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Abstract 
This paper highlights two issues that came up in recent work on a large set of employment series 
from the Current Employment Statistics program in the Bureau of Labor Statistics. The first 
examines performing hypotheses tests on such a large set of series. As seasonal adjustment 
practitioners move from empirical to model-based diagnostics, care needs to be taken to mitigate 
the effects of multiple hypothesis testing on this set of 4700+ series. The second topic involves 
using the model-based seasonal F-test to determine if a series is seasonal. Since models used in 
seasonal adjustment production rarely include seasonal regressors, a second X-13 run is often 
needed to generate this test. This work examines two methods for generating the model for this 
second run, and what difference this makes to the results of the seasonal F-test. 

Keywords: seasonality diagnostics, multiple hypothesis testing, seasonal diagnostics, 
automatic ARIMA model identification, automatic outlier identification 

1 Introduction 

Over the last year, there has been an effort to improve the tools used by analysts at the 
U.S. Bureau of Labor Statistics (BLS) to evaluate seasonal adjustments for the Current 
Employment Statistics (CES) survey published monthly by BLS. 

In the course of this work, which seeks to replace empirical seasonality diagnostics with 
model-based counterparts, two issues have come up which needed to be addressed. 

An important issue came from generating a model-based F-statistic for stable seasonality. 
Lytras et al. (2007) compared a model-based F-statistic to existing seasonality diagnostics 
in X-12-ARIMA and showed that the model-based diagnostics was superior. The current 
version of X-13ARIMA-SEATS makes generating this statistic very easy when stable 
seasonal regressors are specified in the model. For a more detailed description of this 
diagnostic, see Bell et al. (2022), Section 4.1. 

Unfortunately, stable seasonal regressors are not usually specified in model used in 
seasonal adjustment production work, so a second X-13ARIMA-SEATS run is needed to 
generate the model-based F-statistic. This paper will compare two methods of 
determining the model used for this test: automatic model identification with seasonal 
regressors included or revising the production model. I will give details of each method, 
and show results from each. Results from another model-based seasonality diagnostic 
will be generated to compare with these results. 

Another issue is the large number of series published each month by CES - over 4,000 
employment statistics for different types of employment, hours worked, etc. Performing 
hypothesis tests for such a large set of series poses the risk of accepting false results. 

In this talk, I’ll document my attempts to control the false detection rate using methods 
available within R (see R Core Team (2024)). 



2 Specifying the Model for the Model-Based F-test 
 

As mentioned in Section 1, I’ll use two methods of specifying the model for the model-
based F-test - generating a model using the automatic model identification procedure 
within X-13ARIMA-SEATS, and modifying the model currently used for production. 

I’ll give more details on each in the next few sections. 

2.1 Modifying production model 
In this method, the ARIMA model used in production is modified for the seasonal test by 
removing any seasonal differencing. If there is no seasonal differencing, the model is 
specified as it is in production. 

By removing the seasonal difference, we can then add stable seasonal regressors to the 
regARIMA model, leaving all other regressors specified the same. 

In the example below, we show the regression and arima specs from a production 
X-13 spec file that uses the (0 1 1)(0 1 1) model (the airline model of Box and Jenkins): 

 

regression{  
    variables = ( 
        tc2019.10 
    ) 
    user = (dum1 dum2 dum3 dum4 dum5 dum6  
            dum7 dum8 dum9 dum10 dum11) 
    start = 1986.01 
    usertype = td 
    file = '..\..\ces_reg\FDUM8606.dat' 
    save = (td ao ls tc) 
    format = "free" 
} 
arima{  
    model = (0 1 1)(0 1 1) 
} 
 
I used a special version of X-13-SAM (see Lytras 2024) to change each of the production 
models to 

 set the seasonal difference to zero, 
 add seasonal regressors to the regression spec. 

 
The resulting spec file would have these modeling specs: 

  



 

regression{  
    variables = (tc2019.10 seasonal) 
    user = (dum1 dum2 dum3 dum4 dum5 dum6 dum7 dum8 dum9 
            dum10 dum11) 
    start = 1986.01 
    usertype = td 
    file = '..\..\ces_reg\FDUM8606.dat' 
    save = (td ao ls tc) 
    format = "free" 
} 
arima{  
    model = (0 1 1)(0 0 1) 
} 
 
This method will be labelled as the P0Q method going forward in this paper. 

2.2 Automatic model identification 
In this method, we’ll use the automdl spec to generate the model used for generating 
the model-based F-test. The seasonal regressors will be preset in the model, which means 
that we should set the options for automdl carefully so that the final model will not 
have a seasonal difference. Having seasonal regressors in a model with seasonal 
differencing would cause an estimation error, and the seasonal differencing will eliminate 
the seasonal regressors. 

The maxdiff argument of the automdl spec is used to set the maximum order of 
seasonal differencing to zero. 

automdl{ 
    maxorder = (3 1) 
    maxdiff = (1 0) 
    savelog = amd 
} 
 

We then add the seasonal regressors to whatever user-defined regressors are used in the 
production model for the CES series. An example of this appears below: 

regression{  
    variables = seasonal 
    user = (dum1 dum2 dum3 dum4 dum5 dum6 dum7 dum8 dum9 
            dum10 dum11) 
    start = 1986.01 
    usertype = td 
    file = '..\..\ces_reg\FDUM8606.dat' 
    save = (td ao ls tc) 
    format = "free" 
} 
 
At first, I ran the automatic outlier identification procedure as well as the automatic 
modeling procedure to generate the model used to get the F-statistic for the seasonal 



regressors. In doing this, we encountered fatal model estimation errors for a number of 
series, though they may be small in number when considering the large number of CES 
series analyzed (over 4,000). 

The main estimation errors I found were: 

 The covariance matrix of the ARMA parameters is singular. 
 Estimation failed to converge – maximum iterations reached. 
 Cannot compute outlier t-statistic for outlier backward deletion - the residual root 

mean square error is zero. 
 Adding an outlier exceeds the number of regression effects allowed in the model 

(80). 
 
I attempted to mitigate this in two ways - first, I tried using the order of differencing from 
the production models in conjunction with automatic model identification. To implement 
this, I used the diff argument to set the order of nonseasonal differencing in the model 
to match that of the production model; the order of seasonal differencing was set to zero. 

An example of this appears below: 

automdl{ 
    maxorder = (3 1) 
    savelog = amd 
    diff = (1 0) 
} 
 
The second change incorporates the outliers from the production spec file. If there are 
user-defined regressors in the production model, they will be kept in the spec file for 
generating the model-based F-test. 

I used different combinations of these options in this study. Table 1 shows these set of 
options along with the total number of estimation errors generated. A code for each set of 
options is also provided. 

 
Table 1: Options used in automatic model identification, with associated estimation errors 

 
Code Outlier Option Differencing Option Fatal Errors 

auto0 automatic identification automatic identification 72 

auto1 automatic identification set from production model 70 

auto2 set from production model set from production model 65 

auto3 set from production model automatic identification 67 
 

 
Using outliers from the production model seems to reduce the number of fatal estimation 
errors generated from the X-13ARIMA-SEATS automatic modeling run, with a smaller 
reduction when the nonseasonal differencing order is set. In both cases, the differences 
are small. 

Note there are no estimation errors when running the P0Q method. 

  



3 Methodology 
 
Production spec files from the CES series used in 2023 were edited using the X-13-SAM 
program to create the spec files needed to generate the model-based F-test. These spec 
files were the same provided by CES on the BLS website during 2023. They were broken 
up between different types of statistics collected and the timing with which the series 
were released. 

CES series may be seasonally adjusted directly (by applying seasonal factors directly to 
the not seasonally adjusted series) or indirectly (through the aggregation process). There 
are two sets of series published by CES: 

 The lowest level seasonally adjusted series published with first preliminary 
estimates are used for aggregating to higher levels. These series will be referred 
to as the First Closing in this paper. 

 The series published after the release of first preliminary estimates are seasonally 
adjusted directly but are not used in aggregation. These series are noted as 
independently seasonally adjusted, because they are not used in aggregation. 
These series will be referred to as the Second Closing in this paper. 

 
Note that in this study, I will only be examining series that are directly seasonally 
adjusted. 

The majority of series released by CES are Second Closing series - there are 298 series in 
the First Closing set versus 3,730 series in the Second Closing. 

For more information on CES Seasonal Adjustment, access the CES National 
Calculations page (see Bureau of Labor Statistics 2024). 

Once the spec files are generated, they are read into R using the seasonal package 
(Sax 2018; Sax and Eddelbuettel 2018), which is an interface between R and the X-
13ARIMA-SEATS seasonal adjustment program (see Time Series Software Group 
2023). I created scripts that generated seas objects for each series for each method or set 
of options. The model-based F-tests can then be extracted from the seas objects for 
those series for whatever series where X-13ARIMA-SEATS runs without incident, 
including the p-values for the F-tests. The FDR adjustment is applied to the set of p-
values once they all are generated, and summaries of the results for the different methods 
and options can be generated within R. 

 
4 Multiple Hypothesis Testing 

 
As mentioned in Section 1, there was a concern for how to perform hypothesis testing on 
such a large group of series. Repeatedly performing hypothesis tests at the 𝛼 level would 
increase the 𝛼 level of the entire data set without some adjustment to control for false 
detection. 

Using the classic Bonferroni (testing at the 𝛼/𝑛 level) correction was thought to be too 
conservative and would reject more series than necessary. 

I examined two methods of adjusting for false detection: the FDR (False Detection Rate) 
adjustment of Benjamini and Hochberg (see Benjamini and Hochberg 1995), and q-
values, which measures the proportion of false positives incurred (called the false 
discovery rate) when that test is called significant. 



The basic FDR method takes all the p-values and sorts them by size, from lowest to 
highest, for all 𝑁 series. Then where 𝑃(𝑖) is the ith p-value in the ordered set, we check 
to see if the following is satisfied: 

𝑃(𝑖) ≤ 𝛼 × 𝑖/𝑚, where 𝑚 = 𝑁 − 𝑖 + 1 

If this is true, the test is significant. 

I used the FDR adjustment implemented in the p.adjust function in base R. This 
function returns an adjusted version of the p-value such that 

𝑃𝐴𝑑𝑗(𝑖) = 𝑃(𝑖) × 𝑚/𝑖 

where 𝑚 is as defined in the first equation. 

As for q-values, Storey (2018) contains a brief introduction to local FDRS and q-values, 
and a summary of the steps needed to generate q-values are given in Appendix B of 
Storey and Tibshirani (2003). 

To generate the q-values, I used the R package qvalue, which is part of the 
BioConductor set of open-source packages for bioinformatics (Storey et al. (2024)). 
This package takes a list of p-values resulting from the simultaneous testing of many 
hypotheses and estimates their q-values and local FDR values. Storey and Bass (2024) is 
a vignette of the package and shows some of the plots and output that are given below. 

Applying these methods to the p-values of the seasonal adjustment diagnostic used in this 
study, I found that the FDR adjustments for the p-values of the model-based F-statistic 
were very close to the actual p-values, and the q-values showed many more of the series 
to have significant seasonality. 

However, to apply these tests correctly would require the p-values to be continuous and 
uniformly distributed; this required an examination of the distribution of the generated p-
values which appears in Figure 1. 

These histograms show the distributions of the p-values taken from two implementations 
of the model-based F and the QS diagnostic. Note the skewness in the distributions for 
the different diagnostics, and the uptick in the distribution at the end of the distribution 
for the QS statistic, which we will discuss in more detail in Section 6. 

Given that I could not use the FDR or q-values, I decided to pause consideration of 
multiple hypothesis testing and use the p-values as is standard practice. 



 
Figure 1: P-value histograms for different diagnostics 
 

5 Model-Based F-tests Failed 
 

Table 2 shows the percentage of series that fail the model-based F-test using each of the 
methods described in Section 2. The codes used for the automatic model identification 
methods are the same as in Table 1. 

Here, we are testing at the one percent level, so a failure in this case means that the FDR 
adjusted p-value is greater than 0.01. 
 

Table 2: Percentage of Failed Model-Based Seasonal F-tests in CES Series 
 

 auto0 auto1 auto2 auto3 P0Q

First Closing 4.79 4.45 5.14 5.80 11.74

Second Closing 14.85 14.57 15.94 16.28 26.11

All CES 14.11 13.82 15.14 15.50 25.05
 

 
Some observations: 

 First Closing series fail far less frequently than the Second Closing series. 
 Failure rates from the automatic models are very close to one another, as one 

would expect. 
 The failure rate from the P0Q method is consistently higher than those of any of 

the automatic methods. This is true even for the auto2 set of options, which 
take their outliers and differencing orders from the same production model as the 
P0Q method. 



 
6 The QS statistic 

 
For each of these runs, we can compare the results from the QS seasonality diagnostic 
developed by Maravall with these results. It is described in detail in Bell et al. (2022), 
Section 4.2 - it uses the sample autocorrelation of the first two seasonal lags to construct 
a measure of the strength of the seasonal autocorrelation and it attempts to test the null 
hypothesis that these first two seasonal autocorrelations are zero. The resulting statistic is 
assumed to be distributed as a chi-squared statistic with two degrees of freedom. 

The QS diagnostic is a function of the first two seasonal lag autocorrelations – those for 
lags 12 and 24 for monthly data, and for lags 4 and 8 for quarterly data – and it attempts 
to test the null hypothesis that these first two seasonal autocorrelations are zero. The 
rationale behind QS is that a series with seasonality, or residual seasonality, should 
exhibit substantial positive autocorrelation at these lags. Seasonal autocorrelation may 
extend beyond lags 24 or 8, but such higher lags are not used by QS. Note that if the 
autocorrelation at the first seasonal lag is zero or negative, then QS is set to 0 and the p-
value is set to 1. 

Appendix B of Bell et al. (2022) gives a formula for computing the QS statistic. 

Rather than generate a separate QS statistic for each of the methods listed in Table 2, 
we’ll take our QS statistic from the production runs. The spec files will be processed in 
R, and we’ll extract the QS statistic for the original series adjusted for extremes for the 
last 8 years of data. 

Table 3: Percentage of QS Statistics in CES Series 
 

 Failed Number Percent 

First Closing 40 298 13.42 

Second Closing 1281 3730 34.34 

All CES 1321 4028 32.80 
 

 
In general, the QS statistic appears to fail more series than either the automatic or P0Q 
methods, though for most categories it appears to be closer to the P0Q method than any 
of the automatic methods. For First Closing, the results are very similar between QS and 
P0Q. 

It is natural to apply these diagnostics in tandem - using them together to classify which 
series are clearly seasonal, which series are clearly not seasonal, and which series require 
more work. How much would the method of computing the seasonal F-test affect this 
type of classification? 

There’s another element to this - for the automatic modeling method, there are a group of 
series where there is not an F-test for stable seasonality due to fatal estimation errors. In 
this case, we’ll only use the results from the QS statistic. 

Table 4 gives the percentage of CES series that fail both the QS and model-based 
seasonal F-test. Again, the results for the automatic model methods are quite consistent 
and using the P0Q method fail a larger percentage of series, particularly for the Second 
Closing series. 



Table 4: Percentage of CES Series That Fail Both Diagnostics 
 

 auto0 auto1 auto2 auto3 P0Q 

First Closing 3.69 3.69 4.36 5.03 6.38 

Second Closing 12.60 12.17 13.83 14.24 20.59 

All CES 11.94 11.54 13.13 13.56 19.54 
 

 
Table 5 gives the percentage of CES series that pass both the QS and model-based 
seasonal F-test. Again, the results for the automatic model methods are quite consistent, 
and using the P0Q method would pass a smaller percentage of series, particularly for the 
First Closing series. 

 
Table 5: Percentage of CES Series That Pass Both Diagnostics 

 

 auto0 auto1 auto2 auto3 P0Q

First Closing 85.23 85.57 85.23 85.23 81.21

Second Closing 63.14 63.08 63.22 63.22 60.13

All CES 64.77 64.75 64.85 64.85 61.69
 

 
Finally, Table 6 shows the series that pass only one of the diagnostics. Here, there is still 
a difference between the P0Q method and the automatic model methods, but it is 
different for the First Closing series than for the Second Closing series. 

 
Table 6: Percentage of CES Series That Pass Only One Diagnostics 

 

 auto0 auto1 auto2 auto3 P0Q

First Closing 11.08 10.74 10.41 9.74 12.41

Second Closing 24.26 24.75 22.95 22.54 19.28

All CES 23.29 23.71 22.02 21.59 18.77
 

 
7 Choosing a Method for the Model-Based F-test 

 
The automatic options seem to give very similar results, while the P0Q method give 
consistently higher failure rates than the automatic options. Which should one choose? 

There are good reasons for selecting the P0Q method: 

 using this option rather than a method that automatically identifies the model will 
be faster; 

 even though there are a relative few series for the automatic options that have 
fatal execution errors, the P0Q method is unlikely to generate such an error; and 

 the results from the QS statistic seem to align more with the P0Q method. 
 
To look at this further, I compared the AICCs (for the Corrected Akaike Information 
Criterion) generated for the models used for the auto2 and P0Q methods. I chose 
auto2 because it has the same outliers and differencing orders as the models specified 
for P0Q, making this a fairer comparison than for the other automatic methods. 



The AICC is defined as 

𝐴𝐼𝐶𝐶ே = −2𝐿ே + 2𝑛 ൬1 −
𝑛 + 1

𝑁
൰
ିଵ

 

where the number of estimated parameters in the model, including the white noise 
variance, is 𝑛, 𝑁 is the number of observations after applying the model’s differencing 
and seasonal differencing operations, and 𝐿ே is the estimated maximum value of the 
exact log likelihood function of the model for the untransformed data. 

I’ll define the differences in AICC by 𝑑𝑖𝑓𝑓𝐴𝐼𝐶𝐶 = 𝐴𝐼𝐶𝐶(𝑃0𝑄) − 𝐴𝐼𝐶𝐶(𝑎𝑢𝑡𝑜2), where 
𝐴𝐼𝐶𝐶(𝑃0𝑄) is the AICC computed from a model formed by the P0Q method and 
𝐴𝐼𝐶𝐶(𝑎𝑢𝑡𝑜2) if the AICC computed from a model identified with options specified for 
auto2 as specified in Table 1. 

We will use the criteria from Symonds and Moussalli (2011). We consider differences 
larger than two in absolute value to be significant, meaning that if 𝑑𝑖𝑓𝑓𝐴𝐼𝐶𝐶 > 2.0, we’d 
prefer the model from auto2, and if 𝑑𝑖𝑓𝑓𝐴𝐼𝐶𝐶 < −2.0, we’d prefer the model from 
P0Q. 

Table 7 shows that the auto2 model is the overwhelming favorite. This suggests using 
one of the automatic modeling options. The fully automatic method may be easier to 
implement (auto0 from Table 1), but there is a small reduction in fatal estimation errors 
if one incorporates the outlier regressors from the production model (auto2). 

 
Table 7: Model Preference Due to AICC Difference 

 

 Number of series 

Preference for auto2 model 2,715 

No preference for either model 826 

Preference for P0Q model 422 
 

 
8 Series That Pass One Diagnostic 

 
If a given series passes or fails both the model-based F-test and QS diagnostics, the 
interpretation is straightforward. 

What should we do when the series only passes one diagnostic, either by passing only 
one of the diagnostics, or in the case of estimation errors where the model-based F-test is 
not available? 

There have been systems developed by Agustin Maravall and at the Bundesbank that 
used additional diagnostics in a sequential way to determine seasonality or the quality of 
the seasonal adjustment. One of those diagnostics is the spectrum of the original series. 

X-13ARIMA-SEATS generates spectrum plots for the original series adjusted for outlier 
and extreme values and uses a visual significance criteria to determine if there are 
seasonal peaks in a given spectral plot. As described in Bell et al. (2022), the program 
uses the “star” as a unit of measure, which is 1/52 of the range of the spectral values. This 
is based on the ASCII text representation of the graph of the spectrum. 



To be considered a peak, the spectrum at a given frequency must have a height that is at 
least six (6) stars above the taller of the two nearest-neighbor frequencies on the plot and 
above the median height of all the plotted frequencies. 

A sample spectrum plot from the X-13ARIMA-SEATS output of the All Employees, Oil 
and Gas Extraction, First Closing series is given in the Appendix at the end of this paper. 

You can see the second, third and fourth seasonal frequencies (labelled “S” on the plot) 
are much stronger than the other seasonal frequencies and are more than six “stars” 
higher than the nearest spectral frequencies. 

Figure 2 shows a high-resolution spectrum plot for the same First Closing CES series. 
While you cannot see the “stars” as you could on the ASCII plot from the printout, the 
seasonal frequencies are marked by dotted lines on the plot, and the visually significant 
peaks are marked by stars on the second, third, and fourth seasonal frequencies. 

 
Figure 2: Spectrum Plot Produced by X-13ARIMA-SEATS 
 
In this situation, the number of visually significant seasonal peaks will be collected for 
each of the CES series that passed only one of the diagnostics. If none of the seasonal 
peaks are visually significant, the series fails this test. 

In addition, we will keep track of whether the fifth seasonal frequency is the only visually 
significant frequency, as this translates to an effect that has a period of 2.4 months, which 
is an odd frequency. 

Table 8 shows the results for series that pass only one of the QS or model-base F statistic 
(shows as MBF in the table) generated from the auto2 method as shown in Table 1. 



Table 8: Spectral peak results for auto2 method 
 

QS MBF Number of series No Visual Peaks S5 Only Visual Peak 

fail pass 782 239 21 

pass fail 108 25 5 

pass run failed 41 0 0 
 

 

These results show several additional series (about 28 percent) have no visual spectral 
peaks even though one of the seasonal diagnostics of significance passed at the one 
percent level. 

9 Conclusions and Future Work 
 

I would recommend using automatic model selection to select the model used to generate 
the Model-Based F-test for stable seasonality. 

I would prefer outliers from production models, and would use automatic difference 
identification, but the differences between the different options are small. 

For future work, I will redo this analysis with updated series to see how robust the 
selections are, though I may limit the number of automatic modeling options used. Also, I 
might investigate other options for reducing the number of estimation errors. 

Also, Bell et al. (2022) points out that the QS and spectral diagnostics “may detect 
moderate or even mild seasonal autocorrelation that would not necessarily produce 
discernible seasonal patterns in the data”. If the QS diagnostic is the only significant 
seasonality diagnostic (perhaps in addition to the spectral diagnostic), it would be good to 
examine sample autocorrelations of the series to determine if there is a peak discernible at 
the seasonal lags of the ACF. 
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Appendix: Sample Spectral Plot from X-13ARIMA-SEATS Output 
 
G 0 10*LOG(SPECTRUM) of the differenced Prior Adjusted Series (Table B1) 
Spectrum estimated from 2014.Nov to 2022.Oct. 
 ++++++++++I+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++I 
      75.49I                              S                              I     75.49 
           I                              S                              I 
           I                              S                              I 
           I                              S                              I 
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           I                              S         S                   SI 
           I                              S         S                   SI 
      69.83I                              S         S                   SI     69.83 
           I                              S         S                   SI 
           I                              S         S               *  *SI 
           I                              S         S*       *      *  *SI 
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           I                              S         S*       *S*T  *****SI 
           I                              S     *   S*  *    *S*T  *****SI 
           I                              S     *  *S*  *    *S*T* *****SI 
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           I                    S        *S*   **  *S*T***  **S*T*******SI 
      64.17I                    S        *S*   *** *S*T***  **S*T*******SI     64.17 
           I                    S        *S*   *** *S*T***  **S*T*******SI 
           I                    S        *S*   *****S*T*** ***S*T*******SI 
           I           *        S        *S*   *****S*T*******S*T*******SI 
      62.29I           *       *S        *S*   *****S*T*******S*T*******SI     62.29 
           I           *   **  *S*  *    *S*   *****S*T*******S*T*******SI 
           I           *   **  *S*  *    *S*  ******S*T*******S*T*******SI 
           I           *   **  *S*  *    *S** ******S*T*******S*T*******SI 
      60.40I          S*   **  *S* **    *S** ******S*T*******S*T*******SI     60.40 
           I          S**  **  *S*****  **S*********S*T*******S*T*******SI 
           I          S**  *****S*****  **S*********S*T*******S*T*******SI 
           I          S** ******S*****  **S*********S*T*******S*T*******SI 
      58.52I          S** ******S*****  **S*********S*T*******S*T*******SI     58.52 
           I          S*********S*********S*********S*T*******S*T*******SI 
           I         *S*********S*********S*********S*T*******S*T*******SI 
           I         *S*********S*********S*********S*T*******S*T*******SI 
      56.63I        **S*********S*********S*********S*T*******S*T*******SI     56.63 
           I        **S*********S*********S*********S*T*******S*T*******SI 
           I       ***S*********S*********S*********S*T*******S*T*******SI 
           I       ***S*********S*********S*********S*T*******S*T*******SI 
      54.74I   *   ***S*********S*********S*********S*T*******S*T*******SI     54.74 
           I   ** ****S*********S*********S*********S*T*******S*T*******SI 
           I  ********S*********S*********S*********S*T*******S*T*******SI 
           I  ********S*********S*********S*********S*T*******S*T*******SI 
      52.86I  ********S*********S*********S*********S*T*******S*T*******SI     52.86 
           I  ********S*********S*********S*********S*T*******S*T*******SI 
           I  ********S*********S*********S*********S*T*******S*T*******SI 
           I *********S*********S*********S*********S*T*******S*T*******SI 
      50.97I**********S*********S*********S*********S*T*******S*T*******SI     50.97 
 ++++++++++I+++++++++++++++++++++++++++++++++++++++++++++++++++++++++++++I 
            S=SEASONAL FREQUENCIES, T=TRADING DAY FREQUENCIES 

 


