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1. INTRODUCTION

There exists almost no survey without nonresponse, but in practice most methods 

that deal with this problem assume either explicitly or implicitly that the missing 

data are ‘missing at random’ (MAR). However, in many practical situations, this 

assumption is not valid, since the probability to respond often depends on the 

outcome value, even after conditioning on available covariate information. In such 

cases, the use of methods that assume that the nonresponse is MAR can lead to 

large bias of parameter estimators and distort subsequent inference.  

The case where the missing data are not MAR (NMAR) can be treated by 

postulating a parametric model for the distribution of the outcomes before non-

response and a model for the response mechanism. These two models define a 

parametric model for the observed outcomes, so that the parameters of these 

models can be estimated from the observed data. See, for example, Pfeffermann 

and Sverchkov (2009) for details, with overview of related literature.  

Modeling the distribution of the outcomes before non-response can be problematic 

since only the observed data are available. Sverchkov (2008) proposes an 

alternative approach that allows to estimate the parameters of the response model 

without postulating a parametric model for the distribution of the outcomes before 

nonresponse. To account for the nonresponse, Sverchkov  (2008) assumes a 

given response model and estimates the corresponding response probabilities by 

application of the missing information principle (MIP), which consists of defining 

the likelihood as if there was complete response, and then integrating out the 

unobserved outcomes from the likelihood, employing the relationship between the 
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distributions of the observed and unobserved data. Sverchkov and Pfeffermann 

(2018) apply this approach for small area estimation (SAE) under informative 

probability sampling of areas and within the sampled areas, and NMAR 

nonresponse. We describe the main steps of this approach in Sections 2 and 3. 

 

A key condition for the success of this approach is the “correct” specification of the 

response model. In section 4 we consider the likelihood ratio test and information 

criteria based on the appropriate likelihood and show how they can be used for the 

selection of the response model. 

        2. NOTATION AND MODELS 

Let { , ; 1,..., ,  1,..., }ij ij iy i M j N= =x  represent the data in a finite population of N

units, comprised of M  areas with 
iN  units in area i , 

1

M

ii
N N

=
= , where ijy  is 

the value of  the outcome variable for unit j  in area i  and 
,1 ,( ,..., )ij ij ij Kx x =x  is a 

vector of corresponding K  covariates. We assume that the covariates are known 

for every unit in the population. Suppose that the population outcome values follow 

the generic two-level model:  
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where U

iu  is the ith area level random effect. The target is to estimate the area 

means 
1

1

, 1,...,
iN

i i ij

j

Y N y i M−

=

= = , based on  a sample obtained by the following 

two-stage sampling scheme: i)- select a sample s  of m  out of the M  population 

areas with inclusion probabilities Pr( )i i s =  ; ii) select a sample is  of 0in   

units from selected area i  with probabilities | Pr( | )j i ij s i s =   . Denote by iI , 

ijI  the sample indicators; 1iI =  if area i  is selected in the first stage and 0 

otherwise, 1ijI =  if unit j  of selected area  i  is sampled in the second stage and 
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0ijI =  otherwise. Let 1/i iw = ,
| |1/j i j iw =  denote the first- and second-stage 

sampling weights.  

 

In practice, not every unit in the sample responds. Define the response indicator; 

1ijR =  if unit 
ij s  responds and 0ijR =  otherwise. The sample of respondents 

is thus {( , ) : 1, 1, 1}i ij ijR i j I I R= = = =  and the sample of nonrespondents among 

the sampled units is {( , ) : 1, 1, 0}c

i ik ikR i k I I R= = = = .  The response process is 

assumed to occur stochastically, independently between units. We assume also

1
0

in

ijj
R

=
  in all the sampled areas. The sample of respondents defines therefore 

a third, self-selected stage of the sampling process with unknown response 

probabilities. (Särndal and Swensson, 1987).  

Define, ( | )U U

i i iu u E u i s= −  . Then, under the population model (2.1), the 

observed data follow the two-level ‘respondents’ model:  

      ( | , ) ( | , , ( , ) ); ~ ( | ), ( | ) 0R ij ij i ij ij i i i if y u f y u i j R u f u i s E u i s=    =x x .    (2.2)                

The model (2.2) is again general and all that we state at this stage is that under 

informative sampling and/or NMAR nonresponse, the population and the 

respondents’ models differ; ( | , ) ( | , )U

R ij ij i ij ij if y u f y ux x . 

Remark 1. The respondents’ model refers to the observed data and hence can be 

estimated and tested by standard SAE methods. See Pfeffermann (2013) and Rao 

and Molina (2015) for estimation and testing procedures in SAE, with references. 

Let ( , )r ij ijp y =x Pr[ 1| , , , ]ij ij ij iR y i s j s=  x . If the probabilities ( , )r ij ijp y x  were 

known, the sample of respondents could be considered as a two-stage sample 

from the finite population with known sampling probabilities i  and 

| | ( , )j i j i r ij ijp y = x . In this case, the area means 
iY  can be estimated as in 

Pfeffermann and Sverchkov (2007). Also, if known, the response probabilities 

could be used for imputation of the missing data within the selected areas, by 
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application of the relationship between the sample and sample-complement 

distributions, (Sverchkov and Pfeffermann, 2004);  

 ( | , ,( , ) )c

ij ij if y u i j R =x

1

1

[ ( , ) 1] ( | , ,( , ) )

{[ ( , ) 1] | , ,( , ) }

r ij ij ij ij i

r ij ij ij i

p y f y u i j R

E p y u i j R

−

−

− 

− 

x x

x x
.                   (2.3) 

See Sverchkov and Pfeffermann (2018), and Pfeffermann and Sverchkov (2019) 

for details.  

3. ESTIMATION OF RESPONSE PROBABILITIES 

Unlike the sampling probabilities, the response probabilities are generally 

unknown. We assume therefore a parametric model, which is allowed to depend 

on the outcome and the covariate values; Pr[ 1| , , , ; ]ij ij ij iR y i s j s=  x γ

( , ; )r ij ijp y= x γ , where  γ  is a vector of unknown coefficients. We assume that  

( , ; )r ij ijp y x γ  is differentiable with respect to γ  and satisfies the same mild 

regularity conditions as in Sverchkov and Pfeffermann (2018).  

Under these assumptions, as it was shown in Sverchkov (2008) and Sverchkov 

and Pfeffermann (2018), the parameter γ  can be estimated by maximizing the log-

likelihood (assuming 
*
γ  in (3.1) be the “true” value of γ , see (3.2) for clarification),  

( , )

( ) log ( , ; )r ij ij

i j R

l p y


= γ x γ    

1 *

1 *

( , )
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−



 − − 
+   −  


x γ x γ x

x γ x
.  (3.1) 

We maximize the likelihood (3.1) by replacing iu   by ˆiu , obtained by fitting a model 

of the form (2.2), and dropping the external expectation. The maximization is 

carried out iteratively by maximizing in the (q+1) iteration the expression, 

( 1)

( , )

log ( , ; )q

r ij ij

i j R

p y +



 x γ  

1 ( ) ( 1)

1 ( )

( , )
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x γ x γ x

x γ x
    (3.2)           



5 
 

with respect to 
( 1)q+
γ . The maximization can be carried out, for example, by SAS 

Proc NLIN. See Sverchkov (2022) for details. Riddles et al. (2016) derive sufficient 

conditions under which the above maximization procedure leads to unique 

solution.  

4. SELECTION OF A RESPONSE MODEL 

There is no direct way to test the appropriateness of a chosen response model 

since the outcome values, which are part of the model, are unknown for the 

nonresponding units. If the model for the outcomes before nonresponse was 

known, one could obtain the distribution of the observed outcomes based on this 

distribution and the response model, and test the resulting model fitted to the 

responding units by using standard tests that compare the cumulative 

hypothesized distribution with the corresponding empirical distribution, and/or by 

testing moments of the hypothesized model. See e.g., Pfeffermann and Landsman 

(2011) and Pfeffermann and Sikov (2011). However, in the approach described in 

Section 3, we start with the distribution for the observed outcomes, which does not 

include the response model and therefore, we cannot use the same strategy. 

When following the approach proposed in Section 3, the likelihood (3.1) suggests 

at least two procedures for the selection of the response model in SAE under 

NMAR nonresponse. 1- compare different models based on information criteria, 

such as the Akaike information criterion, AIC= 2 ( ) 2dim( )l− +γ γ , or Schwarz  

information criterion, BIC= 2 ( ) dim( ) log( ),  i

i s

l n n n


− + =γ γ ; 2- test a saturated 

versus a nested model based on likelihood ratio test.  
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