before exiting
the sample. Note that by design the household is interviewed in the same 4 months in two
consecutive years. The design insures that approximating 75% of the sample overlaps from
month-to-month. For more on the CPS and its design see Technical Paper 77 (2019).

1.1 Population Gross Flows Table

We begin by defining the population gross flows table for two consecutive months in Table 1.
The table classifies all those people who are in the civilian noninstitutional population aged
16 and older (CNP) in either of two consecutive months. The columns and rows labeled
E, U and N stand for those people classified as Employed, Unemployed or Not in Labor
Force respectively. The column labeled F' denotes those people who were in the CNP in
the previous month ¢t — 1 but were not in the CNP in the current month ¢t . We refer to
those as outflows. The row labeled F' denotes those people who were in the CNP in the
current month ¢ but were not in the CN P in the previous month ¢ — 1. We refer to those
as inflows. Note that the intersection of the column and row labeled F' is zero since the
people in the table were in the CIN P at least one of the two months. The column and row
labeled T are the totals.

*Views expressed are those of the authors and do not necessarily reflect the views or policies of the U.S.
Bureau of Labor Statistics.



Table 1: Population Gross Flows Table.
time period ¢
FE U N F T

Terg | Tev | Ten | Ter | TET
Tug | Tvv | Tun | Tur | Tur
Ine | ITnv | Inn | InF | INT
Tre | Tru | TrNn 0 Trr
Trg | Trv | Try | Trr | Trr

time period
t—1

Nlm 2| S

If we denote the total C' N P for time periods t — 1 and t by CN P;_; and CN P; respec-
tively, then the following relationships hold among the elements of Table 1.

CNP, 1 = Tgr+Tyr+Tnr (1.1)
CNP, = Trg+Trv+Trn
Trr = CONP_1+Tpr =CNP +Trr
CNP,—CNP,_1 = Tpr—Trp

where the last equation says the change in CN P from time period ¢ — 1 to ¢ is the inflow
minus the outflow. Our goal is to estimate the Population Gross Flows table each month
in such a way that the row and column margins match the official monthly cross-sectional
estimates.

1.2 Estimated Partial Gross Flows Tables

We begin with some notation. Let S; denote the CPS sample for month ¢ and let S;_4
denote the sample for month ¢ — 1 . We will work with the merged sample S; U .S;_1 which
contains units which were collected in either or both months. Let w;; denote the sample
weight for unit ¢ in month ¢ and similarly w;_; ; for unit ¢ in month ¢ —1 . In both cases we
will assume we are using the CPS composite weights used to compute the official monthly
CPS estimates, which implies that

CNP = > wy, (1.2)
1€S:US 1
CNF_ = > wig
1€SUS 1
Also note that by definition
ifieS;and i ¢ S;_q then wy_y,;, =0 (1.3)

if 7 ¢ St and ¢ € St—l then W3 = 0
Now define the following indicator variables at the unit level

Dg,=1 ifunitiis E in month ¢ — 1 and 0 otherwise (1.4)
Dy, =1 if unit 4 is U in month ¢ — 1 and 0 otherwise

Dy =1 if unit 7is N in month ¢ — 1 and 0 otherwise

D,g =1 ifunitiis F in month ¢ and 0 otherwise

D,y =1 if unit 7 is U in month ¢ and 0 otherwise

D,y =1 if unit 7 is N in month ¢ and 0 otherwise



Then

E 1 = E W1, DExi (1.5)
1€S:US;_1

U1 = E wt—l,iDU*,i
1€SUS 1

Ny = E Wi—1,iDNwi
€S USL_1

are the official estimates of F, U and N for month ¢t — 1 while

E; = E Wi i Dap (1.6)
1€S:US_1

U, = E W Dav s
1€SUS 1

Ny = E Wi i Dyni
1€S:USt_1

are the official estimates of F, U and N for month ¢ . Also note that

CNPt = Et +Ut+Nt (17)
CNP,_; = EA‘tfl + 02571 + Ntfl

Next we define some indicator variables based on the classification in both months. We
begin by defining
Row F

Dggs =1if unit ¢ is E at time ¢ — 1 and E at time ¢ and 0 otherwise (1.8)
Dpy; =1if unit i is E at time ¢ — 1 and U at time ¢ and 0 otherwise

Dgn,; =1if unit ¢ is E/ at time ¢t — 1 and IV at time ¢ and 0 otherwise

Dgp,; =11if unit 7 is E at time ¢ — 1 and F at time ¢ and 0 otherwise
Row U

Dyg,;=1if unit i is U at time ¢ — 1 and E at time ¢ and 0 otherwise (1.9)
Dyy,; =1if unit i is U at time ¢ — 1 and U at time ¢ and 0 otherwise
Dyn,; =1if unit ¢ is U at time ¢ — 1 and IV at time ¢ and 0 otherwise
Dyp; =11if unit 7 is U at time ¢ — 1 and F at time ¢ and 0 otherwise

Row N

Dng,;=11if unit ¢ is N at time ¢ — 1 and E at time ¢ and 0 otherwise (1.10)
Dyy,i =11if unit 7 is N at time ¢t — 1 and U at time ¢ and 0 otherwise
Dypn,=1if unit ¢is N at time t — 1 and N at time ¢ and 0 otherwise
Dyp,; =1if unit ¢ is N at time ¢ — 1 and F' at time ¢ and 0 otherwise

Row F

Dpg,;=1if unit ¢ is F at time ¢t — 1 and E at time ¢ and 0 otherwise (1.11)
Dpy,; =1if unit ¢ is F' at time ¢ — 1 and U at time ¢ and 0 otherwise
Dpn,; =1if unit ¢ is F' at time ¢ — 1 and IV at time ¢ and 0 otherwise

Next we define two additional categories that are relevant for the sample estimates that
were not needed for defining the population gross flows table. We let M denote if a unit is
missing from the sample at either time ¢t — 1 or t. We will let R denote if a unit has been



rotated in or out of the sample at either time ¢ — 1 or ¢. For example, a unit who was MIS4
or MISS at time ¢t — 1 would be R at time ¢, while a unit that was MIS1 or MIS5 at time ¢
would be R at time ¢ — 1. It is important to distinguish those that are M from those that
are R. Those that are M should have been eligible to be interviewed while those who are R
could not have been interviewed by virtue of the 4-8-4 sample rotation design. This allows

us to define the following additional indicator variables,
Row E

Dgy =1 if unit 4 is E at time ¢ — 1 and M at time ¢ and 0 otherwise
Dgr,; =11if unit ¢ is E at time ¢ — 1 and R at time ¢ and 0 otherwise

Row U

Dy =1 if unit ¢ is U at time t — 1 and M at time ¢ and 0 otherwise
Dypr,; =11if unit ¢ is U at time ¢ — 1 and R at time ¢ and 0 otherwise

Row N

Dy =1 if unit ¢ is IV at time ¢ — 1 and M at time ¢ and 0 otherwise
Dnpr,; =1if unit ¢ is NV at time ¢ — 1 and R at time ¢ and 0 otherwise

Row M

Dyg,; =1if unit ¢ is M at time ¢ — 1 and E at time ¢ and 0 otherwise
Dpyy; = 1if unit ¢ is M at time ¢ — 1 and U at time ¢ and 0 otherwise
Dyrni =1 if unit 7 is M at time t — 1 and N at time ¢ and 0 otherwise

Row R

DprEg,; =1 if unit 7 is R at time ¢t — 1 and £ at time ¢ and 0 otherwise
Dpy,; =1 if unit 7 is R at time t — 1 and U at time ¢ and 0 otherwise

Dgry,; =1if unit ¢ is R at time ¢t — 1 and IV at time ¢ and 0 otherwise

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)

We can construct weighted estimates based on these indicator variables. We illustrate

this in Table 2 and Table 3 below.

Table 2: Sample Estimate Gross Flows Table A based upon weighting from time ¢ — 1.

time period t
E U N F M R
time period FE AE‘E AEU AEN AEF AEM AER
t—1 U | Avr | Avv | Aunv | Aur | Aum | Aur
N | Ang | Anv | AnN | AnF | Avm | ANR

Table 3: Sample Estimate Gross Flows Table B based upon weighting from time ¢.

time period ¢
E U N
Bgr | Bev | Ben
Byg | Buv | Bun
Bye | Bnu | BN
Brg | Bru | Brn
ByEe | Buu | Bun
Bre | Bru | Brn

time period
t—1

o =2 2 ol




These tables can be constructed by month-in-sample group or by aggregating over those
groups. For example the first five columns of A can be computed for A® fori =1,2,3,5,6,7
and the last column for ¢ = 4,8, and with the first five rows of B for i = 2,3,4,6,7,8
and the last row for ¢ = 1,5. We discuss modeling and estimation of both cases in the next
section. The current BLS gross flows estimation method only uses the agregate form.

1.3 Current Official Gross Flows Estimates

BLS uses a method of raking described in Frazis, Robison, Evans and Duff (2005) to estimate
the population gross flows table each month. In addition to the CPS their method also uses
data on death rates from the National Center for Health Statistics (NCHS) to improve death
estimates (flows out of the civilian non-institutional population) obtained directly from the
CPS. In addition they specifically account for those persons who are inflows who turned 16
in the current month and whose labor force status was know the previous month. They use
only a portion of the partial flow tables A and B discussed earlier. In particular the first
four rows of B and the flow column of A is used. They also use the stock estimates for E,U
and N for both the current and previous time period for raking.

Our approach uses all the elements of the A and B matrices and ties it to the population
gross flows table with a statistical model similar to that described in Stasny and Feinberg
(1985) and Stasny (1988). We do not incorporate death rate information from NCHS and
rely entirely on data from the CPS. Stasny and Fienberg did not directly model the A and
B matrices as we do but we still apply their modeling approach. This is discussed in the
next section.

2. Modeling the Partial Gross Flows Tables

We will use an approach which is similar to models in Stasny (1988). A key aspect of the
modeling is that we define parameters which control the flow into the missing category
as well as parameters which account for differences by month-in-sample. We consider two
cases. The first is modeling the aggregated tables, and the second for the tables constructed
by month-in-sample.

2.1 Modeling the Aggregate Partial Gross Flows Tables

We next define the following expectations in terms of the rows of matrix A for each month-
in-sample. We begin with row E.
Row E month-in-sample i = 1,2,3,5,6,7

E{AYy} = Oapi(l — Pap)Ter (2.1)
E{A%)U} = Oapi(l = Pap)Treu

BE{AGN} = 0ami(l - Pap)Ten

E{A(i)p} = Oapi(l — Pap)Ter

E{AD} = 0apiPapTer

Row F summed over ¢ = 1,2,3,5,6,7

E{App} = (1—0apss)(1— Pap)TeE (2.2)
E{Agv} = (1—-0apas)(1 — Pap)Tru

E{Apn} = (1 -0apss)(1 = Pap)Ten

E{Agr} = (1—=0aps)(1 —Pap)Ter

E{Apm} = (1 —0apsg)PaeTer

Row E month-in-sample ¢ = 4,8

E{AY:} = OapiTer (2.3)



Row E summed over i = 4,8

We similarly define row U.

E{Agr} = 0apssTer

The parameters 045, for i = 1,2,3,5,6,7 are the month-in-sample effects for Employment
in month ¢ — 1 where by definition

8
Z Oapi =1
i1

We define 0 sp4s = 0 aps + 0 4gs. The parameters Pap represent what percent of the totals
Tee,Teu, Ten, TEr flow into the missing category from employed. When modeling the
aggregate partial gross flows tables we do not let P4p vary by month-in-sample, but we will
allow for Pag; i = 1,2,3,5,6,7 to vary when we model the tables at the month-in-sample
level. For convenience we define

Ter =Tegg +Try +Ten +TEF

Row U month-in-sample ¢ = 1,2,3,5,6,7

E{A{R} = Oavi(l— Pav)Tup
E{A% = Oavi(l — Pav)Tvu
B{A\} = 0avi(l — Pav)Tun
E{AEJ%} = Oavi(l — Pav)Tur
E{AS)M = QaviPavTur
Row U summed over ¢ = 1,2,3,5,6,7
E{AuEe} (1= 0avas)(1 — Pav)TuE
E{Avyv} = (1—0avss)(1 - Pav)Tvu
E{Auyn} = (1—0av4s)(1 — Pav)Tun
E{Aur} = (1-0avas)(1— Pav)Tur
E{Aum}y = (1—0avas)PavTur
Row U month-in-sample ¢ = 4,8
BE{AJR} = OaviTur
Row U summed over i = 4,8
E{Ayr} = OavasTur

We similarly define row N.

Row N month-in-sample ¢ = 1,2,3,5,6,7

E{AYy
E{AY),
E{AQy
E{AY,
E{AQ,

E{AnE}
E{Anu}
E{Ann}
E{Anr}
E{Anm}

}

= Oani(l — Pan)TnE
= 0ani(l — Pan)Tnu
= Oani(l = Pan)Tnn
= 0ani(l — Pan)TnF
= OaniPanTnr

Row N summed over ¢ = 1,2,3,5,6,7

(1 —0anag)(1 = Pan)Tne
(1 = 0anag)(1 — Pan)Tnu
(1 —0anas)(1 — Pan)Inn
(1 = 0anas)(1 = Pan)Tnr
(1 = 0anag) PANTNT

(2.4)

(2.5)

(2.6)

(2.8)

(2.9)

(2.10)

(2.11)

(2.12)



Row N month-in-sample ¢ = 4,8
E{Ay
Row N summed over i = 4,8

E{AnRr}

= OaniInT

= OanasTnT

(2.13)

(2.14)

We next define the following expectations in terms of the columns of matrix B for each
month-in-sample. We begin with column FE.

Column E month-in-sample i = 2,3,4,6,

E{By,} =
E{Byy} =
BE{B\);} =
BE{B{,} =
E{B{}p} =

Column E summed over i = 2,3,4,6,7,8

E{Bgr} = (1-0pgi15)(1—Pe)leE
E{Byg} = (1-0ppgis5)(1 - Ppr)lue
E{Byg} = (1-0Bgi5)(1 - Ppe)INE
E{Brp} = (1-0Bgi15)(1—Ppe)lre
E{Bye} = (1-0Bg1s5)PpeTrE

Column E month-in-sample ¢ = 1,5
B{ B }
RE
Column E summed over i = 1,5

E{Bgrg}

We define Opp15 = 0pp1 + 0pps. We similarly define column U.
Column U month-in-sample ¢ = 2,3,4,6,

B{Byy} =
E{Bj}} =
E{Byy} =
BE{Bj}} =
E{BJ(V?U =

Column U summed over i = 2,3,4,6,7,8

E{Bgpy} = (1-0puvis)(1— Ppu)TEey
E{Byv} = (1-0gu1s)(1— Ppu)Tyv
E{Byxv} = (1-0pvis)(1— Ppu)Inu
E{Brv} = (1-0puis)(1— Ppu)Tru
E{Byv} = (1-0puis)PeuTru

Column U month-in-sample i = 1,5

E{By}

7.8

OpEi(1 — Pee)TEE
OpEi(l1 — Ppr)luE
OpEi(l1 — Pee)INE
Opri(1 — Ppe)TrE

0peiPBETTE

= OpriTrE

= OpeisTrEe

7.8

OpuiPeulTy

= OpuiTru

(2.15)

(2.16)

(2.17)

(2.18)

(2.19)

(2.20)

(2.21)



Column U summed over ¢ = 1,5
E{Bru} = 0OpuisTru (2.22)

We similarly define column N.
Column N month-in-sample ¢ = 2,3,4,6,7,8
E{BY\} = Opni(l— Ppx)Ten (2.23)
E{Biy} = Opni(l - Pex)Ton
E{BYy} = 0pni(1— Psn)Tay
E{B{\} = Opni(1— Ppn)Trn
E{B{)x} = 0pNniPenTry

Column N summed over ¢ = 2,3,4,6,7,8

E{Bgn} = (1—-0pn15)(1— Ppn)TEN (2.24)
E{Bun} = (1—-0Bnis5)(1—Psn)Tun

E{Byn} = (1—-0Bn15)(1—Ppn)INN

E{Brn} = (1—-0BnN1s5)(1— Ppu)Trn

E{Bun} = (1-0sn15)PenTrN

Column N month-in-sample ¢ = 1,5
E{B{N} = OsniTrw (2.25)
Column N summed over i = 1,5

E{BRN} = 6‘BN15TTU (2.26)

2.2 Modeling the Partial Gross Flows Tables by Month-in-Sample

We next define the following expectations in terms of the rows of matrix A for each month-
in-sample. We begin with row E.
Row E month-in-sample ¢ = 1,2,3,5,6,7

E{AD:} = 0api(l— Pap)Tee (2.27)
E{ASEZ‘)U} = 0api(1 — Pag:)Tru

E{A%)N} = 0api(l1 — Pag:)TeN

E{AY} = 0ami(l — Pap)Ter

E{AD} = OapiPapTer

Row E month-in-sample ¢ = 4,8
E{ASR} = OapiTer (2.28)

The parameters 04p; for ¢ = 1,2,3,5,6,7 are the month-in-sample effects for Employ-
ment in month ¢ — 1 where by definition

8
> Oapi=1 (2.29)
=1

The parameters Pap; represent what percent of the totals Tpg, Ty, TEn, TEr flow into
the missing category for employed. For convenience we define

Ter =Tegg +Try +Ten +TEF (2.30)



We similarly define row U.

Row U month-in-sample ¢ = 1,2,3,5,6,7

E{A{;}
E{A{)}
E{Af)y
E{AJ)
BE{A{)}

Row U month-in-sample ¢ = 4,8

E{AJR)

Oavi(1 — Pavi)Tue
Oavi(l — Pavi)Tuu
(1= Payi)Tun

)

Oavi(l — Pavi)Tur

Oav;

OaviPavilur

= Oavilur

Row N month-in-sample ¢ = 1,2,3,5,6,7

E{A%)E Oani(l — Pani)TnNE
E{A%)U Oani(1 — Pani)Tnu
E{AVy} Oani(l — Pani)Tnn
E{AY, 0ani(l — Pani)TnF
E{A%)M} OaniPaniTNT
Row N month-in-sample ¢ = 4,8
E{AY) = OaniTwr

(2.31)

(2.32)

(2.33)

(2.34)

We next define the following expectations in terms of the columns of matrix B for each
month-in-sample. We begin with column F.
Column E month-in-sample ¢ = 2,3,4,6,7,8

E{By)}
E{By);}
E{B{)}
E{B};}
E{Bj]y}

Column E month-in-sample ¢ = 1,5

E{BY),

OpEi(1 — Peri)Trr
OpEi(1 — Ppri)Tur
Opri(1 — Ppri)INE
Opri(1 — Ppr:i)TrE

0BEiPBETTE

= OprilrE

Column U month-in-sample i = 2,3,4,6,7,8

E{B}j);}
E{B{);}
E{BY),

E{By)}
BE{B};}

Column U month-in-sample i = 1,5

E{BW}

Opui(1 — Ppui) ey
Opvi(l — Ppui)Tuu
Opvi(l — Ppui)Tnu
Opvi(l — Ppui)Tru

OsuiPpuilru

= OpuiTru

(2.35)

(2.36)

(2.37)

(2.38)



Column N month-in-sample ¢ = 2,3,4,6,7,8

E{Bg\} = 0pni(l— Poni)TeN (2.39)
E{Bz(ﬁv} = Opni(1 = Peni)Tun

E{B\} = 0pni(l— Pni)Tan

E{Bl(ﬁg\,} = Opni(l — Pani)TrN

E{BJ(\?N} = OUpNniPeNniTTN

Column N month-in-sample ¢ = 1,5
E{B4\} = OpniTry (2.40)

3. Estimating the Model Parameters

We define an objective function F' which resembles a log-likelihood equation for a multino-
mial distribution as Stasny (1988) used. We do not assume a multinomial distribution but
still employ the form as a useful objective function. We will obtain parameter estimates by
maximizing the objective function under the constraints that the gross flow table param-
eters match the row and column stock totals. We define two distinct objective function:
F for the aggregate partial gross flows tables and F* for the partial gross flows tables by
month-in-sample.

3.1 Defining the Objective Function for the Aggregated Partial Gross Flows
Tables

Define F as

F = AppW(E{Agge})+ Apvn(E{Agv}) + Aen In(E{AEn}) + (3.1)
AprIn(E{Agr}) + Apy n(E{AErm}) + Apr In(E{Aggr}) +
Aup(E{Aup}) + Apy m(E{Ayu}) + Aux In(BE{Aun}) +
AvrIn(E{Aur}) + Avnm In(E{Aum}) + Avr In(E{Aur}) +

(E{ANE}) + Any ln(E{ANU}) + Ann ln(E{ANN}) +
(E{Ans}) + Anar In(E{Ana}) + Axr In(E{Axr}) +

Bup n(E{Bus}) + Bus n(E{Bus}) + Bxs n(E{Bys}) +
BrpIn(E{Brg}) + BurpIn(E{Bur}) + Bre In(E{Bgrg}) +

Bru In(E{Bgv)}) + Buv m(E{Buu}) + Byu In(E{Bxuv}) +

Bry In(E{Bry}) + Byu n(E{Byu}) + Bro In(E{Bgru}) +

Bon n(E{Ben}) + Buy (E{Bux}) + Ban In(E{Byn}) +

Brn In(E{Bry}) + Barn n(E{Bux}) + Brn In(E{Bry})

+MTee +Tev + Ten +Ter — Apr — AER)

+X2(Tye +Tvv +Tun +Tvr — Aur — Aur)

+X3(Tne + Tnvu + T + Ine — AnT — ANR)

+M(Tee +Tve +Tne +Tre — Bre — Bre)
(
(

ANE In
ANF In

+As5(Tev + Tvv + Tvu +Tru — Bru — Bru)
+X6(Ten +Tun + Tnn +Trn — Bry — Bry)



where

Apr = App+ Apu+ Apn + Apr + Apu (3.2)
Ayr = Ayp+Apv +Aun +Avr + Aum

Ant = Anp+ Anv +ANN +ANF+ ANp

Brg = Bgg+ Byg+ Bye+ Bre+ Bue

Bry = Bgu+ Byv + Byu + Bru + Buu

Bry = Bgny+Byny+DByy+ Bpyn + Bun

Note that F'is a function of the parameters

TeEe, Tev, TeN, TEF (3.3)
Tve,Tvv,Tun,Tur

Ine, Tnu, TNN, TNF

Tre, Tru, TrN

0E48,04048,04N48,0BE15,0BU15,0BN15

Pug,Pyv, Pan, Ppe, Ppu, PBN
AL A2, A3, A4, A5, Ag

where the \; are the Lagrange multipliers to ensure the gross flows table matches the row
and column stock estimates. With some algebra we can decompose F' into

F=F+F+F; (3.4)
where

Fi = ApgrIn(l —0apss) + AprIn(0apss) + (3.5)
AyrIn(1 — Oavas) + Aur In(favas) +
AntIn(l — 0anag) + AvrIn(Ganas) +
BrgpIn(l —0pgi5) + Bre n(0pE15) +
BryIn(1 — 0pyis) + Bru In(0puis) +
BryIn(1 —0pn15) + Bry In(0pn15)
F, = (Agg+Apv+Agn+ Apr)In(1 — Pag) + Apnm In(Pag) (3.6)
Aug + Ayv + Aunv + Aur) In(1 — Pay) + Auv In(Pay)
ANE + Anv + AN + Anp)In(1 = Pan) + Any In(Pan)
Bgg + Burg + Byeg + Bre)In(1 — Pgg) + By In(Pg)
Bgu + Byv + Bynu + Bru)In(1 — Pgy) + By In(Pey)

(
(
(
(
(
(Ben + Bun + Byn + Ben) In(1 — Ppy) + By In(Ppw)



F3 = (Agg+ Berp)Wn(Teg)+ (Apy + Beu) n(Tgu) + (3.7)
In(Tgn) + Apr In(Ter) +
Apy + Agr) n(Ter) +

ve + Bug)n(Tyg) + (Avv + Buy) n(Tyv) +

N

Ann + Byn)In(Tyn) + Anp) In(Thr) +
Anm + Angr) In(Tnr) +
BrpIn(Trg) + (Bye + Bre) n(Tre) +
BryIn(Try) + (Byu + Bru) In(Try) +
BpyIn(Trn) + (Bun + Bre) In(Try) +
+M(Tgg +Tpv +TeNn +Ter — Apr — AER)
+X(Tve +Tvv +Tun +Tvr — Aur — Aur)
+A3(Tve +Tvu + Ty + Tk — AT — ANR)
+\(Tee + Tve + Tne + Tre — Bre — Bre)
(
(

n

+As(Tev + Tvv + Tvu +Tru — Bru — Bru)
+X6(Ten +Tun + Tnn +Trny — Bry — Bry)

3.2 Defining the Objective Function for the Partial Gross Flows Tables by
Month-in-Sample

We can also write a second objective function F*. First define

Sa = {1,2,3,5,6,7} (3.8)
S4 = {48}
Sp = {2,3,4,6,7,8}

S]L:'s’ = {17 5}



Now define

F*o= 3 AR m(B{AR)) +

i€S A

ST AG In(E{AG ) +

1€S 4

ST AW m(E{AD, ) +

1€S 4

2:_A@)1 E{Aﬁ)

i€S A

ST AGy n(E{AGN)) +

1€S A
ST A In(B{AD,}) +
1€S 4

3 AY n(E{AY. )

i€S A

S AQ n(B{ARy)) +

1€S 4

S AR n(E{AS,,
1€S 4

S BEL In(B{BS,}) +
i€SE

S By n(B{BYy}) +

i€SE
S B n(B{B)z}) +

1€SE

S BY, n(E{By;}

i€SE

S BY, (B{BY,}) +

1€SE

ST By m(B{B{,}) +

1€SR

> BE In(B{BYy

i€SE

S ARy In(B{BYy})

1€SE

> B m(E{BY) 1) +

1€SE

ST AW In(B{AY)}) +

i€SA

S AR In(B{ARL)) +

€S A

1€59

+3 AL In(E{AD ) +

1€S A

3 AD n(E{AYL)) +

1€S A

+ 3 AT In(E{AGR)) +

i€SG

+ 3 AV In(B{AY,)) +

1€SA

ST A m(E{AY) +

1€S A

+ 3 A m(B{AVR)) +

1€59

+ 3 BYL(E{BYL}) +

i€SE

ZB In(E{BY,}) +

€S

+ Y B n(E{Bjy}) +

1€SE

+ Y B, In(E{BY)}) +

1€ESE

S BY, n(B{B{)}) +

1€ESE

> B In(E{BY)}) +

1€SE

+ 3 BYN In(B{B{\}) +

i€SE

+ Y BEIn(B{BUL}) +

1€ESE

S By n(E{BE})

1€ESRge

+MTee +Tev + Ten + Ter — Apr — AER)
+X(Tve +Tvv + Tun +Tur — Aur — Aur)

+

(
(
(
(
(
(

ITng+Tnu+Tnn +Tnp — ATt — ANR)
Ter +Tueg +Tng + Treg — Bre — Bri)
Xs(Tey +Tvv +Tnvv + Tru — Bru — Bru)

+X6(Ten +Tun + Tnn +Trn — Bry — Bry)

S AV n(B{AGR)) +



Note that F* is a function of the parameters

Teg, Teu,Ten, TEF (3.10)
Tve,Tvv,Tun,Tur

Tne,Tnu,TnN, TNF

Tre, Tru,TrN

Oapi,0avui,0an; fori=1,2,3,45,6,7,8

0BEi,OBU:,0pN; for i =1,2,3,4,5,6,7,8

Pagi, Payi, Pani for i =1,2,3,5,6,7

PgEi, Pey;, Pen; for i =2,3,4,6,7,8

A1, A2, A3, Ag, As, Ag

where the \; are the Lagrange multipliers to ensure the gross flows table matches the row
and column stock estimates. F™* can be decomposed as

F*=F'+Fy+F; (3.11)

where F3 remains the same as the decomposition of F, while F}* and F5 are given by

Ffo= Y Arm(0am) + Y AR, n(0am) + (3.12)
i€Sa 1€5G
Z AUZF In(Oay;) + Z A rln (Oavi) +
€S €S
Z Ag\l])T ln(GANi) + Z AS\?R ln(eANi) +
i€Sa €S
S B n0pg) + Y BYpn(0pm:) +
i€Sp i€Sg
ST B n(0pui) + > Bl n(@pus) +
i€ESB i€SG
3" BN In(0pn:) + Y By In(@pni)+
€SB i€SE
5 o= > (A%E A9 A9+ AD Y In(1 = Pag) + A9, In (PAEZ-)} (3.13)
€S A
> (A§}E +AD 4+ AD 4+ AD Y In(1 = Papi) + AD,, ln(PAUi)]
i1€ESA
[ A(i) A(Z) A(Z) A(i) (1 — P A(i) In(Pan
Z (ANE + + + ANF) In( ani) + A In(Pani)
i€Sa
3 (BEE)E + B9+ BY, + BY ) In(1 — Pag) + BY, 1n(PBEZ)}
1€ESE
> (B + BE + BOy + B (1 = Pous) + By n(Paus)|
i€Sp
> (BN + BO + BU + B (1 = Pawi) + Bl n(Pays)]
i€Sp

3.3 Estimation of Month-in-Sample Effects

Fy defined in 3.5 and F} defined in 3.12 are the two functions we need to maximize to
obtain the estimated month-in-sample effects. We begin with F; and the parameter 04 g4s.

o
00 AEas

= —Apr(1 —0apas) " + Aprb s (3.14)



Setting that derivative equal to zero yields the estimator 0 AE48, and the others follow in a
similar way.

Oapas (Apr + Apr) ' Agg (3.15)
Oavas = (Aur+ Aur)'Aur
Oanss = (Anr+Anr) 'Ang
0pe1s = (Bre+ Bre) 'Bre
Opv1s = (Bru+ Bru) 'Bru
Opnis = (Brw + Brn) 'Bry
Similarly for F}* we obtain
Oapi = (Apr+ Apg) 'AY. forie Sy (3.16)
Oapi = (Apr+ AER)’lAg)R for i € S
Oavi = (Aur+ Aur) tAY) for i€ Sy
Oavi = (Aur + Aur) tAY), for i€ 4
Oani = (Anr+ ANR)_lA%)T for i € S
Oani = (Anr+ANg)™ 1A§V)R for i € S
Opp; = (Brg + Bre) " 'B i forie Sp
Opp: = (Brp+ Bre)” IBE& for i € S,
0pvi = (Bru+ Bru)~ lB(T% for i € Sp
Opui = (Bru+ Bry) 'BY), for i € S§
Opni = (Bry+Bgry)'B ( ) for i € Sp
Opni = (Bry+Bry)™! 1(33\, for i € S§

3.4 Estimation of Missing Rates
F, defined in 3.6 and F; defined in 3.13 are the two functions we need to maximize to
obtain the estimated missing rates. We begin with F, and the parameter Papg.
0Fy
OPsg

= —(App + Apy + Apn + Apr)(1 — Pap) ™' + Apm Py (3.17)

Setting that derivative equal to zero yields the estimator Pag, and the others follow in a
similar way.

Pap = AgrApum (3.18)
Paw = AprAum
Piany = AybAnm
Pgp = BriBur
Ppy = BppBuu
Pgy = BryBun
Similarly for F we obtain
Pagi = (AD)1AD forie 5y (3.19)
Pavi = (Ag)T) 1A§]3\4 forie Sa
Pani = (AS(,’T) 1A§V)M fori e Sy
Pepi = (BS)) "B, forie Sp
Ppy; = (Bé%) IBJ(\ZU for i € Sp
Py = (Béf])v) y forie Sp



3.5 Estimation of Population Flows

In this section we need to maximize the function F3 in 3.7. We begin with the parameter
TEEa

0F3
TEE

= Tgé(AEE + BEE) +T}571~(AEM + AER) + Tfé(BME + BRE) — A=\ (3.20)

Setting this derivative equal to 0 gives
Tpr(Agg + Beg) + Tgi(Apy + Agr) + Tp 2 (Bye + Bre) = M+ M\ (3.21)
By constraint

Ter = Apr + Aer (3.22)
Trg = Brg + Bre
After some algebra we obtain

Agpr + Bgg
M =141 =04pa8)(1 = Pag)+ M —1+(1—-0ppi15)(1 — PpE)

Tpp = (3.23)

Derivation of expressions for the other parameters follow in a similar way. The complete
set of expressions is as follows.



Tgp
Tru
TN
Tve
Tyy
Tun
TnE
Tnu
Tnn
Trr
Ty
Tnr
Trr
Try

TF N

Agr + Beg

T R 0 e Pan) e 15 () Fpm) )
B Agvu + Bgu
M 14+ (1= 0apas)(1 — Pag) + A — 1+ (1 — Opu1s)(1 — Ppo)
B ApN + Ben
A =14 (1= 0apas)(1 = Pag) + As — 1+ (1= Opn15)(1 = Pow)
_ Ave + Bug
-1+ (1= 0apas)(1 — Pay) + Aa — 14+ (1 — Oppis)(1 — Ppg)
B Ayv + Buu
Ao =14+ (1= 0apas)(1 — Pay) + As — 1+ (1 — Opy15)(1 — Ppu)
B Ayn + Bun
-1+ (1 = 0apas)(1 — Pay) + A6 — 1+ (1 — Opn15)(1 — Ppy)
B ANE + By
M3 =14 (1= 0anas)(1 — Pan) + A — 1+ (1 = Opgis)(1 — Ppp)
_ Anv + Byu
N =14 (1= 0anag)(1 — Pan) + As — 1+ (1 — Oppis) (1 — Poyr)
B AnN + Bynn
M= 14+ (1= 0anag)(1 — Pan) + A6 — 1+ (1 — Opnis)(1 — Pay)
B Apr
M =14 (1= 0apas)(1 — Pag)
_ Aur
Ao =14 (1= 0apas)(1 — Pay)
B ANF
A1+ (1= 0anas)(1 — Pan)
_ Brp
M- 14(1-0ppis)(1 - Pgp)
_ Bry
A1+ (1= 0puis)(1 — Ppy)

By

X6 — 1+ (1 —Opn15)(1 — Pn)

The form of the estimates in 3.24 suggests an alternative parameterization and estima-

tion method.

We can write



Tps = (45 +PBs) (A + Ber) (3.25)
Tey = (ap+Bv) "(Apv + Bru)
Ten = (ag+Bn) (AN + Ben)
Tyeg = (av+Be) " (Ave + Bug)
Tyy = (4v+Bv) " (Avu + Buv)
Tyny = (av+Bn)""(Aun + By)
Ine = (an+Be) (AN + Byg)
Tnvu = (an+ Bu) " (Anv + Bav)
Tyy = (@n+Bn) " (Ann + Byn)
Tpr = (4p) ' (Aprp)

Ty (av)~ ' (Aur)

Tnr = (6n) " (AnF)

Tre = (Be)'(Bre)

Try = (Bu) ™ (Brv)

Ten = (Bn) '(Brw)

where ZozE, ay, ay, BE, BU, BN) are derived by solving the equations

Agg+Bgr  Apv+Bruy Aegn+Benv  Agr

Apr +Apr = ap + Be M ap + By * ap + N * agp (3.26)
Avr + App = Avg+ Bur  Auv +Buvu  Aun+ Bun n Ayr
ay + Be ay + Bu ay + BN ay
Anr + Anp = Anvg+Byne Anu+Bynu  Ann + Baw n ANp
ay + Be ay + fu ay + By ayn
Brg + Brp — Agpg+Bgrg Aup+ Bug . A+ Bnye | Bre
ap + BE ay + BE an + BE BE
Bro + Bry = Agv+Brpv  Ayv +Buu | Anv+ Byu  Bru
ap + Bu ay + Bu an + Bu Bu
By + Bry = Apn +Bpn  Auyn +Bun | Ann+Byn - Bren
ap + BN ay + BNy an + BNy BN

These could be solved by non-linear least squares for example.



3.6 Model Testing and Initial Starting Values

Under both models for the partial gross flows tables, we can show that

E{;T?E} = 2- )\ -\ (3.27)
E{féi} = 2- )\ — A5
E{a‘;iiv} = 2- )\ — X
E{;T?E} = 2- X -\
E{;TZ?U} = 2- X — A5
E{a§i2} = 2-X— )¢
E{;}TZ} = 2-A3— N\
E{a‘;ﬁ]} = 2-A3— X5
E{a?r]FVBN} = 2-X3— )X
E{aii} = 1-X\
E{a{;f;} = 1-X
E{aaTigF} = 1-Xs
Plors) = 1on
E{a@i} = 1- X\

E - 1
{aTFN} Ao

Therefore a test of model adequacy would test the null hypothesis
H0:>\1:>\2:)\3:)\4:)\5:>\6:1 (328)

We will discuss this further in the Results section. Reasonable starting values for the
nonlinear maximization of F3 is to set

A0 = 30 = A0 30 Z 4O 30 =g (3.29)



which yields

~(0
Tyx

App + Bk
(1 —0apas)(1 — Pag) + (1 — Oppis)(1 — Ppp)
Apu + Bgu
(1 —0apas)(1 — Pag) + (1 — Opuis)(1 — Ppo)
ApNn + Ben
(1 —0apas)(1 — Pag) + (1 — Opn15)(1 — Ppy)
Avg + Bug
(1 —0ap48)(1 — Pap) + (1 — 0pp15)(1 — Pgr)
Ayvu + Byy
(1 = avas)(1 — Pav) + (1 = Opu1s)(1 — Ppu)
Ayn + Bun
(1 = 0apas)(1 — Pap) + (1 — 0pn1s5)(1 — Ppy)
ANE + BnE
(1 —fanas)(1 — Pan) + (1 = Opp15)(1 - Ppp)
Anv + Bnu
(1 —0an4s)(1 — Pan) + (1 — Opu1s)(1 — Py)
ANN + By
(1 —0anas)(1 — Pan) + (1 — 0pn15)(1 — Pry)
ApF
(1 —0apss)(1 — Pap)
Aur
(1= favas)(1 - Pap)
ANF
(1 —0anas)(1 — Pan)
Brg
(1 - 0gp15)(1 — Ppp)
Bru
(1—0pu15)(1 — Pay)
Brn

(1—0pn15)(1 — Ppy)

(3.30)

For the alternative estimation method described in 3.27 we can use these starting values.

(0)

ap’ = (1- Oaps)(1 — Pag)
a7 = (1= favas) (1 — Pavr)
) = (1= 0anas)(1 = Pan)
Ag)) =(1- éBEls)(l - PBE)
3 = (1= Opuis)(1 — Ppy)
A](\([)) =(1- éBNlS)(l - pBN)

3.7 Construction of Gross Flows Weights

Recall that

Agg + Bgg = Z (wi—1; +w)DER,

1€SUSt 1

(3.31)

(3.32)



Now we define the gross weight for the FE transition as
wgp,; = (&g + Be) w1 + wy,i)DEg, for i € Sy U Si—1 (3.33)

which implies

Tpp = Z WEE,i (3.34)

1€SUS 1

Similarly the entire set of gross flows weights are defined as

-1 Dgg; forie S;US, (3.35)

DEU,i for i€ S;US;_1
&g + BN)_l(wt_Li + Wt i DEN,i for ¢ € St U St—l
i)

W1, + Wi )
)
)
(we—1,; +we;)Dyg, for i € Sy U Sy 1
)
)
)
)

WEE,i )
ap+ Bu) w1 +wy

jo)
T
_|_

>
=

WEU,; =
WEN,; =
WUE,i
Gy + Pu)” (we—1,; +wei)Dyy, for i € Sy U Sy
Dy fori € 8, U Si_y
Dng, forie S;US;_;

(
(
(
(
WuU,i (
(
(Gn
wyvy = (an + Bu Dyy,; for i € S; US4
(an
(
(
(
(
(
(

WUN i (Wi—1,i + we s

WNE,i =

-1

)

+ /BE)_l(wt—l,i + Wi
) (Wit + Wi
)

WNN,i + Bn) " Hwi—1,4 +wi i) Dy for i € S, U Sy

)71(wt—1,i)DEF,i fori € S, US;_¢
6u) M (wi—1,:)Dup, for i € S U S,y
)" (wi—1,)) D for i € S U Sp—q

(

WEF,

WU F,i

WNFi =

1
WFE.; K

Wy z)DFE,i for i€ S; US;_1
)

1 B
WEU,i (we,i)Dpy,; for i € S, U Si—4

1 .
WFN,; = N) " (wi;)Dpn,; for i € S, US 1

4. Results

In this section we present our empirical results. We examined Monthly data from December
2002 to December 2023.



4.1 Population Flows

In this section we examine the Gross flows Tables estimates. We first present a panel graph
in Figure 1. This shows graphs of each of the cells in the gross flows table for the total CNP.
We see that our estimates match the official estimates very closely except for the outflow
column and inflow row.
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Figure 1: New Flows versus Official Flows for 2003 to 2023 for Total CNP.

We can examine this more carefully in Table 4 by computing the percent relative absolute
differences between our estimates and the official estimates. We do this over the period
January 2003 thru January 2023 broken out by Sex and for Total CNP. Again we see
that our estimates match the official estimates very closely except for the outflows and the
inflows. There appears to be greater difference in the outflows.

Finally in Table 5 we compute the average coefficient of variation for the year 2023
by Sex and Total CNP for each of the entries of the gross flows table. We do not have
comparable estimates to present for the official estimates.



Table 4: % Relative Absolute Difference Compared to Official Estimates for the Monthly
Gross Flows Table Estimates (averaged over 2003-2023).

Men

E U N F T
E | 0.02% 0.49% 0.73% 62.84% 0.00%
time period U | 0.39% 0.13% 0.54% | 142.07% | 0.01%
t—1 N | 0.75% 0.49% 0.07% 34.17% 0.00%
F | 42.52% | 30.20% | 15.31% — 13.67%

T | 0.00% 0.01% 0.00% 25.12% —

Women

E U N F T
E | 0.02% 0.47% 0.56% 68.26% 0.00%
time period U | 0.39% | 0.16% | 0.39% | 139.95% | 0.01%
t—1 N | 0.58% | 0..40% | 0.06% 38.50% 0.00%
F | 41.45% | 31.07% | 19.17% - 18.07%

T | 0.00% 0.01% 0.00% 31.31% -

Total

E U N F T
E | 0.02% 0.48% 0.57% 58.23% 0.00%
time period U | 0.36% 0.10% 0.41% | 119.59% | 0.01%
t—1 N | 0.61% 0.43% 0.06% 35.01% 0.00%
F | 41.82% | 23.38% | 16.78% — 15.70%

T | 0.00% 0.00% 0.00% 27.98% -

Table 5: Average %CV for 2023 of Monthly Gross Flows Table Estimates.

Men

E U N F T
E | 0.34% 9.53% 5.99% | 68.19% | 0.32%
time period U | 8.89% 5.66% 9.64% | 40.36% | 3.92%
t—1 N | 6.53% | 9.55% | 0.66% | 26.14% | 0.64%
F | 2859% | 77.41% | 15.83% — 10.77%

T | 0.32% | 3.90% | 0.64% | 20.41% —

Women

E U N F T
E | 042% | 10.44% | 5.89% | 74.33% | 0.40%
time period U | 9.40% | 6.59% | 9.71% | 28.28% | 4.18%
t—1 N | 6.35% | 9.51% | 0.51% | 29.46% | 0.51%
F | 29.75% | 67.26% | 16.08% — 11.48%

T | 041% 4.16% 0.52% | 23.91% -

Total

E U N F T
E | 0.28% | 7.24% | 4.41% | 46.60% | 0.27%
time period U | 6.56% | 4.47% | 6.77% | 53.37% | 2.99%
t—1 N | 4.86% 6.70% 0.42% | 19.71% | 0.42%
F | 23.00% | 65.94% | 11.68% - 8.45%

T | 027% | 2.97% | 0.43% | 16.48% —




4.2 Month-in-Sample Effects

In this section we examine the month-in-sample effects. Since month-in-sample indexes are
a common way to examine month-in-sample effects we chose to look at them here. They are
the same as the 6 defined in 3.16 except they are multiplied by 8, which means that a value of
1.0 indicates the MIS effect is no different that the average of all 8 MIS groups. We present
the MIS indexes for annual averages for the years 2003 thru 2023 in order to reduce the
variability of the estimates. In Figure 2 we plot the MIS indexes for total employment. We
see that the indexes are relatively stable over the 20 years except for the Covid-19 pandemic
period. The pandemic effect is also apparent in Figure 4 for not-in-labor force, while less
apparent but still there for Unemployed in Figure 3. Similar impacts have previously been
discussed in Mclllece (2020).
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Figure 2: Annual Average Month-in-Sample Indexes for Total Employed 2003-2023.



MIS Indices (Unmployed 2003-2023)
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Figure 3: Annual Average Month-in-Sample Indexes for Total Unemployed 2003-2023.
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Figure 4: Annual Average Month-in-Sample Indexes for Total Not-in-Labor Force 2003-
2023.



4.3 Missing Rates

In this section we examine the missing rates. We present estimates of the missing rate as
defined in equation 3.19. We plot the missing rates for each of the six month-in-sample
pairs and the graphs each are 12-month moving averages of the missing rates to smooth
them out and reduce the variability. We begin by examining Figure 5. The monthly missing
rates are plotted along with a solid red line indicating the 12-month moving average. If we
look first at MIS 1-2 we see a steady increasing in the missing rate over time, which mimics
the type-A non response rate increase we have seen in CPS overall. If we examine MIS 2-3
we see an decreasing response rate but overall the missing rate is lower than for MIS 1-2.
To help see that there is a faint blue line also included in the MIS 2-3 graph which is the
12-month moving average for MIS 1-2, so you can see the red line for MIS 2-3 is shifted
down relative to that of MIS 1-2. Likewise for the MIS 3-4 pair the faint blue line is the
12-month moving average for MIS 2-3 while the red is the 12-month moving average for
MIS 3-4. Again we see a decrease in the overall missing rate as you go from MIS 2-3 to MIS
3-4. We treat MIS 5-6, MIS 6-7 and MIS 7-8 similarly. MIS 5-6 is presented as MIS 1-2 was
(by itself) and then MIS 6-7 is shown relative to MIS 5-6, and MIS 7-8 is shown relative
to MIS 6-7. Again we see an overall decrease in the missing rates once housing units have
reentered the sample after an 8 month absence. We see similar patterns in the reaming
5 sets of panels graphs in Figures 6 thru Figure 10. Overall flows to missing greatest for
Unemployed while the missingness for Employed is greater than for Non-in-Labor Force.

Total Employed Missing Rate by MIS Pair
MIS 1-2 MIS 2-3 MIS 3-4
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Figure 5: Missing Rates for Table A Employed.



Total Unemployed Missing Rate by MIS Pair
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Figure 6: Missing Rates for Table A Unemployed.
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Figure 7: Missing Rates for Table A Not-in-Labor-Force.



Total Employed Missing Rate by MIS Pair
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Figure 8: Missing Rates for Table B Employed.
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Figure 9: Missing Rates for Table B Unemployed.
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Figure 10: Missing Rates for Table B Not-n-Labor-Force.



4.4 Lagrange Multipliers

In this section we examine the Lagrange multipliers discussed in equation 3.28. In Figure 11
we present six panel graphs for the six lambda values which we label Ly, Lo, L3, Ly, Ls, Lg.
These panels are different than the style of the ones presented previously. Here we plot
estimates for 2003 through 2023 but since the estimates appear to have seasonal behavior
we plot them as schematic plots for each of the twelve months. In order to better understand
the plots, it is important to recall that L; corresponds to the constraint for total employed
for the previous month, Lo corresponds to the constraint for total unemployed for the
previous month and L3 corresponds to the constraint for total not-in-labor force for the
previous month. Similarly, Ly corresponds to the constraint for total employed for the
current month, L5 corresponds to the constraint for total unemployed for the current month
and Lg corresponds to the constraint for total not-in-labor force for the current month.
Another way to think about it is that L; and L4 pair off as constraints for employed, Lo
and Ls pair off as constraints for unemployed while Ls and Lg pair off as constraints for
not-in-labor force. With that in mind we can make several observations. Note that January
has the widest dispersion of any month, and that corresponds to the annual population
control adjustment CPS undergoes each year. Also note that the labor force pairs (Li, Ly),
(Lo, Ls), (L3, Lg) tend to balance each other out around one. For example L; tends to
be below 1 while L, tends to be above 1 on average. We did not perform a formal test
as was suggested in 3.28, but we can see that Lagrange multipliers do balance out around
one between pairs. One interesting phenomena occurs in July in which the lambdas for all
three labor force categories in the previous time period are significantly below 1 on average,
while the lambdas are all significantly above 1 in the current time period. It is not readily
apparent what is causing this but it could reflect an annual revision of population controls
around that time of year.
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Figure 11: Lagrange Multipliers for Total.



5. Conclusion

We have examined an alternative gross flows estimation method and compared it to the
official method used by the U.S. Bureau of Labor Statistics. We find that our method
produces estimates which are very close to the main entries of the table of official estimates
but differ for the outflow column and inflow row. The differences in the inflows and outflows
reflect in part the fact that we do not use any external information to model them, while the
official estimates do use external data. Future research could explore incorporating some
external data either directly or in bounding the estimates.

An interesting result of our research is the development of missing rates by month-in-
sample (MIS) groups. Our results indicate in general that the labor category with the
largest missing rate is unemployed, followed by employed, while not-in-labor force tends to
have the smallest missing rate. In addition, the MIS pair (1,2) has the largest missing rates
for all labor force categories, and the missing rates diminish monotonically for the pairs
(2,3) and (3,4). Upon reentry into the CPS, the pairs (5,6), (6,7), (7,8) also exhibit a
general monotonic decreasing missing rate.

In future research we intend to use our method to expand the rows of the gross flows
table to break out Employed into Full-time and Part-time and to break out Not-in-labor
Force into marginally attached and the remainder. It is hoped that such an expansion of
the table could yield further insights into the dynamics of the labor force.
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